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ABSTRACT 

This paper presents a noval framework that classifies finger movements automatically using 

Wavelet Transform and its derivatives by capturing statistical features from the discrete time 

Electromyogram (EMG) signals. In the suggested method, wavelet-based denoising is used to 

separate out the subject's EMG signals, and then Discrete Wavelet Transform (DWT) and Wavelet 

Packet Transform are used to decompose the signals and extract their key characteristics (WPT). The 

derivatives of the feature sets are employed to analyse the correlation among them. This method is 

motivated by the surveillance that there exists a distinctive correlation between the different features 

of the samples of the signals extracted at various frequency levels. Experimentally, it was perceived 

that this correlation varies from signal to signal. Both Feed forward and Cascaded Feed forward 

Artificial Neural Networks (ANN) are used for classification. Experiments show that the proposed 

method significantly improves the classification rate.  The performance of the suggested wavelet-

based features and their derivatives in combination with ANN and trained with the Levenberg-

Marquardt algorithm was evaluated by comparing the simulation results for various sets of features. 

Comparing the new method benefits to earlier traditional methods in terms of classification 

performance helped to further highlight their advantages. These experimental findings demonstrate 

that the suggested approach performs admirably in classifying finger movements based on EMG 

signal patterns. The suggested methodology also helps clinicians increase the reliability of 

myoelectric pattern recognition. 

Index Terms- Signal processing, Electromyogram, Discrete wavelet transform, Feature extraction, 

Pattern recognition, Feed Forward Neural Network. 

1 INTRODUCTION 
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For a person, who loss the limb after an injury, an artificial hand is needed to carry out his 

daily activities.  Today's highly sophisticated prosthetic hands offer individual finger movement. 

These prosthetic hands are controlled using surface Electromyogram (EMG) signals, which are 

retrieved during the electrical activity of muscles. The myoelectric control systems rely on a pattern 

recognition approach that entails recording of EMG signals from several channels, extracting features 

from the signals, and categorising the features using the proper classifiers [1, 2]. EMG signal is not 

periodic. Additionally, it is complicated in nature and can occasionally even be contradictory because 

it can be altered by a number of factors such muscle fatigue, electrode displacement, sweat, and 

changing skin thickness. The EMG signal carries a significant quantity of data about limb movements 

and functionality despite its complexity. As a result, it can be successfully used in prosthetic [3, 4], 

rehabilitation or clinical posture analysis and diagnosis of neuromuscular illnesses [5- 7]. 

Furthermore, EMG is a pathetic bio-signal corrupted by the noise from the internal cross-talk, 

ambient electromagnetic radiation, and movement artefacts. Different types of filtering techniques are 

employed to remove various noise embedded in the EMG signal.  Notch filters were applied to 

remove the high-frequency noise present in the signal [8]. One of the shortcomings of notch filter 

design is that the maximum value of the output below the notch frequency is usually less than the 

maximum value of output above the notch frequency. To remove movement artefacts and power line 

interferences, Butterworth low pass and high pass filters are employed [9-11]. Nevertheless, the major 

problem of low pass and high pass filters is that, they sieve the DC offset of the signal and unwanted 

ripples that are produced at certain frequencies [12].However, Wavelet-based denoising provides fine 

frequency resolution at high frequencies [13]. Consequently, noise components in the desired signal 

can be easily isolated by preserving important high-frequency transients. 

The success of myoelectric pattern recognition depends on the features that are extracted and 

the classifier that is used [14]. The variables taken into account in the time-domain typically have a lot 

of relevance. Different motion recognition techniques have been applied to a range of time-domain 

features that have been proposed. Riilloet.al [15] utilised five different hand movements and seven 

separate time-domain features. Nianfeng Wang [16] proposed eight hand gestures classification using 

time-domain and Autoregressive (AR) coefficients. Khushabaet.al [17] suggested three levels of time-

domain Power Spectral Descriptors (TD-PSD) for the detection of wrist and hand movements. In 

reality, thorough consideration of the time-domain aspects in EMG analysis is required to minimise 

the time delay and produce effective controllability in real-world applications. Iker Mesaet.al [18] 

used frequency-domain features along with Support Vector Machine (SVM) classifier for the 

recognition of hand gestures. The properties of the energy/entropy distribution are used to select the 

nonlinear characteristics of the signal [19]. Prashar et.al [20] employed time and frequency domain-

based statistical characteristics and the empirical mode decomposition (EMD) method to classify 

signals. An-Chih Tsai et.al [21] built a pattern recognition model using SVM classifier and Principal 



Component Analysis (PCA). For the analysis of hand movement, spectral-based features and a Linear 

Discriminant Analysis (LDA) classifier were developed. [22-24]. However, this approach required 

more processing time. Wavelet transform is a potent time-frequency mathematical tool that has been 

used in many areas of biosignal processing, including EMG. [25, 26]. 

The classification of EMG signals served as the foundation for the development of 

myoelectric prosthesis control systems [27-29]. Due to the EMG signal's significant interference and 

fluctuation, classifying EMG signals is a challenging pattern recognition task [30-32]. 

ErconGokgozet.al [33] proposed the Decision Tree Algorithm (DTA) and Discrete Wavelet 

Transform (DWT) combination for classifying biological signals. FirasAlomariet.al [34] proposed a 

pattern recognition system using the energy of wavelet coefficients to categorise eight different hand 

gestures. In [35, 36], an Artificial Neural Network (ANN) was trained using information on the level 

of muscular contraction and previous classifier outputs in order to determine the accuracy of the 

classifier's decision., YinaGuoet.al [37] used ANN to categorise six different hand movements and 

achieved excellent accuracy, however the system was not resilient when amputees' electrodes were 

shifted, changed in size, or oriented differently. 

 The removal of noises embedded in the EMG signals is done using wavelet-based 

denoising algorithms. The EMG signal is processed using the Wavelet Packet Transform (WPT) and 

DWT to extract various features. Calculating non-linear measurements allows one to estimate the 

signal's non-linear characteristics. These attributes can be utilised as input data for an ANN classifier, 

which can categorise different finger movements, because it has been found that they are significantly 

different for different finger movements. The remaining paper is organized as follows: In the next 

section, we give information about the methodology of the proposed framework. Section 3 provides 

subjects and presents the methods applied in each step of the EMG signal classification process. It 

also gives a complete experimental study of the feed forward pattern recognition network model 

based EMG signal classification scheme. Results and Discussions are given in section 4. Finally, the 

conclusions are summarized in section 5. 

2 Methodology 

Figure 1 illustrates the three modules of the proposed methodology for an automated finger 

motion identification system: data collection and pre-processing, feature extraction, and an ANN-

based classification system. The sensors first identify and record the EMG signals of the forearm 

muscles and further pre-processed to remove artefacts. The recorded signals are the discrete samples 

of size between 10,000 and 20,000 for a typical movement. The representation of EMG signals in 

terms of samples increase the complexity of the classification task, which requires dimensionality 

reduction. This reduction leads to represent the EMG signal in terms of a feature vector. 



 

Figure1Electromyogram based finger motion recognition system 

The decomposition of the original EMG signal into signal components at various frequencies 

using DWT and WPT results in a transformation in the time-frequency domain that allows for the 

feature extraction from the original EMG signal. The pattern vector, or original waveform, should be 

reduced by a feature extractor to a lower aspect, which holds the majority of the valuable data from 

the original signal. The identification of patterns and regularities in data is the focus of the machine 

learning technique known as ANN-based classification. The statistical or non-statistical nature of the 

pattern classification technique will depend on whether the learning is supervised or unsupervised. 
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Wavelet based denoising 

Denoised EMG signal 

DWT WPT 

                      Perform i-Level decomposition 

Energy Entropy Mean Standard deviation 

  Second Derivative (SD) 

Form   the feature vectors 

 

Start 

                      Choose   Maximum value 

                      First   Derivative (FD) 

ANN classifier 

do for i=1 to L 



a) Experimental setup: A group of ten volunteers six males and four females, aged between 20-38, 

free of any muscular/neurological disorders participated in the experiment. As indicated in Figure 2, 

subjects were seated in an armchair with one end of their arm fixed so that they could perform hand 

movements freely without any constraints. Ag/AgCl disposable surface electrodes were positioned at 

equidistance on the subject's right forearm to collect the EMG data. Each subject's wrist was attached 

to a conductive adhesive reference electrode (Dermatrode Reference Electrode). The signals were 

digitally connected (24 bit A/D converter) and sampled at 2 kHz before being stored for offline 

analysis in the MATLAB environment. 

 

 Figure 2Experimental setup for data acquisition 

The experimental protocol comprised 10 finger movements namely Hand 

close(HC),Thumb(T),Index(I),Little(L),Middle(M),Ring(R),Thumb-Index(TI),Thumb-Middle (TM), 

Thumb-Ring(TR) and Thumb-Little(TL)were selected and they are shown in Figure3. The subjects 

performed each motion in 6 trials and recorded for 4 sec.  

 

      (a)T         (b) I         (c) M         (d) R           (e) L          (f) TI        (g) TM       (h) TR        (i)TL        (j) HC 

Figure 3 Waveforms for finger motions 

b) Wavelet denoising: The very sensitive nature of EMG signals leads to the contamination of various 

types of noise sources which would contribute to very deprived classification results. Wavelet 

denoising takes advantage of the fact that some signal features are related to the signal's average 

power and others are related to the noise value. Therefore, if the noise-related details are filtered, the 



signal can be reconstructed using other details without losing any of the signal's content. Therefore, 

choosing the right threshold algorithm and threshold scaling function is crucial. Let us suppose the 

signal xi be corrupted with Additive White Gaussian noise. The noisy input signal is given by 

   
m

iii ixy 2,......2,1, =+= 
     (1) 

The noisy signal can be decomposed to obtain discrete wavelet coefficients ),,( baS where a and b are 

the time-scale parameters. Determine a threshold )},({ baSu= based on the following threshold 

rules to get the modified coefficients }),,({),( daSDbaZ =  

i)Rigrsure: Suppose ].......,,[ 321 NwwwwW = is a vector made up of the squares of the wavelet 
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The selected threshold is bw = , where, bw is the 
th

b squared wavelet coefficient (coefficient at 

minimum risk) chosen from the vector and σ is the standard deviation of the noisy signal. [13]. 

ii)Sqtwolog: The threshold values (λ) are calculated using universal threshold (square root log) 

method given by, )log(2 jjj N =
,
 where 𝑁𝑗  is the length of the noisy signal at jth scale and 𝜎𝑗 is 

Median Absolute Deviation (MAD) at jth scale, 
6745.0

j

j
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=

     (3) 

iii)Heursure: If 1 and 2 represent threshold obtained from Sqtwolog and Rigrsure respectively, 

then, λ = {λ1,                    𝐴 > 𝐵min (λ1, λ2), 𝐴 ≥ 𝐵, where 
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where S  is the sum of the squared wavelet coefficients, and N is the length of the wavelet coefficient 

vector.  

iv)Minimaxi: The threshold,𝜆 = { 𝜎(0.3936 + 0.1829 log2 𝑁), 𝑁 > 32   0                                                    𝑁 < 32, 
6745.0

w
median= . 

Finally, Inverse Discrete Wavelet Transform is found out for the modified wavelet coefficient in order 

to get the denoised signal. 



Feature extraction is an essential stage for pattern recognition. As indicated by earlier studies 

on EMG pattern recognition, wavelet features can be helpful [38], DWT and WPT features were 

adopted in this study. The feature set includes more statics namely Energy, mean, Standard deviation, 

and entropy. 

c) Discrete Wavelet Transform: The features of the signal can be extracted by decomposing the 

input signal into low and high frequency bands as shown in Figure 4. 

 

Figure 4: Decomposition of input signal into multiple levels. 

The input EMG signal is split into low and high frequency bands. The low frequency filter 

coefficients or approximations, 
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The coefficients of all the levels contain significant amplitude and considered for further analysis. The 

statistical features are extracted from the detailed and approximation coefficients of each of the n-

levels. 

d) Wavelet Packet Transform:   

The WPT can generate a superfluous set of subspaces arranged in a binary tree structure with 

any desired resolution, allowing the input signal to be decomposed. The wavelet packet tree for EMG 

signal after performing 7-level decomposition is shown in Figure 5. It consists of 27=128 frequency 

sub bands. 



 

Figure 5 Wavelet Packet Tree for 7 levels 

The maximum possible frequency for the signal, according to the Nyquist theorem, would be 

fs/2 where fsis the sampling frequency. Frequency bands corresponding to five decomposition levels 

and their corresponding sampling frequencies and nodes are listed in Table I.  

Table 1 Frequency ranges for different levels 

Node F (Hz)
 

fs Node F (Hz)
 

fs Node F (Hz)
 

fs 

(1,0) 0.00390

6 
0-500 (4,7) 0.08593

8 

437.5-500 (5,12) 0.1679

69 

375-406.25 

(1,1) 0.00781

3 

500-1000 (4,8) 0.08984

4 

500-562.5 (5,13) 0.1718

75 

406.25-437.5 

(2,0) 0.01171

9 
0-250 (4,9) 0.09375 562.5-625 (5,14) 0.1757

81 

437.5-468.75 

(2,1) 0.01562

5 
250-500 (4,10) 0.09765

6 

625-687.5 (5,15) 0.1796

88 

468.75-500 

(2,2) 0.01953

1 

500-750 (4,11) 0.10156

3 

687.5-750 (5,16) 0.1835

94 

500-531.25 

(2,3) 0.02343

8 
750-1000 (4,12) 0.10546

9 

750-812.5 (5,17) 0.1875 531.25-562.5 

(3,0) 0.02734

4 
0-125 (4,13) 0.10937

5 

812.5-875 (5,18) 0.1914

06 

562.5-593.75 

(3,1) 0.03125 125-250 (4,14) 0.11328

1 

875-937.5 (5,19) 0.1953

13 

593.75-625 

(3,2) 0.03515

6 
250-375 (4,15) 0.11718

8 

937.5-1000 (5,20) 0.1992

19 

625-656.25 

(3,3) 0.03906

3 
375-500 (5,0) 0.12109

4 

0-31.25 (5,21) 0.2031

25 

656.25-687.5 

(3,4) 0.04296

9 

500-625 (5,1) 0.125 31.25-62.5 (5,22) 0.2070

31 

687.5-718.75 

(3,5) 0.04687

5 
625-750 (5,2) 0.12890

6 

62.5-93.75 (5,23) 0.2109

38 

718.75-750 

(3,6) 0.05078

1 
750-875 (5,3) 0.13281

3 

93.75-125 (5,24) 0.2148

44 

750-781.25 

(3,7) 0.05468

8 

875-1000 (5,4) 0.13671

9 

125-156.25 (5,25) 0.2187

5 

781.25-812.5 

(4,0) 0.05859

4 

0-62.5 (5,5) 0.14062

5 

156.25-187.5 (5,26) 0.2226

56 

812.5-843.75 

(4,1) 0.0625 62.5-125 (5,6) 0.14453

1 

187.5-218.75 (5,27) 0.2265

63 

843.75-875 

(4,2) 0.06640

6 

125-187.5 (5,7) 0.14843

8 

218.75-250 (5,28) 0.2304

69 

875-906.25 

(4,3) 0.07031

3 

187.5-250 (5,8) 0.15234

4 

250-281.25 (5,29) 0.2343

75 

906.25-937.5 

(4,4) 0.07421

9 

250-312.5 (5,9) 0.15625 281.25-312.5 (5,30) 0.2382

81 

937.5-968.75 

(4,5) 0.07812

5 

312.5-375 (5,10) 0.16015

6 

312.5-343.75 (5,31) 0.2421

88 

968.75-1000 

(4,6) 0.08203

1 

375-437.5 (5,11) 0.16406

3 

343.75-375    

 



3.Feature extraction algorithm:  

The significant features of the signal are extracted using the following algorithm. The important steps 

involved in this are summerized below: 

Step 1 :  Perform wavelet decomposition using DWT and WPT 

Step 2 : Compute the statistical features such as energy, entropy, standard deviation and mean for the 

wavelet coefficients in each level. 

a) Energy: According to Parseval’s theorem, the energy of the signal can be segregated at different 

resolution level. For approximation coefficients, liiaiE
N

j

ijai ,,.........2,1,)()(
1

2
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=   (8) 

For detailed coefficients,  
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b) Entropy: Entropy in the EMG is a measure of microstates. The more microstates, i.e. more chaos 

and entropy, the more complexity in the EMG and more promising patterns. The entropy of 

approximations and details respectively are given by, 
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c) Mean: This parameter articulates the strength of muscle for which we are analysing EMG and its 

fortitude excessively. 
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Step 3: Find the maximum value of the features for each decomposition level.  

Maximum Energy,  

liEEiE diaimi ,,.........2,1},,max{)( ==
   (14)

 

Maximum entropy,   
liPPiP diaimi ,,.........2,1},,max{)( ==

    (15)
 



Maximum mean,  
liMMiM diaimi ,,.........2,1},,max{)( ==

   (16) 

Maximum standard deviation,  
liSSiS diaimi ,,.........2,1},,max{)( ==

    (17) 

The frequency band of each scale [fm/2: fm] of the DWT/WPT is allied to the sampling rate of the 

original signal, given by fm=fs /2l+1, where fs is the sampling frequency, and l is the level of 

decomposition. In this study, the sampling frequency of the EMG signal is set to be 1000 Hz.  

Step 4: Find the first and second derivatives of the feature vectors.  

First Derivatives (FD): The first derivative measures the rate of change between the successive and 

predecessor values.  Given that there are some features extracted from the same kind of finger motion, 

these feature sets should have relation among neighborhood samples. These signals are all 

decomposed to obtain the same frequency scales by wavelet transform. The correlation between 

different frequency regions has been indorsed as a sort of effective characteristic of the signal. First 

Derivatives (FD) and Second Derivatives (SD) are used to analyse the correlation. The FD-based 

features are obtained by finding the first order derivative of the features, i.e. 

)()()()( )1()1( iEiEiEFDEEnergyFD tmtmmt −+ −==−
    (18) 

)()()()( )1()1( iPiPiPFDPEntropyFD tmtmmt −+ −==−
    (19)

 

)()()()( )1()1( iMiMiMFDMMeanFD tmtmmt −+ −==−
    (20)

 

)()()()( )1()1( iSiSiSFDSStdFD tmtmmt −+ −==−
     (21)

 

Second Derivative (SD): The SD feature vector contains the details regarding the changes or 

movements. 

)()(2)()()( )1()1(

2
iEiEiEiESDEEnergySD tmmttmmt −+ +−==−

   (22)
 

)()(2)()()(( )1()1(

2
iPiPiPiPSDPEntropySD tmmttmmt −+ +−==−

   (23)
 

)()(2)()()( )1()1(

2
iSiSiSiSSDSStdSD tmmttmmt −+ +−==−

    (24)
 

)()(2)()()( )1()1(

2
iMiMiMiMSDMMeanSD tmmttmmt −+ +−==−

   (25)
 



Step 5: The above mentioned feature vectors can be concatenated to afford new feature vectors with 

more information. Table 2 shows the set of features used for classifications. 

Table 2 Set of features using DWT and WPT 

Features Static 
Dynamic 

Fused features 
First Derivative Second Derivative 

Energy E FDE SDE [E FDE SDE] 

Entropy P FDP SDP [P FDP SDP] 

Mean M FDM SDM [M FDM SDM] 

Standard Deviation S FDS SDS [S FDS SDS] 

 

ANN based Classification 

 Pattern recognition techniques are necessary for the classification of EMG signals. . Pattern 

recognition is the process of realizing a pattern of a given object based on the knowledge already 

possessed [39].This work investigates the performance of FFNN and CFNN in finger movement 

classification. Both the networks were trained using Levenberg-Marquardt Back Propagation (LMBP) 

algorithm. This algorithm's performance function is represented in the form of sum of squares and the 

Hessian matrix , given by JJH
T= and the gradient is eJg

T=
, 

where J is the Jacobian matrix and 

e is the vector of network errors. The training algorithm uses approximate Hessian matrix 

eJIJJxx
TT

kk

1

1 ][ −
=+ +− 

. 
The CFNN and FFNN are identical in that they both have a weight link 

from the input to each layer and from each layer to the layers that follow. Each layer of neurons in a 

cascade connection is associated with every layer of neurons before it. If there are enough hidden 

neurons, this network can learn any input-output relationship. The network is shown in figure 6.  



 

Figure 6 Cascaded Feed Forward ANN 

The following is a description of the key steps in the learning CFNN algorithm: 

Step 1: Train the net using the necessary input and output units until the error is at its lowest possible 

level. 

Step 2: compute the residual error, )'()]()([)( pyptpypE jjjj −=  for mj ,.....2,1= and average 

residual error, )()/1()(
1

pEPpE
P

p

javj 
=

= for each training pattern p, where )( py j
 and )( pt j

is 

output and target vector respectively for input vector )( px j
.  

Step 3: Add first hidden unit. 

Step 4: Each input unit is connected to a candidate unit X, and initialize the weights from the input 

units to X (but is not connected to the output units). To increase correlation C, train these weights.
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where )( pz is the average activation over all patterns Pp ,.....2,1= . 
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Step 5: All the weights should be trained to the output units. Stop when the permissible error or the 

maximum number of units is achieved. If not, move on to step 6. 

Step 6: When the stopping condition is false, perform steps 7 and 8. 

Step 7: Each input unit and previously added hidden unit is coupled to a candidate unit X. To increase 

C, train with these weights. 

Step 8: All the weights should be trained to the output units. If the maximum number of units or the 

allowable error has been reached, stop; otherwise, continue the previous steps. 



4   RESULTS AND DISCUSSION 

The EMG information is gathered from several subjects. Each finger motion resulted in the 

acquisition of 20,000 data points in total. Due to sensor placement and other background disturbances, 

there is a chance that noises will be added to the signal as it is being captured. In order to analyse the 

performances, the signal to interference ratio was found after the signal had been pre-processed using 

the denoising techniques outlined in section 3 (SIR). SIR= (P/I+N), where P is the Power of input 

signal, I is the power of interfering signal and N is random noise. Moreover, the selection of an 

appropriate wavelet family is an essential step to build a good representative of the signal for 

contributing to the feature vector. We tested different wavelets such as ‘db’, ‘coif’, ‘sym’ wavelets 

respectively. For evaluating the performance of denoised EMG signals, three wavelet functions and 

four soft thresholding methods were taken into consideration. Table 3 shows the SIR values using 

different wavelet families for different finger movements. 

Table 3 Comparison of SIR using various denoising techniques 

 db4 coif5 sym4 

 Rig He

ur 

sqrt Min

i 

Rig He

ur 

sqrt Min 

max 

Rig He

ur 

sqrt Mini 

max L1 5.87 7.4

4 

5.8

0 

6.8

2 

6.2

8 

7.3

1 

6.08 7.03 5.9

8 

7.2

3 

5.84 6.81 

L2 5.43 7.7

7 

6.1

7 

6.7

1 

5.4

4 

7.9

7 

6.85 7.13 5.1

5 

7.5

1 

6.33 6.72 

R1 5.55 8.5

7 

5.6

2 

7.9

8 

6.2

3 

9.0

3 

5.84 8.20 5.5

8 

8.4

7 

5.41 7.74 

R2 5.41 7.4

0 

5.6

9 

7.9

9 

5.8

0 

7.7
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The best value between a wavelet's thresholding rules is indicated in bold letters in Table 3; 

the best value between all wavelets is indicated by bold letters with italics. The optimal thresholding 

rules can be found by comparing SIR performance on denoised EMG data to other thresholding rules. 

It is found that “coif5” wavelet function gives the best SIR compared to the other two wavelet 

functions. “Heursure” gives the best results in “coif5” wavelets. 

The coiflet wavelets have compactly supported wavelets with the most vanishing moments, 

and with the function having 2N moments equal to 0 and the scaling function with 2N-1 moments 

equal to 0. These two functions have a support of length 6N-1. Figure 7 shows the original (blue 

colour line) and the denoised (red colour line) EMG signal for index, ring and little fingers 

respectively.  

Figure 7 EMG and denoised EMG signal 

Thus, coif5 wavelets are considered for further analysis. The denoised signals are 

decomposed using DWT and WPT. In DWT-based decomposition, only the low frequency bands are 

divided, consequently producing only two sub-bands in each resolution level. But, WPT produces 2n 

sub-bands, where n is the decomposition level .The relevant features are extracted from each sub-band 

using feature extraction algorithm. The statistical features such as energy, entropy, mean and standard 

deviation of the signal for each sub-band and further, maximum of these values were computed. Table 

4 shows the feature values obtained for one of the finger (little) movements using WPT-based 



decomposition. For 7 levels, 27=128 sub-bands are obtained. Out of this, only 7 sub-bands are 

selected and the corresponding nodes with the sampling frequencies are depicted in column 2 and 4. 

Table 4 Resolution levels and corresponding features 

Levels Nodes Frequenc

y bands 

(Hz)
 

Sampling 

Frequency 

Energy Entropy  Mean Standard 

deviation 

2 (1,0) 0.003906 0-500 0.048767 4.04E-05 2.13E-05 0.048767 

3 (2,0) 0.011719 0-250 88.73588 0.04705 5.72E-05 3.01E-05 

4 (3,0) 0.027344 0-125 89.01115 0.045351 8.09E-05 4.27E-05 

5 (4,4) 0.074219 250-312.5 94.68076 0 1.26E-11 2.04E-09 

6 (5,0) 0.121094 0-31.25 92.20418 0.042083 0.000161

533 

8.69E-05 

6 (5,8) 0.152344 250-281.25 98.01157 0 3.61E-11 2.85E-09 

6 (5,16) 0.183594 500-531.25 93.92627 0 1.15E-12 1.67E-10 

7 (6,16) 0.308594 250-265.625 99.16578 0 1.03E-10 4.10E-09 

 

Similarly, suitable features are extracted for all EMG signals relating to the other finger movements. 

The first and second derivatives of the feature set are also obtained and new feature vectors are 

formed.. The back propagation neural networks are used for classifying 10 types of finger movements. 

The samples are divided into 3 sets: 70% for training, 15%for validation and15% for testing. The 

classification accuracy achieved for different sets of features is shown in Table 5. In all the cases, both 

DWT and WPT-based features produces more than 80% of classification accuracy (for FFNN and 

CFNN). It is also obvious that the classification accuracy is improved by using CFNN.  

Table 5 Classification accuracy using FFNN and CFNN classifiers 

 Features DWT WPT 

FFNN CFNN FFNN CFNN 

Energy 

E 83.9720 82.1726 81.9893 82.9726 

FDE 82.8724 84.9387  82.7249   85.3387 

SDE 81.9893 83.6055 81.6893 83.9054 

Entropy 

P 82.0060 81.9977 82.1060 83.7712 

FDP 82.4892 82.1143 83.8924 84.0143 

SDP 81.9977 82.0060 82.9077 83.9060 

Standard S 81.9893 82.9893 81.1293 82.6873 

FDP 83.7887 84.0060 84.8875 85.1060 



deviation SDP 81.9893 83.4389 82.9193  83.4389 

Mean 

M 82.3392 83.9803 82.0392 83.9803 

FDM 83.4055 84.0893 83.2059 84.0893 

SDM 81.9893 82.1895 82.3893 85.9898 

 

The percentage of classification is further improved by means of fused features, i.e., the 

concatenation of the first and second order derivatives of the feature sets. The classification accuracy 

achieved for the fused features is shown in Table 6. It is noticed that the classification rate is 

improved to more than 15% in most of the cases, i.e., greater than 95% is obtained. It is also observed 

that the energy-based feature set produced the promising results, i.e. ~98% for both the classifiers.  

Table 6 Classification accuracy using fused features 

  DWT WPT 

Features FFNN CFNN FFNN CFNN 

Energy [E FDE SDE] 98.95008 98.3361 97.3378 98.5857 

Entropy [P FDP SDP] 95.2579 95.4243 96.0899 97.7573 

Standard deviation [S FDS SDS] 96.2562 97.9201 94.5092 97.8369 

Mean [M  FDM SDM] 96.9501 93.0116 96.5890 98.0033 

 

Tables7 and 8illustratethe confusion matrices of the classification results across all subjects 

with fused energy-based features i.e, [W FDE SDE] using FFNN and CFNN classifiers. Let C1, C2, 

C3, C4, C5, C6, C7, C8, C9 and C10 denote classes for Hand Close (HC), Thumb (T), Index (I), Little(L), 

Middle(M), Ring(R), Thumb-Index(TI), Thumb-Middle(TM), Thumb-Ring(TR) and Thumb-

Little(TL) respectively. The diagonal elements show the correctly classified finger movements in 

percentage and off-diagonal elements give the mis-classified one. 

Table 7 Confusion matrix of the classification results using DWT-FFNN using energy 

and it’s derivatives 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

C1 0.99 0.00 0.01 0.04 0.00 0.02 0.01 0.00 0.01 0.00 

C2 0.00 0.99 0.01 0.04 0.01 0.00 0.00 0.00 0.01 0.10 



 

 

 

 

 

 

 

 

Table 8Confusion matrix of the classification results using DWT-CFNN using energy 

and it’s derivatives 

 

 

 

 

 

 

 

 

 

 

 

Comparing Tables 7 and 8, the feature set [E FDE SDE] with CFNN classifier gives the 

average highest classification rate i.e., 98.58%. The error histogram of the network, which is shown in 

Figure 8, provides extra details for assessing the effectiveness of the trained network by showing the 

distribution of the residuals between targets and network output. It is shown in this case that most of 

C3 0.00 0.00 0.98 0.00 0.01 0.00 0.01 0.02 0.00 0.01 

C4 0.00 0.01 0.00 0.99 0.00 0.00 0.01 0.00 0.00 0.00 

C5 0.00 0.00 0.01 0.01 0.98 0.00 0.01 0.01 0.00 0.04 

C6 0.01 0.00 0.00 0.01 0.00 0.99 0.00 0.00 0.01 0.00 

C7 0.00 0.01 0.01 0.00 0.00 0.00 0.98 0.01 0.00 0.00 

C8 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.99 0.01 0.01 

C9 0.01 0.00 0.01 0.02 0.00 0.01 0.04 0.01 0.98 0.00 

C10 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.99 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

C1 0.98 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.01 0.00 

C2 0.00 0.99 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 

C3 0.00 0.00 0.98 0.01 0.00 0.00 0.00 0.00 0.00 0.01 

C4 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.00 

C5 0.00 0.00 0.00 0.02 0.98 0.00 0.00 0.00 0.00 0.00 

C6 0.00 0.00 0.00 0.01 0.02 0.99 0.00 0.00 0.01 0.00 

C7 0.00 0.00 0.01 0.01 0.00 0.00 0.98 0.00 0.00 0.00 

C8 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.96 0.02 0.00 

C9 0.00 0.00 0.00 0.05 0.03 0.01 0.00 0.00 0.99 0.01 

C10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.99 



the error lies between -1.5and1.5. The histogram has the capability of indicating the outliers.  

Nevertheless, there is a learning point with an error of 0.053.  

 

 

(a)                                                                               (b) 

Figure 8 Error Histogram plots for different sets of training and classifiers (a) DWT-FFNN-Energy 

and it’s derivatives (b) DWT-CFNN-Energy and it’s derivatives 

The proposed framework for finger motion classification is compared with other state-of-the- 

art methods in literature and the results are shown in Table 8 

Table 8 Comparison of classification accuracy of the proposed work with the existing methods 

Reference Features Classifier Classification 

accuracy 

Riilloet.al[14] Mean(M),Root Mean Square(RMS), Willison 

amplitude(WA),Slope sign change (SSC), 

Simple Square Integral (SSI), Variance 

(V),Waveform length (WL) 

FFNN 88.81±6.58% 

Iker Mesa et.al[17] Log detector, MAV, median absolute value, 

variance, zero crossing, mean absolute 

difference value amplitude of Wilson, 

histogram Wavelet coefficients and AR 

coefficients 

SVM 86.4% 

An-Chih Tsai et al [19] STFT-Ranking coefficients SVM 93.9% 

Rami N Khushaba et al 

[20] 

Spectral moment derivations in the time 

domain 

SVM 92% 



Paul McCool et.al [30] FFT coefficients LDA 90.2% 

ErcanGokgozet.al[31] Mean, average power and  standard deviation 

using DWT 

Random 

forest 

96.67% 

YinaGuo et al [34] Empirical mode decomposition(EMD) 

Coefficients 

Flexible 

Neural 

Tree 

(FNT) 

97.6% 

 

Proposed work 

Energy and derivatives using DWT 

Entropy and derivatives using DWT 

Standard deviation and derivatives using DWT 

Mean and derivatives using DWT 

FFNN 

 98.95008% 

95.2579% 

96.2562% 

96.9501% 

Energy and derivatives using DWT 

Entropy and derivatives using DWT 

Standard deviation and derivatives using DWT 

Mean and derivatives using DWT 

CFNN 

98.3361% 

95.4243% 

97.9201% 

93.0116% 

Energy and derivatives using WPT 

Entropy and derivatives using WPT 

Standard deviation and derivatives using WPT 

Mean and derivatives using WPT 

FFNN 

97.3378% 

96.0899% 

94.5092% 

96.5890% 

Energy and derivatives using WPT 

Entropy and derivatives using WPT 

Standard deviation and derivatives using WPT 

Mean and derivatives using WPT 

CFNN 

98.5857% 

97.7573% 

97.8369% 

98.0033% 

 

These results revealed the effectiveness of the present technique of separately evaluating 

statistical information of the performed experimental protocol both in DWT and WPT. More 



promising results are obtained for the present study and suggests that the EMG wavelet-based features 

information for finger motion analysis should have a major attention.  

5. CONCLUSION 

In this study, we have found out significant consistency among de-noising , decomposition 

methods and classifiers which are proved by the simulation results. The contribution of this study is to 

classify finger motions using an efficient ANN-based pattern recognition system and DWT/WPT 

decomposition method with Heursure de-noising. Wavelet-based denoising method is proposed to 

remove the artefacts present in the EMG signal. In order to identify the performance of denoising, 

performance measures in terms of SIR   were investigated and the results are discussed and it is 

concluded that the coiflet wavelet and Heursure threshold rule give the best results. We presented the 

classification accuracy using fused mean, standard deviation and entropy features. This study 

achieved significantly better performance by using the combined effect of Heursure denoising and 

wavelet Energy derivatives. The fused energy features and FFNN/CFNN classifier with Heursure de-

noising can be helpful to the clinician for assessing muscle fatigue. 
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