Aldridge, R. W. et al. (2020) ‘Seasonality and immunity to laboratory-confirmed seasonal coronaviruses (HCoV-NL63, HCoV-OC43, and HCoV-229E): results from the Flu Watch cohort study’, Wellcome Open Research, 5, p. 52. doi: 10.12688/wellcomeopenres.15812.2.
Baden, L. R. et al. (2020) ‘Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine’, New England Journal of Medicine, pp. 1–14. doi: 10.1056/nejmoa2035389.
Le Bert, N. et al. (2020) ‘SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls’, Nature, 584(7821), pp. 457–462. doi: 10.1038/s41586-020-2550-z.
Callow, K. A. et al. (1990) ‘The time course of the immune response to experimental coronavirus infection of man’, Epidemiology and Infection, 105(2), pp. 435–446. doi: 10.1017/S0950268800048019.
Gaebler, C. et al. (2020) ‘Evolution of Antibody Immunity to SARS-CoV-2.’, bioRxiv : the preprint server for biology. doi: 10.1101/2020.11.03.367391.
Hoffmann, M. et al. (2020) ‘SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor’, Cell, 181(2), pp. 271-280.e8. doi: 10.1016/j.cell.2020.02.052.
Krammer, F. (2020) ‘SARS-CoV-2 vaccines in development’, Nature, 586(7830), pp. 516–527. doi: 10.1038/s41586-020-2798-3.
Lan, J. et al. (2020) ‘Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor’, Nature, 581(7807), pp. 215–220. doi: 10.1038/s41586-020-2180-5.
Letko, M., Marzi, A. and Munster, V. (2020) ‘Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses’, Nature Microbiology, 5(4), pp. 562–569. doi: 10.1038/s41564-020-0688-y.
Lewis, G. K. et al. (2019) ‘Knowns and unknowns of assaying antibody-dependent cell-mediated cytotoxicity against HIV-1’, Frontiers in Immunology, 10(MAY), pp. 1–12. doi: 10.3389/fimmu.2019.01025.
Ng, K. W. et al. (2020) ‘Preexisting and de novo humoral immunity to SARS-CoV-2 in humans’, Science, 370(6522), pp. 1339–1343. doi: 10.1126/science.abe1107.
Nie, J. et al. (2020) ‘Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2’, Emerging Microbes and Infections, 9(1), pp. 680–686. doi: 10.1080/22221751.2020.1743767.
Noy-Porat, T. et al. (2020) ‘A panel of human neutralizing mAbs targeting SARS-CoV-2 spike at multiple epitopes’, Nature Communications, 11(1), pp. 1–7. doi: 10.1038/s41467-020-18159-4.
Polack, F. P. et al. (2020) ‘Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine’, New England Journal of Medicine, 383(27), pp. 2603–2615. doi: 10.1056/nejmoa2034577.
Rattanapisit, K. et al. (2020) ‘Rapid production of SARS-CoV-2 receptor binding domain (RBD) and spike specific monoclonal antibody CR3022 in Nicotiana benthamiana’, Scientific Reports, 10(1), pp. 1–11. doi: 10.1038/s41598-020-74904-1.
Rodda, L. B. et al. (2021) ‘Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19.’, Cell, 184(1), pp. 169-183.e17. doi: 10.1016/j.cell.2020.11.029.
Rogers, T. F. et al. (2020) ‘Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model.’, Science (New York, N.Y.), 369(6506), pp. 956–963. doi: 10.1126/science.abc7520.
Sattler, A. et al. (2020) ‘SARS–CoV-2–specific T cell responses and correlations with COVID-19 patient predisposition’, Journal of Clinical Investigation, 130(12), pp. 6477–6489. doi: 10.1172/JCI140965.
Schnueriger, A. et al. (2011) ‘Development of a quantitative, cell-line based assay to measure ADCC activity mediated by therapeutic antibodies’, Molecular Immunology, 48(12–13), pp. 1512–1517. doi: 10.1016/j.molimm.2011.04.010.
Sekine, T. et al. (2020) ‘Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19’, Cell, 183(1), pp. 158-168.e14. doi: 10.1016/j.cell.2020.08.017.
Seow, J. et al. (2020) ‘Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans’, Nature Microbiology, 5(12), pp. 1598–1607. doi: 10.1038/s41564-020-00813-8.
Shang, J. et al. (2020) ‘Structural basis of receptor recognition by SARS-CoV-2’, Nature, 581(7807), pp. 221–224. doi: 10.1038/s41586-020-2179-y.
Tegally, H. et al. (2020) ‘Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa’, Preprints, 10, p. 2020.12.21.20248640.
Tian, X. et al. (2020) ‘Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody’, bioRxiv, 9. doi: 10.1101/2020.01.28.923011.
Voloch, C. M. et al. (2020) ‘Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil’, medRxiv, p. 2020.12.23.20248598. doi: 10.1101/2020.12.23.20248598.
Volz, E. et al. (2021) ‘Transmission of SARS-CoV-2 Lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data’, medRxiv, p. 2020.12.30.20249034. Available at: https://www.medrxiv.org/content/10.1101/2020.12.30.20249034v2%0Ahttps://www.medrxiv.org/content/10.1101/2020.12.30.20249034v2.abstract.
Voysey, M. et al. (2020) ‘Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK’, The Lancet, pp. 99–111. doi: 10.1016/S0140-6736(20)32661-1.