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Abstract
Prostate cancer treatment decisions are heavily reliant upon the subjective visual interpretation
(assigning Gleason patterns, or ISUP grade groups) of limited numbers of 2D histology sections. Under
this paradigm, inter-observer variance is high, with ISUP grades not correlating well with the outcomes of
individual patients, which contributes to the over- and under-treatment of patients. Recent studies have
demonstrated improved prognostication of prostate cancer outcomes based on computational analyses
of glands and nuclei within 2D whole slide images. Our group has also shown that the computational
analysis of 3D glandular features, extracted from 3D pathology datasets of whole intact biopsies, can
allow for improved recurrence prediction compared to corresponding 2D features. Here we seek to expand
on these prior studies by exploring the prognostic value of 3D shape-based nuclear features in prostate
cancer (e.g., nuclear size, sphericity). 3D pathology datasets were generated with open-top light-sheet
(OTLS) microscopy of 102 cancer-containing biopsies extracted ex vivo from the prostatectomy
specimens of n = 46 patients. A deep learning-based segmentation work�ow for 3D nuclear segmentation
and 3D glandular segmentation was used to segment nuclei within the glandular epithelium vs. stromal
regions of the biopsies. 3D shape-based nuclear features were extracted, and a nested cross-validation
scheme was used to train a supervised machine classi�er based on 5-year biochemical recurrence (BCR)
outcomes. Nuclear features of the glandular epithelium were found to be more prognostic than stromal
cell nuclear features (AUC = 0.72 vs. 0.63). 3D shape-based nuclear features of the glandular epithelium
were also more strongly associated with risk of BCR than analogous 2D features (AUC = 0.72 vs. 0.62).
The results of this preliminary investigation suggest that 3D shape-based nuclear features are associated
with prostate cancer aggressiveness and could be of value for the development of decision-support tools.

Introduction
Prostate cancer (PCa) represents 1 in 8 of the newly detected cancer cases in the United States, affecting
nearly 250,000 patients annually1. Currently, grading of PCa for prognosis and treatment planning relies
on 2D histology, where a set of core-needle biopsies is formalin-�xed and para�n-embedded (FFPE),
sectioned, and mounted on glass slides for microscopic analysis. To assess the aggressiveness of the
cancer, pathologists rely on the ISUP grade group system2–4 which involves visual examination and
interpretation of complex glandular morphologies in a limited number of 2D histological tissue sections
(4-µm thick) cut from each biopsy. In this work�ow, typically ~ 1% of the volumetric extent of each biopsy
is analyzed. In part due to this limited “sampling” of the biopsies in 2D, grading of prostate cancer suffers
from high levels of inter- and intra-observer variability5–8. A related issue is that ISUP grade groups do not
precisely correlate with individual patient outcomes, especially for moderate-risk cases (ISUP Grade
Group 2) that account for approximately 50% of the newly detected PCa cases in the United States. These
problems contribute to the overtreatment of indolent cases (with surgery or radiation), which are often
accompanied by life-changing side effects (incontinence or impotence) and avoidable healthcare costs.
Conversely, they also contribute to the undertreatment of aggressive cases (with active surveillance),
which can lead to potentially avoidable metastasis and death9.
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By combining recent advances in tissue-clearing techniques10–12 and high-throughput three-dimensional
microscopy13–19, there is now the ability to generate non-destructive 3D pathology datasets of large
clinical specimens (surgical excisions or whole biopsies). Unlike conventional histology, non-destructive
3D pathology achieves orders-of-magnitude greater microscopic sampling of excised tissues than
conventional slide-based histology and enables volumetric quanti�cation of diagnostically signi�cant
microarchitectures. The non-destructive imaging process also preserves tissue specimens for
downstream molecular assays20. However, since a single 3D pathology dataset of a biopsy can be tens
to hundreds of gigabytes in size, there are signi�cant challenges for the human visual interpretation of
such datasets. Manual examination of these datasets can be tedious, which motivates the development
of computational methods for analysis. Here, we employ interpretable “hand-crafted” features, derived
from segmentation masks of tissue structures (e.g., glands and nuclei), to facilitate the clinical
acceptance of 3D pathology as a new diagnostic approach.

A recent study by our group demonstrated the bene�ts of the computational analysis of 3D glandular
features for PCa risk strati�cation19. In that study, ex vivo biopsies were extracted from archived radical
prostatectomy specimens obtained from patients with known 5-year biochemical recurrence (BCR)
outcomes. These patients were originally diagnosed with low- to moderate-risk PCa (Grade Groups 1–3),
with 50% of cases exhibiting BCR within 5 years of prostatectomy21. Biopsies were stained with small-
molecule �uorescent analogs of hematoxylin and eosin (H&E), optically cleared with a dehydration and
solvent-immersion protocol, and then non-destructively imaged with open-top light-sheet microscopy
(OTLS) to generate whole-biopsy 3D pathology datasets (Fig. 1A). For 3D segmentation of prostate
glands (lumen, epithelium, and stromal compartments), our group developed a computational pipeline
called “image-translation-assisted segmentation in 3D” (ITAS3D). 3D glandular features (e.g., gland
curvature, eccentricity, volume ratios) were extracted from the cancer-containing regions of the biopsies.
We showed that these features are more strongly associated with BCR outcomes than analogous 2D
glandular features.

In addition to glandular morphologies, which are currently relied upon for Gleason grading (ISUP Grade
Groups), studies using 2D whole-slide images (conventional 2D pathology) have shown that there is
prognostic value in examining nuclear features within PCa 20–33. It is also known that changes in nuclear
structure can re�ect the underlying molecular alterations within diseases29–33. However, the prognostic
value of 3D nuclear features has not been previously reported. Therefore, we sought to quantify a
preliminary set of 3D shape-based nuclear features and their 2D counterparts to directly compare their
ability to predict BCR outcomes. Our underlying hypothesis is that 2D cross sections of a nucleus (as
seen with conventional histology) cannot fully elucidate certain complex changes in 3D nuclear
morphology and are therefore less prognostically informative. For example, Supplementary Fig. 1
provides a simple illustration of how an irregularly shaped 3D nucleus may appear quite regular and
circular when viewed as 2D cross sections.



Page 4/21

For 3D nuclear and glandular segmentation, we utilized cellpose34 and our previously reported ITAS3D
pipeline19, respectively, which allowed us to distinguish between nuclei within the gland epithelium vs.
surrounding stromal compartments (Fig. 1B). 3D shape-based nuclear features (i.e., spatial metrics) and
analogous 2D nuclear features were extracted from each biopsy, such that the prognostic value of 3D vs.
2D nuclear features could be compared. These 3D and 2D features were used to train a multi-parameter
machine classi�er to stratify patients based on their BCR outcomes, which serves as a proxy for
aggressive vs. indolent PCa (Fig. 1C).

Materials And Methods

Collection and processing of simulated biopsies from
archived tissues
This study was approved by the institutional review board (IRB) of the University of Washington (Seattle,
WA; Study 00004980), where research specimens were previously obtained from patients with informed
consent. Archived FFPE prostatectomy specimens from a prior case-cohort research study (Canary
TMA)21 were collected from 50 patients with PCa, all of which were identi�ed as ISUP Grade Group 1–3
(Gleason Grade 3 + 3, 3 + 4, or 4 + 3). These patients were followed for at least 5 years after radical
prostatectomy as part of the prior study21, in which the primary study endpoints were 5-year BCR
outcomes and time to BCR, which were also used as endpoints for this study. FFPE specimens were
identi�ed for each case corresponding to the six regions of the prostate targeted in standard biopsy
procedures (Fig. 1A). The identi�ed specimens were depara�nized by heating them at 75 C for 1 hour
until the para�n wax melted. The specimens were then placed in 65 C xylene for 48 hours. Next, a
simulated core-needle biopsy (~ 1mm in width) was taken from each of the six depara�nized blocks per
case, resulting in 300 total biopsy cores (Fig. 1A).

We used a previously developed “T&E” staining protocol (nuclear dye TO-PRO3 and Eosin) and imaged
each biopsy core using OTLS microscopy15,19. Simulated biopsies underwent two 1-hour washes in 100%
ethanol to remove excess xylene and were partially rehydrated in 70% ethanol for 1 hour. Individual
biopsies were stained for 48 hours in 70% ethanol at pH 4 with a 1:200 dilution of Eosin-Y and a 1:500
dilution of TO-PRO3 at room temperature with light agitation. After staining was complete, the biopsies
were dehydrated in 100% ethanol for 2 hours. Samples were optically cleared by individually placing them
in ethyl cinnamate (refractive index of n = 1.56) for 8 hours before imaging them with OTLS microscopy.

During imaging, ethyl cinnamate (n = 1.56) was used as the immersion medium and samples mounted
within a custom HIVEX (n = 1.55) biopsy holder, as described previously15. A four-channel digitally
controlled laser package (Skyra, Cobolt Lasers) was used for illumination. TO-PRO3 �uorescence was
excited at 638 nm and Eosin �uorescence was excited at 561 nm. Fluorescence bandpass �lters at 721
nm +/- 65 nm and 618 nm +/- 50 nm were used for collection of TO-PRO3 �uorescence and Eosin
�uorescence, respectively. The lateral and axial resolution of the OTLS microscope used for this study
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was ~ 0.95 microns and 3.5 microns, respectively (full width at half maximum of the point spread
function). Tissues were imaged at an isotropic sampling pitch of ~ 0.44 µm/pixel. The volumetric
imaging time was approximately 0.5 minute per cubic mm of tissue for each illumination wavelength.

Data preparation
Two-channel OTLS microscopy datasets were stored on disk in the HDF5 format with metadata in an
XML �le. A custom compression �lter (B3D) was used to provide 10x lossless compression. Raw OTLS
images were reviewed in BigDataViewer35 by board-certi�ed pathologists to identify cancer-containing
biopsies (Fig. 1A). Of the initial 300 biopsy cores extracted, 118 contained cancer. Upon review, 102 of the
cancer-containing biopsies from a 46-patient cohort had su�cient data quality for 3D nuclear
segmentation. Visual examination of the 3D datasets enabled us to identify regions of the biopsies in
which most of the glands were cancer. Continuous (stitched and fused) 3D volumes were created of
these cancer regions using the Image-J BigStitcher plugin36. False coloring was performed to achieve an
H&E-like appearance to our OTLS datasets using a previously published method that mimics Beer-
Lambert law absorption of light as a function of staining concentration 37.

Nuclear segmentation and feature extraction
Given the memory requirements necessary for 3D segmentation, fused 3D images were broken into
discrete chunks for processing. Each data chunk was 2048 x 1432 x 500 voxels in size, or approximately
1024 microns by 716 microns by 200 microns in the axial direction (along the length of the needle core)
(Fig. 2A, B). To prepare the images for segmentation, data chunks underwent median �ltering with a
circular structuring element (r = 2 voxels) from scikit-image38 followed by contrast-limited adaptive
histogram equalization (CLAHE) (Fig. 2C, Supplementary Fig. 5). After preprocessing, data chunks were
passed into the cellpose34 3D nuclear segmentation model using an average diameter of 17 voxels, net
averaging, and a batch size of 6 as the input parameters (Fig. 2D). 3D segmentation masks (instance
segmentation) were saved to disk. All processing was done on a desktop computer equipped with 512 GB
of RAM and a Nvidia Quadro 5000 RTX GPU.

Prior to feature extraction, segmented nuclei that touched the boundaries of each data chunk were
cleared using the clear_border method from the skimage.segmentation python library38. Within each
segmented data chunk, small objects measuring less than the 1st percentile in total volumetric extent
were also removed as noise. Quantitative features were extracted from the segmentation masks using the
regionprops method from the skimage.measure python library. A full set of 3D nuclear features (and 2D
counterparts) used in this study is listed in Supplementary Fig. 2. The glandular masks of each
cancerous region, generated via our previous ITAS3D pipeline19, were used to classify segmented nuclei
as belonging to epithelial or stromal tissue compartments based on the centroid location of each
segmented nucleus within the glandular mask. Biopsy-level feature sets were collected by averaging the
extracted features from all data chunks within a biopsy.
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To compare the prognostic value of 2D and 3D nuclear features, 2D nuclear features were extracted from
the 3D dataset at three cross-sectional levels separated by 20 µm, and then averaged (Supplementary
Fig. 3). This replicates the standard-of-care pathology practice at many institutions in which histology
sections are cut (and viewed) at three such levels39.

Correlation between nuclear features and BCR outcomes
Patients who experienced BCR within 5 years after radical prostatectomy are referred to as the ‘BCR’
group, and all other patients are referred to as ‘non-BCR.’ Here, biochemical recurrence (BCR) is de�ned as
a rise in prostate-speci�c antigen (PSA) levels of > 0.2 ng/mL after treatment (> 8 weeks after radical
prostatectomy). To assess the ability of different nuclear features to distinguish between BCR and non-
BCR groups, we applied ROC analysis from which the area-under-the-curve (AUC) could be extracted.

Using the binary 5-year BCR category as the endpoint, a multiparameter classi�er was developed to
stratify patient risk. The least absolute shrinkage and selection operator (LASSO) linear regression model
was used40. LASSO minimizes over�tting by making use of an L1 regularization term and identi�es a
subset of the most predictive input features. The LASSO tuning parameter  was optimized using an
internal 4-fold cross validation (CV) scheme, where the dataset was randomly separated into four equally
sized groups: three training datasets, and one to validate the model’s performance. Due to the lack of an
external validation cohort, a nested CV scheme was used to determine the performance of the
multiparameter models without bias or data leakage between parameter estimation and validation.
Hyperparameter tuning was performed during each iteration of the outer CV, and LASSO regression was
applied on the training set of the outer CV once an optimal  was identi�ed in the inner CV. AUC values
were calculated from the validation dataset of the outer CV. This nested CV was performed 200 times to
determine an AUC (average and SD)41. The exact same nested CV scheme was used to develop
multiparameter classi�ers based on 3D and 2D nuclear features.

Kaplan-Meier (KM) analysis was carried out to compare BCR-free survival rates for high- vs. low-risk
groups of patients. This analysis used a subset of 45 cases for which time-to-recurrence data is
available. The performance of the models based on 2D or 3D features for epithelial nuclei was quanti�ed
with p-values (via log-rank test), hazard ratios (HR), and concordance index (C-index) metrics. For the
multiparameter classi�cation model used for KM analysis, the outer 4-fold CV in our nested CV schema
was replaced by a leave-one-out approach, where one case was left out each iteration (45 total iterations,
i.e. one iteration for each of the cases) to calculate the probability of 5-year BCR for that patient42. The
samples were labeled as low- or high-risk via a posterior class probability threshold of 0.5. MATLAB was
used for KM analysis and all other statistical analyses was performed in Python using the scipy and
scikit-learn libraries43.

Results

3D nuclear segmentation

λ

λ
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Generating ground-truth annotations to train a 3D nuclear segmentation algorithm can be tedious and
challenging. Therefore, we chose cellpose as our segmentation framework for two reasons: 1) as a
“generalist” segmentation algorithm, cellpose requires minimal to no retraining or annotations to operate
on unseen data, 2) cellpose is compatible with 3D datasets, and can e�ciently segment densely packed
nuclei within large tissue volumes. To assess segmentation quality, we generated 3D ground truth
annotations of nuclei within small sub-volumes (n = 6) of PCa biopsies imaged with OTLS microscopy
and found that cellpose successfully generated 3D nuclear segmentations with an average dice
coe�cient of 0.81 (Supplementary Fig. 4). When evaluating the results of the cellpose 3D nuclear
segmentation model on our moderate-resolution OTLS datasets (~ 0.9-micron lateral resolution), the best
segmentation results were achieved without down sampling our datasets (Supplementary Video 2).

At full resolution, each individual (single biopsy) 3D pathology dataset was too large to segment at once.
Thus, cancerous biopsy regions were divided into smaller chunks for 3D segmentation (Fig. 2A, B). Each
data chunk underwent a two-step preprocessing routine (Fig. 2C) (see materials and methods,
Supplementary Fig. 5) that improved segmentation quality. This process decreased the rate of over-
segmentation and improved the detection of nuclei in low-signal regions of the tissue. Images were then
passed into the cellpose nuclear-segmentation model to generate a �nal 3D segmentation mask (Fig. 2-D,
Supplementary Videos 1 & 3). An example image atlas of 3D nuclear segmentation results, and
morphological separation of nuclei (epithelial and stromal compartments) using ITAS3D generated
glandular segmentation is shown in Fig. 3.

Preliminary clinical study: correlating 3D nuclear features
with BCR outcomes
To evaluate the prognostic value of 3D vs. 2D nuclear features (see materials and methods), our study
consisted of 46 PCa cases in which the patients were followed for a minimum of 5 years after radical
prostatectomy as part of the Canary TMA case-cohort study, which recruited primarily low- to
intermediate-risk patients21. The primary endpoints of the Canary TMA study were 5-year biochemical
recurrence (BCR) outcomes and time to BCR, which were also used as endpoints in our study here.
Roughly half of the cases in the Canary TMA study had BCR within 5 years.

For each case, archived FFPE tissue blocks were identi�ed from the six regions of the prostate that are
biopsied by urologists when performing standard sextant biopsy procedures. Next, a simulated core
needle biopsy was extracted from each of the six FFPE blocks per patient (n = 276 total biopsy cores).
The biopsies were depara�nized, labeled with �uorescent analogs of H&E, optically cleared, and imaged
with an OTLS microscope (see materials and methods). Review of the 3D pathology datasets by
genitourinary pathologists (L.D. True and N.P. Reder) identi�ed 102 cancer-containing biopsies, along with
axial coordinates of the regions within each of those biopsies in which most glands were cancerous. The
nuclear-segmentation and ITAS3D (gland-segmentation) pipelines were applied to the cancerous regions
of all 102 cancer-containing biopsies. By combining the 3D nuclear segmentations (instance
segmentations) with the glandular segmentation masks (semantic segmentation), nuclei were identi�ed
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as contained in either the glandular epithelium or stromal tissue compartments (see Materials and
Methods).

2D and 3D shape-based nuclear features were quanti�ed and analyzed in terms of their association with
BCR outcomes (see Supplementary Fig. 2 for the full list of features). For 2D analysis, average values
from a total of 3 cross-sectional levels were calculated, in which the three levels were separated by 20 µm
(mimicking clinical practice at many institutions, see Supplementary Fig. 3). A total of 18 shape-based
nuclear features were used as the inputs into a multiparameter risk classi�er based on 5-year BCR
outcomes. Separate models were trained for the nuclei in the glandular epithelium vs. stromal
compartments. The average area-under-the-ROC-curve (AUC) was used as a measure of the ability of the
combined nuclear features to predict 5-year BCR outcomes as a proxy for indolent vs. aggressive disease.

3D shape-based nuclear features consistently outperform their analogous 2D features, both for epithelial
nuclei and stromal nuclei (Fig. 4A, B). When comparing Fig. 4A and Fig. 4B, it is apparent there is better
performance with models trained on shape-based nuclear features from the glandular epithelium than
models trained with nuclei form the stromal regions. 3D shape-based nuclear features in the stroma are
found to be weakly prognostic with an average AUC = 0.63 ± 0.06, while 2D shape-based nuclear features
in the stroma are not prognostic with an average AUC = 0.50 ± 0.05.

Kaplan-Meier (KM) curves of BCR-free survival were constructed for a subset of cases in which time-to-
recurrence (BCR) data was available (Fig. 4C, D). Compared with models based on 2D shape-based
nuclear features, models based on 3D shape-based nuclear features are associated with a higher HR and
C-index, along with a signi�cant P value (P < 0.05). This suggests a stronger association with outcome for
3D shape-based nuclear features compared to corresponding 2D features.

For this early-stage study, 14 out of 18 of the shape-based nuclear features were independently
associated with BCR outcomes (p < 0.05). Of these 14 features, 5 were prognostically signi�cant in 3D but
not in 2D. As one example, Fig. 4E, F shows the mean and variance of the nucleus-to-convex hull ratio of
epithelial nuclei (3D vs. 2D). The convex hull is the minimum polyhedron (or polygon in 2D) that encloses
a nucleus. Figure 4E shows that the nuclei in BCR cases (i.e., aggressive PCa) typically have a higher
mean nucleus-to-convex-hull ratio (P = 1.1 x 10− 4). Physically, this means that the nuclei are more
spherical or ovaloid rather than irregular and/or curved in shape. However, this relationship is not
apparent in the 2D case (P = 0.24). Similarly, Fig. 4F demonstrates that the variance of the nucleus-to-
convex-hull ratio is greater for recurrent vs. non-recurrent cases when examined in 3D with P = 8.6 x 10− 6,
while this difference is less in 2D (P = 0.47).

Overall, our analysis of a variety of nuclear shape features consistently reveals less heterogeneity
(variance) in aggressive (BCR) cancers compared to non-aggressive cases (Supplementary Fig. 6). This
parallels the results of a previous study in which higher-grade PCa cases had smaller and more
homogeneous glandular structures (less spatial variance)19.
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Discussion
Improvements in resolution, scale, and multiplexing capacity for non-destructive 3D imaging technologies
are leading to new disease insights that can inform treatment decisions20. However, given the growing
size of datasets generated by modern “spatial biology” techniques, computational tools must also be
developed to enable pathologists and oncologists to e�ciently comprehend such large datasets. An
attractive initial approach is to rely on intuitive features familiar to pathologists (e.g. glandular and
nuclear features), which will improve interpretability and facilitate clinical acceptance. As in our previous
study using 3D glandular features19, our goal in this study has been to demonstrate the value of 3D
pathology by providing a direct comparison of intuitive 3D vs. 2D nuclear features analyzed
computationally. Our work leverages the fact that computational 2D pathology has already been
demonstrated to improve disease prognostication 28,44,45, and explores the additional value that
computational 3D pathology can offer for certain applications such as risk strati�cation of PCa.

In this preliminary study, we have avoided comparing the analysis of our computationally derived 3D and
2D nuclear features with risk classi�ers or nomograms that rely on human interpretation of 2D histology
images42,46,47. Our motivation for this is that by directly comparing 3D vs. 2D computational pathology,
we remove the subjectivity introduced by human interpretation. Such human-observer studies would
require a signi�cantly larger cohort of patients and a large panel of pathologists to mitigate interobserver
discordance.

Previous studies have used 3D imaging of in vitro cancer models to examine tumorigenesis, drug
response, and cancer-associated alterations in cellular development48–50. However, to our knowledge, this
is the �rst report to analyze the prognostic signi�cance of nuclei within their native 3D context in human
cancer specimens. Given the relatively small number of cases in this preliminary analysis, we limited the
number of 3D nuclear features to those that we deemed would most likely have prognostic signi�cance
based on previous studies22–28, 31,51–56. Shape-based nuclear features are an attractive choice for several
reasons: they are the most frequently used features for prognostication based on 2D whole slide
images18–23, 42, 43, they are intuitive for clinical and biological interpretation57, and there are relatively
straightforward analogs between 2D and 3D shape-based features.

Our analysis shows that for PCa, epithelial nuclei hold the most prognostic signi�cance for stratifying
patients based on known clinical outcomes (Fig. 4A). Given that PCa is typically a disease of epithelial
cells that form glands, this result is consistent with the underlying biology. With this set of cases and
extracted features, we also �nd that 3D shape-based features of stromal nuclei are somewhat prognostic
(Fig. 4B), which is supported by previous studies using 2D histology27,28. Since these stromal nuclei are
from a mixture of cell types, it is not surprising that they are less prognostic than the epithelial nuclei in
the cancer glands. Most importantly, for both epithelial and stromal models, our results demonstrate that
3D shape-based nuclear features are more strongly associated with BCR compared to their 2D
counterparts for risk strati�cation (Fig. 4A, B, C, D). This �nding provides additional evidence supporting
the value of 3D digital pathology methods for clinical management of PCa. Further, as described in the
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Results, even with the limited number of samples and extracted features in this preliminary analysis,
certain differences between nuclei in indolent and aggressive cases are only statistically signi�cant when
examined in 3D vs. 2D (Fig. 4E, F).

As shown in Supplementary Fig. 6, signi�cant differences in the heterogeneity (variance) for many shape-
based nuclear features are observed in aggressive vs. non-aggressive cases, which is in agreement with
prior 2D studies showing that nuclear shape heterogeneity is an important prognostic biomarker in
PCa22–27, 58,59. These �ndings are in their early stages and given the limited number of cases examined in
this report, warrant further analysis with larger patient cohorts to fully elucidate the relationships between
3D nuclear morphologies and PCa outcomes.

In this initial analysis, we have deliberately focused on a limited set of intuitive shape-based features to
show that 3D nuclear features have clear prognostic value, even without exhaustively mining a large set
of possible features. In other words, with some effort, we believe that better 3D features and models can
be developed in the future. Note that for the analysis of sub-nuclear features, higher-resolution datasets
will need to be acquired in the future, such as with the more-recent OTLS microscopy systems that have
been developed16,17.

In addition to nuclear and glandular features, there are clear opportunities to extend our work. For
example, combining 3D features from diverse tissue structures, along with 3D nuclear features, could
reveal novel signatures of aggressiveness. Having a comprehensive spatial and molecular view of tumors
in 3D would also be of obvious clinical value60,61. The results of this preliminary study motivate many
future exploratory directions in computational 3D pathology, as well as larger-scale clinical studies to
guide treatment decisions, such as deciding which PCa patients should be placed on active surveillance
vs. treated with surgery/radiation, or which patients should receive adjuvant therapies after
surgery/radiation. Ultimately, we aim to demonstrate that computational 3D pathology can improve the
long-term outcomes and quality of life for patients with PCa and many other diseases.
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Figure 1

Work�ow to evaluate the prognostic value of 3D nuclear features for prostate cancer risk assessment. (A)
Archived (FFPE) radical prostatectomy specimens were obtained from a 46-patient cohort with known 5-
year biochemical recurrence (BCR) outcomes, from which simulated (ex vivo) biopsies were extracted (6
biopsies per case, per sextant biopsy protocol). The biopsies were labeled with a �uorescent analog of
H&E, optically cleared to render them transparent to light, and comprehensively imaged in 3D via OTLS
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microscopy. (B) 3D nuclear segmentation masks of cancer-containing regions were generated using the
deep-learning based cellpose model and 3D glandular segmentations were generated by the previously
published ITAS3D pipeline. This enabled us to distinguish between nuclei in the glandular epithelium
(blue) versus the surrounding stroma (yellow). (C) 3D shape-based features of epithelial and stromal
nuclei were extracted and passed into a multiparameter classi�er (LASSO) to stratify patients based on 5-
year BCR outcomes.
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Figure 2

3D nuclear segmentation pipeline for biopsies imaged with OTLS microscopy. (A) Nuclear channel (To-
Pro-3) of a PCa biopsy imaged by OTLS microscopy with the cancerous region outlined with a dashed red
box. (B) The cancerous region is broken up into discrete data chunks before processing. (C) Each data
chunk is passed into a two-step preprocessing procedure before segmentation (see text for details). (D)
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Preprocessed data chunks are passed into cellpose to generate 3D nuclear segmentation masks, where
each segmented nucleus is assigned a unique label.

Figure 3

Image atlas of 3D nuclear segmentation results.  (A) Non-destructive 3D pathology dataset of a PCa
biopsy and segmented sub-volume. Sagittal (B), coronal (C), and axial (D) views of 3D nuclear
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segmentations of the segmented sub-volume. During segmentation, each identi�ed nucleus is given a
unique integer label, which is represented by a color for visualization purposes (scale bar = 100 µm). (E)
Larger �eld of view showing cancerous glands and surrounding stroma (left). colorized segmentation
masks overlaid onto H&E false-colored OTLS images (middle). Segmented nuclei colored by their location
within the prostate microarchitecture (right) (scale bar = 50 µm). 

Figure 4
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Clinical analysis comparing the prognostic value of 3D & 2D nuclear features. (A) ROC curves are shown
for multiparameter models trained on 3D (red) and 2D (blue) nuclear features in epithelial regions. (B)
ROC curves of multiparameter models trained on 3D (red) and 2D (blue) nuclear features in stromal
regions. (C, D) KM curves are shown for BCR-free survival, showing that the model trained on epithelial 3D
nuclear features (C) can better stratify patients into low- and high-risk categories than the model trained
on epithelial 2D nuclear features (D). (E, F) Violin and box plots are shown for two examples of epithelial
3D nuclear features, along with their analogous 2D features, for cases in which BCR occurred within 5
years of radical prostatectomy (”BCR”) and for cases in which there was no BCR within 5 years of radical
prostatectomy (“non-BCR”). For both example features, “Mean epithelial nucleus-to-convex-hull ratio” in
(E), and ”epithelial nucleus-to-convex-hull variance” in (F), the 3D feature shows improved patient risk
strati�cation compared to its 2D counterpart. 
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