1. Wlodawer, A., Minor, W., Dauter, Z. & Jaskolski, M. Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination. FEBS J. 280, 5705-5736 (2013).
2. Bai, X.-c., McMullan, G. & Scheres, S.H.W. How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40, 49-57 (2015).
3. Danev, R., Yanagisawa, H. & Kikkawa, M. Cryo-Electron Microscopy Methodology: Current Aspects and Future Directions. Trends Biochem. Sci. 44, 837-848 (2019).
4. Sekhar, A. & Kay, L.E. NMR paves the way for atomic level descriptions of sparsely populated, transiently formed biomolecular conformers. Proc. Natl. Acad. Sci. U. S. A. 110, 12867-12874 (2013).
5. Ishima, R. & Torchia, D.A. Protein dynamics from NMR. Nat. Struct. Biol. 7, 740-743 (2000).
6. Donnelly, D.P. et al. Best practices and benchmarks for intact protein analysis for top-down mass spectrometry. Nat. Methods 16, 587-594 (2019).
7. Zhou, M. et al. Higher-order structural characterisation of native proteins and complexes by top-down mass spectrometry. Chem. Sci. 11, 12918-12936 (2020).
8. Mitra, G. Application of native mass spectrometry in studying intrinsically disordered proteins: A special focus on neurodegenerative diseases. BBA-PROTEINS PROTEOM 1867, 140260 (2019).
9. Tamara, S., den Boer, M.A. & Heck, A.J.R. High-Resolution Native Mass Spectrometry. Chem. Rev. 122, 7269-7326 (2022).
10. Liu, X.R., Rempel, D.L. & Gross, M.L. Protein higher-order-structure determination by fast photochemical oxidation of proteins and mass spectrometry analysis. NAT PROTOC 15, 3942-3970 (2020).
11. Esben, T., E., N.Z. & D., R.K. Conformational Analysis of Complex Protein States by Hydrogen/Deuterium Exchange Mass Spectrometry (HDX-MS): Challenges and Emerging Solutions. TRAC-Trend Anal Chem 106, 125-138 (2018).
12. Zhang, M.M., Rempel, D.L. & Gross, M.L. A Fast Photochemical Oxidation of Proteins (FPOP) platform for free-radical reactions: the carbonate radical anion with peptides and proteins. Free Radocal Bio Med 131, 126-132 (2019).
13. Liu, X.R., Zhang, M.M. & Gross, M.L. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem. Rev. 120, 4355-4454 (2020).
14. Iacobucci, C., Götze, M. & Sinz, A. Cross-linking/mass spectrometry to get a closer view on protein interaction networks. Curr Opin Biotech 63, 48-53 (2020).
15. Wang, J.-H. et al. Characterization of protein unfolding by fast cross-linking mass spectrometry using di-ortho-phthalaldehyde cross-linkers. Nat. Commun. 13, 1468 (2022).
16. Schneider, M., Belsom, A. & Rappsilber, J. Protein Tertiary Structure by Crosslinking/Mass Spectrometry. Trends Biochem. Sci. 43, 157-169 (2018).
17. Ding, Y.-H. et al. Modeling Protein Excited-state Structures from "Over-length" Chemical Cross-links. J. Biol. Chem. 292, 1187-1196 (2017).
18. Zheng, Q., Zhang, H., Tong, L., Wu, S. & Chen, H. Cross-Linking Electrochemical Mass Spectrometry for Probing Protein Three-Dimensional Structures. Anal. Chem. 86, 8983-8991 (2014).
19. Zheng, Q., Zhang, H., Wu, S. & Chen, H. Probing Protein 3D Structures and Conformational Changes Using Electrochemistry-Assisted Isotope Labeling Cross-Linking Mass Spectrometry. J. Am. Soc. Mass Spectrom. 27, 864-875 (2016).
20. Yu, C. & Huang, L. Cross-Linking Mass Spectrometry: An Emerging Technology for Interactomics and Structural Biology. Anal. Chem. 90, 144-165 (2018).
21. Gomes, A.F. & Gozzo, F.C. Chemical cross-linking with a diazirine photoactivatable cross-linker investigated by MALDI- and ESI-MS/MS. J. Mass Spectrom. 45, 892-899 (2010).
22. Sharma, R.K. & Parameswaran, S. Calmodulin-binding proteins: A journey of 40 years. Cell Calcium 75, 89-100 (2018).
23. Gong, D. et al. Modulation of cardiac ryanodine receptor 2 by calmodulin. Nature 572, 347-351 (2019).
24. Tadross, M.R., Dick, I.E. & Yue, D.T. Mechanism of Local and Global Ca2+ Sensing by Calmodulin in Complex with a Ca2+ Channel. Cell 133, 1228-1240 (2008).
25. Iacobucci, C. et al. Carboxyl-Photo-Reactive MS-Cleavable Cross-Linkers: Unveiling a Hidden Aspect of Diazirine-Based Reagents. Anal. Chem. 90, 2805-2809 (2018).
26. Chin, D. & Means, A.R. Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10, 322-328 (2000).
27. Marcelo, K.L., Means, A.R. & York, B. The Ca2+/Calmodulin/CaMKK2 Axis: Nature's Metabolic CaMshaft. Trends Endocrin Met 27, 706-718 (2016).
28. Tao, L., Li, Y., Long, H., Ma, H. & Yang, X. The interactome and spatial redistribution feature of Ca 2+ receptor protein calmodulin reveals a novel role in invadopodia-mediated invasion. Cell Death Dis 9, 292 (2018).
29. Babu, Y.S. et al. Three-dimensional structure of calmodulin. Nature 315, 37-40 (1985).
30. Kuboniwa, H. et al. Solution structure of calcium-free calmodulin. Nat Struct Biol 2, 768-776 (1995).
31. Chattopadhyaya, R., Meador, W.E., Means, A.R. & Quiocho, F.A. Calmodulin structure refined at 1.7 Å resolution. J Mol Biol 228, 1177-1192 (1992).
32. Sosa, L.d.V. et al. The structure, molecular dynamics, and energetics of centrin–melittin complex. Proteins: Structure, Function, and Bioinformatics 79, 3132-3143 (2011).
33. Wang, J., Wang, W., Kollman, P.A. & Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25, 247-260 (2006).
34. Case, D.A. et al. The Amber biomolecular simulation programs. J Comput Chem 26, 1668-1688 (2005).
35. Maier, J.A. et al. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J Chem Theory Comput 11, 3696-3713 (2015).
36. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. & Klein, M.L. Comparison of simple potential functions for simulating liquid water. J Chem Phys 79, 926-935 (1983).
37. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: AnN⋅log(N) method for Ewald sums in large systems. J Chem Phys 98, 10089-10092 (1993).
38. York, D.M., Darden, T.A. & Pedersen, L.G. The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: A comparison of the Ewald and truncated list methods. J Chem Phys 99, 8345-8348 (1993).
39. Ryckaert, J.P., Ciccotti, G. & Berendsen, H.J.C. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327-341 (1977).
40. Bucher, D., Pierce, L.C., McCammon, J.A. & Markwick, P.R. On the use of accelerated molecular dynamics to enhance configurational sampling in ab initio simulations. J. Chem. Theory Comput. 7, 890-897 (2011).
41. Bullock, J.M.A., Schwab, J., Thalassinos, K. & Topf, M. The Importance of Non-accessible Crosslinks and Solvent Accessible Surface Distance in Modeling Proteins with Restraints From Crosslinking Mass Spectrometry*. Mol. Cell Proteomics. 15, 2491-2500 (2016).