Almikaeel, W., Čubanová, L., and Šoltész, A., (2022). Comparison of mean daily discharge data for under-mountain and highland-lowland types of rivers. Acta Hydrologica Slovaca, Volume 23, No. 1, 73 – 81. DOI: 10.31577/ahs-2022-0023.01.0008.
Ayoade, J. O., (1975) Water resources and their development in Nigeria / Les resources en eau et leur exploitation en Nigérie, Hydrological Sciences Journal, 20:4, 581-591, DOI: 10.1080/02626667509491589.
Chu, H., Wei, J., Qiu, I., Li, Q., and Wang, G., (2019). Identification of impact of climate change and human activities on rainfall-runoff relationship variations in the Three River Headwater Region. Ecol. Indic., 106, 105516.
Depetris, P. J., (2021.) The Importance of Monitoring River Water Discharge. Frontiers in Water 3:745912, https://doi.org/10.3389/frwa.2021.745912.
Döll, P., Kaspar, F. and Lehner, B., (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. Jour. Hydrol. 270, 105–134.
Ekwere, A.S., and Edet, A., (2012). Trace metals in ground and surface waters of the Oban Massif area, SE Nigeria. Advances in Applied Sciences Research. Vol.3, No. 1 pp 312-318.
Ekwere, A.S., and Edet, A.E., (2015). Vulnerability Assessment of Aquifers within the Oban Massif, South-Eastern Nigeria, using DRASTIC Method. International Journal of Scientific & Engineering Research. Volume 6, Issue 10 pp 1123-1135.
Ekwere, A. S., Kudamnya, E. A and Osung, W. E., (2021). Assessment of potentially toxic metals and their mineral species in soils of arable farmlands in the southeastern Niger delta basin, Nigeria. Soil Environ. 40 (2), 119-126.
Eze, E.B and Efiong, J., (2010). Morphometric Parameters of the Calabar River Basin: Implication for Hydrologic Processes. Journal of Geography and Geology. Vol. 2, No. 1, 18-26.
Fendeková, M., and Blaškovičová, L., (2018). Prognosis of hydrological drought development in Slovakia. Bratislava. ISBN 978-80-223-4673-3, 182 p.
Gartsman, B. I., (2014). Hydrographic and Landscape Description of a River Basin Based on GIS- and Geographic Data. Russian Meteorology and Hydrology, Vol. 39, No. 6, 407–415.
Hu, Z., Wang, G., Sun, X., Zhu, M., Song, C., Huang, K., and Chen, X., (2018). Spatial-temporal patterns o evaporation along an elevation gradient on Mount Gongga, South-Western China. Water Resource. Res. 54, 4180-4192.
Ivanova, E.I., Nedkov, R.D., Ivanova, I.B., and Radeva, K.L., (2012). Morpho-hydrographic analyze of Black Sea Catchment Area in Bulgaria. Landscape, Environment, European Identity: Procedia Environmental Sciences, 14:143–153.
Kuusisto, E., (1996). Hydrological Measurements. In: Jamie Bartram and Richard Ballance Ed. Water Quality Monitoring - A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes. UNEP/WHO, ISBN 0 419 22320 7.
Lian, X., Piao, S., Huntingford, C., Li, Y., Zeng, Z., Wang, X, Ciais, P., McVicar, T. R., Peng, S., Ottlé, C., Yang, H., Zhang, Y., and Wang, T., (2018). Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change, 8 (7), 640-646.
Ma, Y. J., Li, X. Y., Liu, L., Yang, X. F., Wu, X., Wang, P., Lin, H., Zhang, G., and Miao, C., (2019). Evapotranspiration and its dominant controls along an elevation gradient in the Qinghai Lake Watershed, North-East Qinghai – Tibet Plateau. J. Hydrol. 575, 257-268.
Nageswara, R.K., Swarna, L.P., Arun, K.P., Hari, K.M., (2010). Morphometric analysis of Gostani River basin in Andhra Pradesh State, India using spatial information technology. International Journal of Geomatics and Geosciences; 1(2):179–187
Ogarekpe, N., and Nnaji, C., (2020). A data set for the flood vulnerability assessment of the Upper Cross River Basin using morphometric analysis. Data in Brief, vol. 30, 105344.
Ogarekpe, N.M., Obio, E.A., Tenebe, I.T., Emenike, P.C., and Nnaji., C.C., (2020). Flood vulnerability assessment of the upper Cross River basin using morphometric analysis. Geomatics, Natural Hazards and Risk. Vol. 11, No. 01, 1378–1403. https://doi.org/10.1080/19475705.2020.1785954
Pascollini-Campbell, M., Raeger, J. T., Chandanpurkar, H. A., and Rodell, M., (2021). A 10 per cent increase in global land evapotranspiration from 2003-2019. Nature 593 (7860), 543-547.
Rawat, P.K., Tiwari, P.C., Pant, C.C., (2011). Morphometric analysis of third order river basins using high resolution satellite imagery and GIS technology: Special reference to natural hazard vulnerability assessment. E-International Scientific Research Journal, 3(2):
Shen, S., Son, C., Cheng, C and Ye, S., (2020). The coupling impact of climate change on stream flow complexity in the headwater area of the north-eastern Tibetan Plateau across multiple timescales. J. Hydrol. 588, 124996.
Sýs, V., Fošumpaur, P., Kašpar, T. (2021). The impact of climate change on the reliability of Water Resources. Climate, 9(11), 153. https://doi.org/10.3390/cli9110153
Wang, J., Wang, Q., Zhao, Y., Li, H., Zhai, J., and Shang, Y., (2015). Temporal and spatial characteristics of pan evaporation trends and their attribution to meteorological drivers in the Three-River Source Region, China. J. Geophys. Res. Atmos. 120, 6391-6408.
Watts, L., (2005). Hydrological monitoring technical report. Resource Investigations Department Greater Wellington Regional Council. 72p.
Xu, M., Kang, S., Chen, X., Wu, H., Wang, X., and Su, Z., (2018). Detection of hydrological variations and their impacts on vegetation from multiple satellite observations in the Three-River Source Region of the Tibetan Plateau. Sci. Total. Environ. 639, 1220-1232.
Zhao, D., and Wu, S., (2019). Projected changes in permafrost active laye thickness over the Qinghai-Tibetan Plateau under climate change. Water Resour. Res. 55, 7860-7875.