[1]. Robledo-Arnucio JJ, Klein EK, Muller-Landau HC, Santamaria L. Space, time and complexity in plant dispersal ecology. Mov Ecol. 2014;2(1):16.
[2]. Vranckx GUY, Jacquemyn H, Muys B, Honnay O. Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conserv Biol. 2012;26(2):228-37.
[3]. Kozakiewicz CP, Burridge CP, Funk WC, Salerno PE, Trumbo DR, Gagne RB, at el. Urbanization reduces genetic connectivity in bobcats (Lynx rufus) at both intra-and interpopulation spatial scales. Mol Ecol. 2019;28(23):5068-85.
[4]. LaPoint S, Balkenhol N, Hale J, Sadler J, van der Ree R. Ecological connectivity research in urban areas. Funct. Ecol. 2015;29(7):868-78.
[5]. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, at el. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5):e19379.
[6]. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, at el. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One. 2008;3(10):e3376.
[7]. Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, Linton L, at el. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature. 2000;407(6803):513-16.
[8]. Mondon A, Owens GL, Poverene M, Cantamutto M, Rieseberg LH. Gene flow in argentinian sunflowers as revealed by genotyping by sequencing data. Evol Appl. 2017; 11(2):193-204.
[9]. Massatti R, Doherty KD, Wood TE. Resolving neutral and deterministic contributions to genomic structure in Syntrichia ruralis (Bryophyta, Pottiaceae) informs propagule sourcing for dryland restoration. Conserv Genet. 2018;19(1):85-97.
[10]. Vidal MC, Quinn T W, Stireman JO, Tinghitella RM, Murphy SM. Geography is more important than host plant use for the population genetic structure of a generalist insect herbivore. Mol Ecol. 2019;28(18):4317-34.
[11]. Mizuno N, Yasui Y. Gene flow signature in the s-allele region of cultivated buckwheat. BMC Plant Biol. (2019);19 (1):125.
[12]. Dittberner H, Becker C, Jiao W, Schneeberger K, Hölzel N, Tellier A, at el. Strengths and potential pitfalls of hay‐transfer for ecological restoration revealed by RAD-seq analysis in floodplain arabis species. Mol Ecol. 2019;28(17):3887-901.
[13]. Shafer ABA, Peart CR, Tusso S, Maayan I, Brelsford A., Wheat, CW, at el. Bioinformatic processing of RAD‐seq data dramatically impacts downstream population genetic inference. Methods Ecol Evol. 2016;8(8):907-17.
[14]. Wang GM. The study on landscape pattern of Tetraena mongolica influenced by human disturbance in Wuhai (Unpublished doctoral dissertation). Inner Mongolia University. 2012.
[15]. Wang Y, Ma H, Zheng R. Studies on the reproductive characteristics of Tetraena mongolica Maxim. Acta Bot Boreal Occident Sin. 2000;20:661-5.
[16]. Xu Q, Jiang CQ, Liu SR, Guo QS. Study on pollination ecology of endangered plant Tetraena mongolica population. Forest Res. 2003;16(4):391-7.
[17]. Zhou ZG, Liu GH, Yang LX, Shi XG, Luo F. Study on rooting characteristics of hardwood cutting of tetraena mongolica maxim. J Desert Res. 2009;29(3):519-23.
[18]. Shi G, Ding L, Liu Q, Tang S, Duan H. Chemical constituents contained in tetraena mongolica. Zhongguo Zhong Yao Za Zhi. 2012;37(11):1579-80.
[19]. Wu Z, Wei W, Xu H, Zheng L, Ma C, Wang Y. Constituents from the leaves of Tetraena mongolica and their protective activity in HEK 293t cells damaged by CdCl2. J Nat Prod. 2019;82(10):2707-12.
[20]. Shi S. Studies on eco-physiological adaptation mechanism and endangering mechanism of Tetraena mongolica Maxim. in different habitats (Unpublished doctoral dissertation). Inner Mongolia University. 2005.
[21]. Wang W, Hao W, Bian Z, Lei S, Wang X, Sang S, at el. Effect of coal mining activities on the environment of tetraena mongolica in wuhai, inner mongolia, china-a geochemical perspective. Int J Coal Geol. 2014;132:94-102.
[22]. Wang Y, Li M, Wu W, Wu, H, Xu Y. Cloning and Characterization of an AP2/EREBP Gene TmAP2-1 from Tetraena mongolica. Chinese Bull Bot. 2013;48(1):23-33.
[23]. Chen NM, Feng JC, Song B, Tang S, He JQ, Zhou YJ, at el. De novo transcriptome sequencing and identification of genes related to salt and PEG stress in Tetraena mongolica Maxim. Trees. 2019;33(6):1639-56.
[24]. Ge X, Yu Y, Zhao N, Chen H, Qi W. Genetic variation in the endangered Inner Mongolia endemic shrub Tetraena mongolica Maxim (Zygophyllaceae). Biol Conserv. 2003;111(3):427-34.
[25]. Ge X, Hwang C, Liu Z, Huang C, Huang W, Hung K, at el. Conservation genetics and phylogeography of endangered and endemic shrub tetraena mongolica (zygophyllaceae) in inner mongolia, china. BMC Genet. 2011;12:1.
[26]. Zhi Y, Sun Z, Sun P Zhao K, Guo Y, Zhang D, at el. How much genetic variation is stored in the endangered and fragmented shrub Tetraena mongolica Maxim? Peer J. 2018;21:6:e5645.
[27]. Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components:a new method for the analysis of genetically structured populations. BMC Genet. 2010;11:94.
[28]. Wright S. Evolution and the genetic of population,Variability within and among natural populations. Chicago: University of Chicago Press. 1978;4:213-20.
[29]. Govindaraju D R. Relationship between dispersal ability and levels of gene flow in plants. Oikos, 1988; 52(1):31-5.
[30]. Zhao Y, Vrieling K, Liao H, Xiao M, Zhu Y, Rong J, at el. Are habitat fragmentation, local adaptation and isolation-by-distance driving population divergence in wild rice Oryza rufipogon. Mol Ecol. 2013;22(22):5531-47.
[31]. Browne L, Karubian J. Habitat loss and fragmentation reduce effective gene flow by disrupting seed dispersal in a neotropical palm. Mol Ecol. 2018;27(15):3055-069.
[32]. Ng KKS, Lee SL, Koh CL. Spatial structure and genetic diversity of two tropical tree species with contrasting breeding systems and different ploidy levels. Mol Ecol. 2004;13(3):657-69.
[33]. He Z, Zhai W, Wen H, Tang T, Wang Y, Lu X, at el. Two evolutionary histories in the genome of rice: the roles of domestication genes. PLoS Genet. 2011;7: e1002100.
[34]. Li Y, Zhou G, Ma J, Jiang W, Jin L, Zhang ZH, at el. De novo assembly of soybean wild relatives for pangenome analysis of diversity and agronomic traits. Nat Biotechnol. 2014;32(10):1045-52.
[35]. Karron J D. A comparison of levels of genetic polymorphism and self compatibility in geographically restricted and widespread plant congeners. Evol Ecol. 1987;l(1):47-58.
[36]. Huang CL, Chen JH, Tsang MH, Chung JD, Chang CT, Hwang SY. Influences of environmental and spatial factors on genetic and epigenetic variations in Rhododendron oldhamii (Ericaceae). Tree Genet Genome. 2015;11:823.
[37]. Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier MH, at el. Fine-scale genetic structure and gene dispersal inferences in 10 neotropical tree species. Mol Ecol. 2010;15(2):559-71.
[38]. Moyle LC. Correlates of genetic differentiation and isolation by distance in 17 congeneric silene species. Mol Ecol. 2006;15(4):1067-81.
[39]. Liu GH, Zhou SQ, Thang L, Ren L. Study on the biological characteristics and the endangering factors of the Tetraena mongolica. J Inner Mongolia Forestry College. 1993;2:33-9.
[40]. Young A. The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol. 1996;11(10):413-8.
[41]. Lee JS, Ruell EW, Boydston EE, Lyren LM, Alonso RS, Troyer JL, at el. Gene flow and pathogen transmission among bobcats (Lynx rufus) in a fragmented urban landscape. Mol Ecol. 2012;21(7):1617-31.
[42]. Zhang Y. Population dynamics of endangered species, Tetraena mongolica in fragmentation habitats (Unpublished doctoral dissertation). Wuhan university. 2000.
[43]. Qi P, Gimode D, Saha D, Schröder S, Chakraborty D, Wang X, at el. UGbS-Flex, a novel bioinformatics pipeline for imputation-free SNP discovery in polyploids without a reference genome: finger millet as a case study. BMC Plant Biol. 2018;18(1):117.
[44]. Andrews S. FastQC: A quallity control tool for high throughput sequence data. 2010; http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
[45]. Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH. Stacks: Building and genotyping loci de novo from short-read sequences. G3 (Bethesda). 2011;1(3):171-82.
[46]. Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357-9.
[47]. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, at el. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297-303.
[48]. Rousse F. Genepop'007: A complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour. 2008;8(1):103-6.
[49]. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 1980 May;32(3):314-31.
[50]. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, Depristo MA, at el. The variant call format and vcftools. Bioinformatics. 2011;27(15):2156-8.
[51]. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19(9):1655-64.
[52]. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bende D, at el. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559-75.
[53]. Ruan J, Li H, Chen Z, Coghlan A, Coin LJ, Guo Y, at el. TreeFam: 2008 Update. Nucleic Acids Res. 2008Jan;36(Database issue):D735-40.
[54]. Beerli P, Palczewski M. Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics. 2010;185(1):313-26.
[55]. Blanco-Bercial L, Bucklin A. New view of population genetics of zooplankton: RAD-seq analysis reveals population structure of the North Atlantic planktonic copepod, Centropages typicus. Mol Ecol. 2016;25(7):1566-80.
[56]. Peakall R, Smouse P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 2012;28:2537-9.