1. Frontera WR, Ochala J. Skeletal Muscle: A Brief Review of Structure and Function. Calcified Tissue Int. 2015;96:183–95.
2. SEGAL SS. Regulation of Blood Flow in the Microcirculation. Microcirculation. 2005;12:33–45.
3. Relaix F, Bencze M, Borok MJ, Vartanian AD, Gattazzo F, Mademtzoglou D, et al. Perspectives on skeletal muscle stem cells. Nat Commun. 2021;12:692.
4. Laumonier T, Menetrey J. Muscle injuries and strategies for improving their repair. Journal of Experimental Orthopaedics. 2016;1–9.
5. Forcina L, Cosentino M, Musarò A. Mechanisms Regulating Muscle Regeneration: Insights into the Interrelated and Time-Dependent Phases of Tissue Healing. Cells. 2020;9:1297.
6. Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology . 2010;298:R1173–87.
7. Tidball JG. Mechanisms of Muscle Injury, Repair, and Regeneration. Compr Physiol. 2013;1:2029–62.
8. Gibson-Corley KN, Olivier AK, Meyerholz DK. Principles for Valid Histopathologic Scoring in Research. Vet Pathol. 2013;50:1007–15.
9. Klopfleisch R. Multiparametric and semiquantitative scoring systems for the evaluation of mouse model histopathology - a systematic review. Bmc Vet Res. 2013;9:123.
10. Carter WO, Bull C, Bortolon E, Yang L, Jesmok GJ, Gundel RH. A murine skeletal muscle ischemia-reperfusion injury model: differential pathology in BALB/c and DBA/2N mice. J Appl Physiol. 1998;85:1676–83.
11. Smajović A, Katica M, Zavšnik D, Veljović E, ho-Alić AŠ-, Šupić J, et al. Toxicity testing of newly synthesized xanthene-3-ones after parenteral applications: an experimental study in rats (Rattus norvegicus). Veterinaria. 2020;69.
12. Erkanh K, Kayalar N, Erkanh G, Ercan F, Sener G, Kırali K. Melatonin protects against ischemia/reperfusion injury in skeletal muscle. J Pineal Res. 2005;39:238–42.
13. McCormack MC, Kwon E, Eberlin KR, Randolph M, Friend DS, Thomas AC, et al. Development of reproducible histologic injury severity scores: Skeletal muscle reperfusion injury. Surgery. 2008;143:126–33.
14. Hardy D, Besnard A, Latil M, Jouvion G, Briand D, Thépenier C, et al. Comparative Study of Injury Models for Studying Muscle Regeneration in Mice. Plos One. 2016;11:e0147198.
15. McDermott MM. Lower extremity manifestations of peripheral artery disease: the pathophysiologic and functional implications of leg ischemia. Circulation Research. 2015;116:1540–50.
16. McDermott MM, Ferrucci L, Guralnik J, Tian L, Liu K, Hoff F, et al. Pathophysiological changes in calf muscle predict mobility loss at 2-year follow-up in men and women with peripheral arterial disease. Circulation. 2009;120:1048–55.
17. Roos S, Fyhr I-M, Sunnerhagen KS, Moslemi A-R, Oldfors A, Ullman M. Histopathological changes in skeletal muscle associated with chronic ischaemia. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica. 2016;124:935–41.
18. Limbourg A, Korff T, Napp LC, Schaper W, Drexler H, Limbourg FP. Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia. Nature Protocols. 2009;4:1737–48.
19. Kendall MG, Smith BB. The Problem of m Rankings. Ann Math Statistics. 1939;10:275–87.
20. Kendall M, Gibbons JD. Rank Correlation Methods (5th ed.). New York: Oxford University Press; 1990.
21. Tang GL, Chang DS, Sarkar R, Wang R, Messina LM. The effect of gradual or acute arterial occlusion on skeletal muscle blood flow, arteriogenesis, and inflammation in rat hindlimb ischemia. YMVA. 2005;41:312–20.
22. Contreras-Shannon V, Ochoa O, Reyes-Reyna SM, Sun D, Michalek JE, Kuziel WA, et al. Fat accumulation with altered inflammation and regeneration in skeletal muscle of CCR2-/- mice following ischemic injury. American Journal of Physiology - Cell Physiology. 2007;292:C953–67.
23. Duff S, Mafilios MS, Bhounsule P, Hasegawa JT. The burden of critical limb ischemia: a review of recent literature. Vascular health and risk management. 2019;15:187–208.
24. McDermott MM, Liu K, Tian L, Guralnik JM, Criqui MH, Liao Y, et al. Calf Muscle Characteristics, Strength Measures, and Mortality in Peripheral Arterial Disease. Journal of the American College of Cardiology. 2012;59:1159–67.
25. Frangogiannis NG. Cell therapy for peripheral artery disease. Curr Opin Pharmacol. 2018;39:27–34.
26. Lotfi S, Patel AS, Mattock K, Egginton S, Smith A, Modarai B. Towards a more relevant hind limb model of muscle ischaemia. Atherosclerosis. 2013;227:1–8.
27. Pereira ARS, Mendes TF, Ministro A, Teixeira M, Filipe M, Santos JM, et al. Therapeutic angiogenesis induced by human umbilical cord tissue-derived mesenchymal stromal cells in a murine model of hindlimb ischemia. Stem Cell Research & Therapy. 2016;7:S5.
28. Liew A, Baustian C, Thomas D, Vaughan E, Sanz-Nogués C, Creane M, et al. Allogeneic Mesenchymal Stromal Cells (MSCs) are of Comparable Efficacy to Syngeneic MSCs for Therapeutic Revascularization in C57BKSdb/db Mice Despite the Induction of Alloantibody. Cell Transplantation. 2018;27:1210–21.
29. García-Vázquez M-D, Parte BH de la, García-Alonso I, Morales M-C. Analysis of Biological Properties of Human Adult Mesenchymal Stem Cells and Their Effect on Mouse Hind Limb Ischemia. Journal of Vascular Research. 2019;56:77–91.
30. Kim Y, Kim H, Cho H, Bae Y, Suh K, Jung J. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2007;20:867–76.
31. Moon MH, Kim SY, Kim YJ, Kim SJ, Lee JB, Bae YC, et al. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2006;17:279–90.
32. Gibson-Corley KN, Olivier AK, Meyerholz DK. Principles for Valid Histopathologic Scoring in Research. Vet Pathol. 2013;50:1007–15.
33. Thuilliez C, Dorso L, Howroyd P, Gould S, Chanut F, Burnett R. Histopathological lesions following intramuscular administration of saline in laboratory rodents and rabbits. Experimental and toxicologic pathology. 2009;61:13–21.
34. Pizzimenti M, Meyer A, Charles A, Giannini M, Chakfé N, Lejay A, et al. Sarcopenia and peripheral arterial disease: a systematic review. J Cachexia Sarcopenia Muscle. 2020;11:866–86.
35. McClung JM, McCord TJ, Keum S, Johnson S, Annex BH, Marchuk DA, et al. Skeletal Muscle–Specific Genetic Determinants Contribute to the Differential Strain-Dependent Effects of Hindlimb Ischemia in Mice. Am J Pathology. 2012;180:2156–69.
36. Chalothorn D, Clayton JA, Zhang H, Pomp D, Faber JE. Collateral density, remodeling, and VEGF-A expression differ widely between mouse strains. Physiological Genomics. 2007;30:179–91.
37. Dokun AO, Keum S, Hazarika S, Li Y, Lamonte GM, Wheeler F, et al. A Quantitative Trait Locus (LSq-1) on Mouse Chromosome 7 Is Linked to the Absence of Tissue Loss After Surgical Hindlimb Ischemia. circ.ahajournals.org. 2008;117:1207–15
38. Helisch A, Wagner S, Khan N, Drinane M, Wolfram S, Heil M, et al. Impact of mouse strain differences in innate hindlimb collateral vasculature. Arteriosclerosis, Thrombosis, and Vascular Biology. 2006;26:520–6.