1. Pan-cancer analysis
We first curated a catalog of 10 CRGs that function closely with cuproptosis [21], of which eight were positively regulated (FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1 and PDHB) and three were negatively regulated (MTF1, GLS and CDKN2A). To study the intrinsic expression pattern of the CRGs, we examined their expression levels in all 33 cancer types available in TCGA pan-cancer data. The expression levels of 10 CRGs showed prominent intertumor heterogeneity across different cancer types (Fig. 1A). Gene differential expression analysis indicated that the 10 CRGs were differentially expressed in tumor tissues compared with corresponding normal tissues (Fig. 1B and Fig. S1). For instance, the expression levels of GLS showed the largest intertumor heterogeneity, with some tumors having very low levels of GLS (KICH, UCEC, LUSC and KIRC), while CHOL had a clearly high level of GLS expression (Fig. 1B). However, as a tumor suppressor gene [27], the expression levels of CDKN2A were upregulated in many cancer types (Fig. 1B). Spearman correlation suggested that DLAT and DLD had the highest correlation (r=0.53, P<0.0001), suggesting that these two genes may have some potential interaction (Fig. 1C). For survival analysis, we found that the same CRG had different prognostic significance in distinct cancer types (Fig. 1D). For example, CDKN2A was positively associated with overall survival (OS) in MESO but negatively associated with (OS) in LIHC, ACC, PCPG and UCEC (Fig. S2). It is speculated that CRGs may affect the sensitivity of tumors to antineoplastic agents by inducing cuproptosis. Next, using drug screened genomic data from the NCI-60 panel, we investigated the association between CRGs and drug sensitivity. The top nine gene-drug pairs are shown in Fig. S3, and the whole list of the drug sensitivity analysis results is shown in Table S2. Interestingly, we found that the seven cuproptosis positive hits were mainly positively related to chemotherapy sensitivity. Conversely, the cuproptosis negative hits, including MTF1, GLS and CDKN2A, were mostly negatively related to drug sensitivity. FDX1, a key regulator of cuproptosis [21], has been shown to be positively related to eight drug sensitivities, including ifosfamide, oxaliplatin, chelerythrine, PX-316, pyrazoloacridine, 7-hydroxystaurosporine, amonafide and nelarabine. All these drugs have been reported to have antitumor activity, among which ifosfamide is a cell cycle nonspecific drug and has inhibitory effects on a variety of tumors, and oxaliplatin is a commonly used platinum-based chemotherapy drug for the treatment of colorectal cancer. These findings suggested that cuproptosis might participate in some antitumor treatments.
Six immune subtypes have been defined in human tumors, including C1 (Wound healing), C2 (INF-γ dominant), C3 (Inflammatory), C4 (Lymphocyte depleted), C5 (Immunologically quiet), and C6 (TGFβ dominant) [28]. As shown in Fig. 1E, the levels of 10 CRGs were differentially expressed across different immune subtypes in the pan-cancer data (all P<0.001). In addition, TME analysis showed that the CRGs are involved in immune and stromal cell infiltration in most tumor types (Fig. 1F, G). These results suggested that the cuproptosis process is linked to changes in the TME and immune infiltrate. Finally, we performed tumor stemness feature analysis. Tumor stemness can be examined based on RNAss (mRNA expression) and DNAss (DNA-methylation pattern) [29]. The CRGs showed different levels of association with RNAss and DNAss across diverse cancer types (Fig. 1H, I). Interestingly, we found that there was striking heterogeneity in the correlation between CRGs and tumor stemness in different tumor types, with some tumor types expressing a very high positive correlation, while others expressed a clearly negative correlation of that gene. For example, CDKN2A positively correlates with RNAss and DNAss in LIHC, while it showed a significantly negative correlation with tumor stemness in TGCT and KIRP. In addition, almost all the CRGs were strongly positively correlated with RNAss for KICH; however, most CRGs showed a negative correlation with DNAss in KICH. These contradictory results showed that RNAss and DNAss may identify different cancerous cell populations featuring different characteristics or degrees of stemness.
2. Genetic and transcriptional alterations of CRGs in PAAD
First, the landscape of mutation profiles in 173 pancreatic cancer patients from the TCGA-PAAD cohort was analyzed. The results showed that 32 of the 173 samples (approximately 18.5%) showed CRG mutations. Of these, CDKN2A showed the highest frequency of mutations (approximately 17%). However, we did not identify any mutations in four CRGs (DLD, LIPT1, MTF1 and PDHB) (Fig. 2A). As CDKN2A showed the highest mutation frequency, we evaluated the relationship between CDKN2A mutation and CRG expression. The results showed that the expression levels of CDKN2A were significantly associated with CDKN2A mutation status (Fig. S4A). In addition, KRAS is the most common oncogene and has been found to be mutated in approximately 90% of PAAD cases. Hence, we also analyzed the relationship between KRAS mutation and CRG expression. The results revealed that the expression levels of FDX1 and DLAT were significantly associated with KRAS mutation status (Fig. S4B). Next, we examined somatic copy number alterations in these CRGs and identified some copy number alterations in all the CRGs. Among them, GLS, MTF1 and LIAS had copy number variation (CNV) increases, while CDKN2A showed a substantial CNV decrease (Fig. 2B). The location of CNV alterations of CRGs on chromosomes is shown in Fig. 2C. We further examined the relationship between CNV alterations and CRG expression levels in PAAD. Fig. 2D shows that all the CRGs were significantly elevated in PAAD samples. However, the CNV increase in the CRGs was not obvious in PAAD, suggesting that CNV might not regulate the mRNA expression of CRGs. There may be other factors involved in the regulation of CRG expression that need to be detected. In addition, the association between CRG expression levels and different tumor stages and immune subtypes was analyzed in PAAD. As shown in Fig. 2E, F, LIAS and PDHA1 were expressed differently in diverse clinical stages (P<0.05), while LIPT1 was expressed differently among immune subtypes (P<0.05). Finally, Pearson correlation showed that the CRGs had different levels of association with tumor stemness and TME in PAAD (Fig. S5).
3. Identification of cuproptosis subtypes in PAAD
To fully understand the expression pattern of CRG involved in tumorigenesis, five eligible PAAD cohorts (TCGA-PAAD, GSE62452, GSE28735, GSE21501 and GSE57495) were integrated in our study for further analysis (Table S3). Then, we conducted univariate Cox regression and Kaplan‒Meier analysis and found that six genes (DLAT, DLD, GLS, LIAS, LIPT1 and PDHA1) were significantly correlated with OS in 437 patients with PAAD (Fig. S6 and Table S4). In addition, Spearman correlation analysis revealed the correlation of these six genes (Fig. S7A). Next, the comprehensive landscape of CRG interactions, regulator connections, and their prognostic value in patients with PAAD was demonstrated in a cuproptosis network (Fig. 3A). To further explore the classification of cuproptosis in PAAD, we used an unsupervised clustering analysis to classify the PAAD patients based on the expression profiles of the six prognostic CRGs. Our results showed that k=3 appeared to be an optimal selection for categorizing the entire cohort into three subtypes, designated cuproptosis Clusters A-C, respectively (Fig. S7B-F). Cluster A included 163 cases, Cluster B included 133 cases, and Cluster C included 141 cases. Survival analysis demonstrated that prognosis differed significantly among the three cuproptosis subtypes, and Cluster C had considerable survival advantages (log-rank test, P=0.041, Fig. 3B). Principal component analysis (PCA) showed that the three clusters could be significantly separated based on the expression levels of CRGs (Fig. 3C). As expected, there were significant differences in the expression of the CRGs among the three subtypes (Fig. 3D). In addition, since the GSE21501 cohort has a large sample size among the four GEO datasets, it was used to validate the repeatability of the clustering. Similarly, three distinct subtypes were categorized using a consensus clustering algorithm in this cohort (Fig. S8). The Kaplan‒Meier curve showed significant differences among the three clusters (log-rank test, P=0.025, Fig. 3E), further confirming that there are three cuproptosis clusters in PAAD.
4. Characteristics of biological function and TME in the cuproptosis subtypes
To further investigate the difference in survival among the three cuproptosis subtypes, we first conducted GSVA enrichment analysis to assess their functional and biological differences (Fig. 4A, B). The results suggested that Cluster A was mainly enriched in some cancer-related pathways, such as focal adhesion, basal cell carcinoma, and Notch and Hedgehog signaling pathways; Cluster B was involved in focal adhesion and axon guidance pathways; and Cluster C was mainly enriched in tricarboxylic acid (TCA) cycle-related pathways, such as the citric acid cycle, pyruvate metabolism and fatty acid metabolism, as well as some activation repair biological processes, including mismatch repair, nucleotide excision repair and base excision repair. Next, differences in the infiltration of 22 types of immune cells among patients with PAAD are shown in Fig. 4C, suggesting that this is an intrinsic feature reflecting individual differences. Next, a correlation coefficient heatmap provided an intuitive understanding of the state of immune cell interactions of 22 immune cell types (Fig. 4D). To further assess the differences in the infiltration of immune cells among the three clusters, the enrichment score of 22 immune cell types was calculated in the three subtypes using ssGSEA (Fig. 4E). In Cluster A, the most significant immunoinfiltrating cells were activated dendritic cells, natural killer cells, myeloid-derived suppressor cells, monocytes, plasmacytoid dendritic cells, and T helper cells 17. Activated CD4 T cells, activated CD8 T cells, eosinophils, gamma delta T cells, immature B cells, macrophages, natural killer T cells and follicular helper T cells showed the greatest infiltration in Cluster C. The infiltration of immune cells in Cluster B was similar to that in Cluster A. To predict the response to immune checkpoint inhibitors (ICIs), we analyzed the relationship between the expression levels of immune checkpoint genes in different cuproptosis subgroups. As shown in Fig. 4F, the expression of crucial immune checkpoint-related molecules, such as CTLA-4, PD-1 and PD-L1, showed significantly higher expression in subtype C. Next, we examined the TME score (stromal score, immune score and estimate score) of the three clusters, and the result showed that Cluster C had the highest estimate score (Fig. 4G-I). These results suggest a potential correlation between cuproptosiss and the efficacy of immunotherapy.
5. Comprehensive analysis of cuproptosis DEGs in PAAD
To explore the potential function of the cuproptosis subtypes in PAAD, we identified 240 DEGs among the three subtypes (Fig. S9A). Next, GO functional enrichment analysis revealed that the DEGs were considerably enriched in TCA cycle-related and mitochondrial metabolism biological processes, such as the organic acid catabolic process, carboxylic acid catabolic process, fatty acid catabolic process, tricarboxylic acid cycle, aerobic respiration and mitochondrial matrix (Fig. 5A, B). KEGG also showed that the DEGs were enriched in TCA cycle-related and mitochondrial respiration pathways (Fig. 5C, D). These enrichment analyses indicated that these DEGs are closely associated with the TCA cycle and cellular respiration-related biological processes, which suggests that cuproptosis is linked to mitochondrial metabolism. We then performed univariate Cox regression analysis to examine the prognostic value of the DEGs and screened 40 genes that were significantly associated with OS (p<0.01), which were used in the subsequent analysis (Table S5). The protein‒protein network (PPI) of the 40 prognostic DEGs is shown in Fig. S9B. To further explore the regulatory mechanism, clustering analysis of the 40 DEGs was carried out. The results were similar to the phenotypic clustering of cuproptosis, and three subtypes were identified, namely, gene Clusters A-C (Fig. S9C-G). Kaplan‒Meier analysis showed that patients in gene Cluster B had the worst OS, while patients in gene Cluster C showed a favorable OS (log-rank test, p=0.018, Fig. 5E). The three gene clusters showed significant differences in CRG expression, consistent with the expected results of the cuproptosis patterns (Fig. 5F). Moreover, the three clusters could be clearly separated based on the CRGs (Fig. 5G).
6. Construction of a prognostic cuproptosis signature
To construct a risk signature, these 40 prognostic DEGs were screened by the LASSO regression algorithm (Fig. S10A, B). As a result, 19 genes were identified in the analysis. Furthermore, 10 genes were identified by multivariate Cox proportional hazards regression analysis, and these genes were further used to construct a prognostic signature (Fig. S10C), which was defined as the cuproptosis score (Table S6). Then, PAAD patients were stratified into a high cuproptosis score group and a low cuproptosis score group according to the median cutoff value. The classification ability of the prognostic signature was assessed by PCA (Fig. 6A). As shown in Fig. 6B, the Kaplan‒Meier curve revealed that patients in the high cuproptosis score group had a clearly worse OS than their low score counterparts (log-rank test, p<0.001). Consistently, patients with high cuproptosis scores had a higher probability of death earlier than those with low cuproptosis scores (Fig. 6C-E). Furthermore, the predictive accuracy of the model was investigated by ROC analysis, with AUC values for 1-, 3-, and 5-year OS of 0.703, 0.744, and 0.769, respectively (Fig. 6F). The distributions of patients in the three cuproptosis clusters, three gene clusters, and two cuproptosis score groups are shown in Fig. 6G. We observed a significant difference in the cuproptosis score in different gene clusters. The cuproptosis score of gene Cluster C was the lowest, while that of gene Clusters A and B showed no significant differences (Fig. 6H). Furthermore, cuproptosis Cluster C had the lowest cuproptosis score compared to cuproptosis Clusters A and B (Fig. 6I). Since cuproptosis Cluster C had the highest immune cell infiltration, these results suggest that a low cuproptosis score may be closely correlated with immune infiltration and that the cuproptosis score may be helpful in predicting cuproptosis clusters in PAAD.
GSVA indicated that the high cuproptosis score group was mainly enriched in some carcinogenic pathways, such as the P53, small cell lung cancer, thyroid cancer, pancreatic cancer and pathways in cancer signaling pathways. Some amino acid and mitochondrial metabolism pathways, including glycine, serine and threonine metabolism and cytochrome P450 pathways, were mainly enriched in PAAD patients with low cuproptosis scores (Fig. 6J and Table S7). Spearman correlation analysis showed that the cuproptosis score was negatively correlated with activated B cells, CD8 T cells, eosinophils, mast cells and monocytes but positively associated with activated dendritic cells, natural killer cells, Th17 cells and Th2 cells (Fig. 6K). Similarly, the CIBERSORT algorithm revealed that CD8 T cells, monocyte and NK resting cells were higher in the low score group (Fig. 6L). Given the importance of ICIs, a difference was further found in the expression of checkpoint molecules between the two groups (Fig. 6M). The results showed that 17 immune checkpoint genes were differentially expressed between the two score groups, indicating that the cuproptosis score may be a candidate biomarker for checkpoint-based immunotherapy.
7. Characteristics of the cuproptosis signature in the TCGA cohort
First, univariate Cox regression showed that the cuproptosis score was associated with the OS of PAAD patients (P<0.001; Fig. 7A). Multivariate Cox regression showed that the cuproptosis score could be used as an independent prognostic factor (HR=1.792, P<0.001; Fig. 7B). Then, the difference in survival rate between patients with high and low cuproptosis scores was clearly significant (log-rank test, P=0.006, Fig. 7C). In addition, a cuproptosis score distribution dot plot showed that there were more surviving patients in the low cuproptosis score group (Fig. 7D-F). The classification ability of the cuproptosis signature was confirmed by PCA (Fig. 7G). We next evaluated the predictive sensitivity and specificity of the cuproptosis score by ROC curves. The AUCs at 1, 2, and 3 years reached 0.684, 0.710, and 0.720, respectively (Fig. 7H). Furthermore, the correlations between the prognostic signature and clinicopathological factors are shown as a heatmap (Fig. 7I). To examine the potential clinical practicality of the prognostic signature, we constructed a nomogram with the cuproptosis score and clinicopathological factors to estimate the 1-, 3-, and 5-year survival probabilities of patients with PAAD (Fig. 7J). The calibration curve of the nomogram indicated that the predicted OS rate was close to the actual OS rate at 1, 3, and 5 years (Fig. 7K). Furthermore, decision curve analysis (DCA) revealed that the nomogram based on the cuproptosis score had better clinical practicality for the prognosis prediction of PAAD patients (Fig. 7L). Finally, we generated a 5-year OS time-dependent ROC curve. The AUC value of the clinical prognostic nomogram was 0.684, which was significantly higher than that of age, sex, grade and stage (Fig. 7M), further implying the discriminative ability of the cuproptosis score combined with pathological characteristics to predict the OS of patients with PAAD.
8. Evaluation of pathway enrichment, immune infiltration and TMB between the two cuproptosis score groups.
GSEA revealed that 30 pathways were significantly clustered in the high cuproptosis score group, including focal adhesion, pathways in cancer, small cell lung cancer, thyroid cancer, pancreatic cancer, chronic myeloid leukemia, cell cycle, and Notch and P53 signaling pathways (Fig. 8A and Table S8, false discovery rate: q<0.05). These results are consistent with the results obtained from the whole PAAD cohort. Next, a heatmap of immune infiltration using the Tumor IMmune Estimation Resource (TIMER), CIBERSORT, CIBERSORT-ABS, QUANTISEQ, Microenvironment Cell Populations-counter (MCP-counter), XCELL and Estimating the Proportion of Immune and Cancer cells (EPIC) algorithms is shown in Fig. 8B. Comparative analysis of immune functions and immune cells was implemented to evaluate the differences in APC coinhibition, APC costimulation, cytolytic activity, MHC class I, type I IFN response, type II IFN response, CD8 T cells, monocytes and M2 macrophages between the two score groups (P<0.05, Fig. 8C, D). In addition, 11 immune checkpoint genes were differentially expressed between the two groups (Fig. 8E), suggesting that cuproptosis score was correlated with ICIs. Recent reports have highlighted the role of the Immunophenoscore (IPS) based on tumor immunogenicity in predicting the immunotherapy response to ICI therapy [25]. Here, we utilized IPS values to analyze the correlation between the cuproptosis signature and immune response. The results showed that there was no significant difference in IPS-PD1/PD-L1/PD-L2 or IPS-PD1/PD-L1/PD-L2+CTLA4 between the high and low cuproptosis score groups (Fig. 8F, G). Nevertheless, the IPS and IPS-CTLA4 were significantly higher in the low cuproptosis score group, indicating that patients in the low score group might respond better to immunotherapy (Fig. 8H, I).
In addition, somatic mutations were compared between the two cuproptosis score groups in the TCGA-PAAD cohort, and the top 20 genes with the highest mutation frequency were visualized (Fig. 9A, B). Patients with a high cuproptosis score had noticeably higher frequencies of KRAS, TP53, SMAD4 and CDKN2A mutations than patients with a low cuproptosis score (Fig. 9A, B). However, no significant differences in tumor mutation burden were observed between the two groups (Fig. 9C, D). Survival analysis results showed that OS was significantly worse for patients in the high TMB group than for those in the low TMB group (P=0.007, Fig. 9E). Furthermore, PAAD patients were divided into four groups for survival analysis based on TMB level and cuproptosis score. A significant difference was found in OS among the four subgroups, and patients in the high TMB and high cuproptosis score groups suffered shorter survival times than those in the low TMB and low cuproptosis score groups (P=0.005, Fig. 9F). Finally, we evaluated the associations between the cuproptosis score and the efficacy of currently used chemotherapy drugs for PAAD. Intriguingly, we found that the patients in the high cuproptosis score group had significantly lower IC50 values for gemcitabine, paclitaxel, camptothecin and gefitinib (Fig. S11), suggesting that the cuproptosis score may be associated with drug sensitivity.
9. Validation of the expression levels of CRGs in cells and tissues
To verify the reliability of the CRG expression profiles in PAAD obtained from the public database, we examined their relative expression levels in pancreatic cancer cell lines (AsPC-1, BxPC-3, CFPAC-1 and PANC-1) and an immortalized human pancreatic ductal epithelial cell line HPDE6-C7 using qRT‒PCR. As shown in Fig. 10A, the expression levels of most CRGs were relatively upregulated in PAAD cell lines compared with normal controls. Next, the GEPIA database [30] was utilized to acquire the expression of CRGs in PAAD tissues and normal tissues. Similarly, the expression levels of CRGs showed an overall upward trend in PAAD tissues (Fig. S12A). We further explored the protein expression levels of these CRGs in PAAD using the Human Protein Atlas (HPA) database [31]. Consistent with the above results, the protein levels of FDX1 and CDKN2A were not expressed in normal pancreatic tissues, while medium and high expression levels of these two proteins were observed in PAAD tissues (Fig. S12B). Low protein expression levels of DLAT, GLS, DLD, LIAS, LIPT1, PDHA1, PDHB and MTF1 were detected in normal pancreatic tissues, whereas medium or high expression levels of these proteins were observed in PAAD tissues (Fig. S12B). Together, these results suggested that the transcriptional and translational expression levels of the 10 CRGs were overexpressed in PAAD. Next, DLAT, a subunit of the pyruvate dehydrogenase complex, was selected as a candidate gene for further validation of prognostic prediction, as its p value ranked lowest in univariate prognostic analysis (Table S4). In addition, the expression level and function of DLAT in PAAD have yet to be established. By using an IHC assay, the DLAT protein level was found to be markedly higher in PAAD tissues than in adjacent nontumorous tissues (Fig. 10B). DLAT was primarily localized in the cytoplasm of PAAD cells. In addition, western blot analysis confirmed that the expression of DLAT was obviously increased in pancreatic cancer cells compared to in normal control cells (Fig. 10C). We further detected the expression levels of DLAT in 97 paraffin-embedded PAAD samples by IHC staining. The results confirmed that DLAT was overexpressed in PAAD tissues compared to in normal pancreatic tissues (Fig. 10D). Clinicopathological analyses showed that DLAT expression was significantly correlated with clinical stage and duodenal invasion (Table S9). Survival analysis revealed that patients with higher DLAT expression levels had clearly lower 5-year overall survival rates (log-rank test, P=0.0003, Fig. 10E). Furthermore, multivariate Cox regression analysis showed that high DLAT expression was an independent poor prognostic factor (HR, 2.199; P=0.012, Fig. 10F, G, Table S10). These results suggest that upregulation of DLAT might promote the progression of PAAD.