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Abstract
Our understanding of the molecular genetic contributions to smoking are limited to the additive effects of
individual single nucleotide polymorphisms (SNPs), but the underlying genetic risk is likely to also include
dominance, epistatic, and gene-environment interactions. To begin to address this complexity, this study
attempted to identify potential genetic interactions between rs16969968, the most replicated SNP
associated with smoking quantity, and all SNPs and genes across the genome. Using the UK Biobank, we
found one gene, PCNA, that showed a genome-wide signi�cant interaction with rs16969968 for smoking
behaviors in a sample of 116 442 smokers of European ancestry. We replicated this �nding in a meta-
analysis of �ve Finnish samples (n = 40 140): FinHealth, FINRISK, Finnish Twin Cohort, GeneRISK, and
Health-2000-2011. To our knowledge, this represents the �rst reliable epistatic effect between measured
genetic variants for smoking behaviors and provides a novel direction for possible future functional
studies related to this interaction. Furthermore, this work demonstrates the feasibility of these analyses,
which may be applied to other top SNPs for smoking and/or other phenotypes.

Introduction
Smoking cigarettes is the leading cause of preventable death in the United States [1]. In fact, one in �ve
deaths in the United States can be attributed to smoking [1]. Smoking also burdens the economy;
smoking-related health costs are around $300 billion per year in the United States alone [2]. While 68% of
smokers report wanting to quit [3], only 8% of these successfully do so [1], re�ecting the tremendous
addictive potential of nicotine, one of the most addictive psychoactive drugs [4]. Previous work has
demonstrated a substantial genetic component to smoking behaviors, and twin studies estimate the
heritability of smoking quantity and nicotine dependence to be between 40% and 75% [5, 6] in adults
across multiple ancestries. Recent genome-wide association studies (GWAS) have identi�ed several
hundred individual variants associated with various smoking-related behaviors [7], but these loci explain
only 4–8% of the estimated heritability and demonstrate the polygenic nature of these traits [8, 9]. A
variety of factors are believed to contribute to the mismatch between twin and genome-wide SNP-
heritability estimates, most notably, the in�uence of functional variants that are poorly tagged by SNPs
on modern arrays. Moreover, the variants within these genes and their regulatory elements are likely to
in�uence a complex trait via a minute perturbation across a complex, non-linear set of physiological
networks (i.e., transcriptional, neuronal, and developmental) [10]. The physiological intricacy in which
complex traits, such as smoking, develop suggests that interactions between loci or whole genes (i.e.,
epistasis) are likely, since there are numerous ways and stages at which these interactions could arise.
Furthermore, while current evidence of epistatic effects in humans has been limited, work on model
organisms further suggests that epistatic effects are common [11] and may be particularly important for
predicting an individual’s genetic risk to disease such as nicotine dependence [12].

SNP rs16969968 in the CHRNA5/A3/B4 gene cluster of neuronal nicotinic receptor genes is the most
widely replicated genetic variant associated with smoking behaviors [13–15], emerging from early GWAS
studies of lung cancer and smoking behaviors [16–18]. Nicotine is an agonist for neuronal nicotinic
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acetylcholine receptors (CHRN genes) and repeated nicotine use leads to their upregulation [19].
rs16969968 was the original top SNP identi�ed in the CHRNA5 gene and has been the major focus of
further study because it changes an amino acid (aspartate to asparagine; D398N) and has been shown to
confer functional effects using cell culture methods in vitro [20] and behavioral effects in a mouse
genetic model [21–23]. However, careful investigation of statistically independent SNPs within the
CHRNA5/A3/B4 gene cluster revealed high complexity of the underlying genetic structure. In a meta-
analysis of smoking quantity led by Saccone et al., the authors identi�ed at least two signals within the
region that are statistically independent of rs16969968, tagged by rs578776 and rs588765 [24]. The
major (risk) allele of rs578776 is in phase with the minor (risk) allele of rs16969968. In the case of
rs16969968, the minor allele increases risk for nicotine dependence, but for rs578776 the minor allele is
protective against it. Consequently, although the risk loci are correlated with each other, the minor alleles
are out of phase, and when controlling for rs16969968, rs578776 is no longer genome-wide signi�cant.
Moreover, when controlling for rs16969968, the signi�cance and direction of effect for smoking risk for
rs588765 is adjusted; rs588765 reaches genome-wide signi�cance and its minor allele is associated with
an increased risk for smoking quantity, whereas its minor allele was associated with a protective effect in
the single locus model[24]. In short, previous studies have demonstrated that controlling for rs16969968
has the potential to uncover new associations with smoking behaviors and provide further nuance to
previously discovered ones.

Based on current evidence, rs16969968 is not associated with early or subjective smoking behaviors, but
rather an increased risk for mature smoking behaviors. To illustrate, a meta-analysis of ‘age of tobacco
initiation’ and ‘age of onset of regular smoking’ [25] conducted by Stephens et al. found that rs16969968
was not associated with age of tobacco initiation; this was replicated in the GSCAN GWAS of 1.2 million
individuals [7]. In addition, this study also failed to �nd a signi�cant association between rs16969968
and age of regular smoking. A separate study demonstrated another non-signi�cant �nding for
rs16969968 in relation to a subjective response phenotype, “dizziness”, suggesting that rs16969968 is
not associated with subjective responses elicited with nicotine use [26]. In contrast, rs16969968 has been
continuously associated with heaviness of smoking and nicotine dependence. On average, individuals
homozygous for the risk allele in rs16969868 smoke up to 1.5 more cigarettes per day and are exposed to
higher levels of tobacco smoke, as measured by their cotinine levels, than those with the GG non-risk
allele [24, 27]. Absent balanced cross-over interactions, interaction effects are likely to be associated with
at least some additive effect, and at one or the other locus, making rs16969968 a reasonable a priori
candidate locus to study as a moderator. The number of cigarettes per day an individual consumes is
simple to assay and readily available in many large biobanks, while still being a reasonable proxy for
nicotine dependence [28]. In addition, this SNP is relatively common allele in some ancestral groups,
found in around 37–43% of individuals of European and Middle Eastern descent, respectively. Although it
is less common in other ancestral groups such as East Asian and African, at 2% and 7% respectively [20],
the SNP has been associated with smoking behaviors in trans-ancestry analyses [29, 30]. In sum, since
cigarettes per day is a widely used phenotype in many biobanks and rs16969968 is a highly replicated
and common signal of large effect, we hypothesized that G×GWAS investigations using rs16969968
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would be better powered than other SNPs in our search for epistatic effects in�uencing nicotine
dependence. Moreover, given that the number of pairwise interactions between all genome-wide SNPs
would be computationally infeasible to investigate, we concentrated our efforts in genome-wide
interactions with rs16969968. To our knowledge, no study has explored potential interaction effects
between rs16969968 and genome-wide loci in�uencing smoking behaviors. We aimed to determine
whether rs16969968 interacts with other genome-wide loci at the SNP or the gene level to in�uence
smoking quantity.

Subjects And Methods

Discovery Sample: UK Biobank Smokers of European
Ancestry
We conducted our primary analyses in the UK Biobank [31], a biorepository with approximately 500 000
individuals. All unrelated participants of European ancestry reported currently or formerly smoking and
had genotype data that passed quality controls were used (N = 116 442). We controlled for the two
different SNP chips (Bioleve and Axiom) by controlling for batch and center. Participants were 40 years of
age or older. Around 46% of our sample of unrelated smokers were female. We limited our analyses to
only unrelated participants of European descent to minimize confounding factors such as population
strati�cation and shared environmental in�uences. To identify individuals of European ancestry, we
performed principal component analysis and retained those whose top scores on the �rst four principal
components fell within the range of European ancestry previously determined by the UK Biobank (�eld
22006).

All data analysis and cleaning were performed using PLINK2 [32]. We �rst removed 849 individuals
whose self-reported sex differed from their chromosomal sex determination (UKB data �elds 31 and
22001) due to their increased probability of being a sample mix-up, 46 people with irregularly high
inbreeding coe�cients (|Fhet| > 0.02), and 159 individuals who requested their information be redacted
from the UKB, as well as any individuals whose genetic data did not pass quality controls identi�ed by
Affymetrix and the UK Biobank (�elds 220010 and 22051). Then, we used MAF- and LD-pruned array
markers (plink2 command: --maf 0.01 –hwe 1x10− 8 –indep-pairwise 50 5 0.2) to randomly select
individuals among related European smokers. For our analyses, we used the HRC-imputed dosage data
provided by the UK Biobank’s full release, which used the HRC reference panel v.1.1 [33] and an
information score greater or equal to 0.3. We �ltered MAF > 1% and tested ~ 10M SNPs across the 22
autosomal chromosomes.

Measures
Smoking quantity was measured by the average number of cigarettes smoked per day (CPD), including
both current and former smokers (UKB �eld IDs 2887, 3456, and 6183; average = 18.22, median = 20,
range 1-140, inclusive). Overall, most users tend to underestimate the amount they smoke, and this is
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particularly pronounced in former smokers in whom telescoping can partly explain why our measure of
smoking quantity was right-skewed [34] (Fig. S1A). To assess whether changes to scale in�uence the
tests of the interactions, we also investigated log10 transformed CPD (Fig. S1B).

All models tested employed the following covariates: sex (�eld 31), age at time of assessment (�eld
21003), Townsend Deprivation Index (proxy for socioeconomic status in the UK, �eld 21003), educational
attainment (quali�cation, categorical, �eld 6138), genotyping batch (�eld 22000), assessment center
(�eld 54), and the �rst 10 genetic principal components to control for ancestry. To calculate these 10
genetic PCs, we used common array markers with a minor allele frequency (MAF) equal of greater than
1% and �ltered genetic markers by linkage disequilibrium using 50 variants at a time with a step size of 5
if the correlation between the variants surpassed 0.2 (plink2 command: --maf 0.01 --hwe 1x10− 8 --indep-
pairwise 50 5 0.2). Next, we used �ashpca [35] on these LD-pruned array markers to calculate 10 genetic
PCs to control for ancestry and population strati�cation. To reduce collinearity in our covariates, we ran
principal component analysis using the prcomp function in R [36] to remove the axes that explained
trivial variance, resulting in one dropped axis.

Replication Sample: Finnish Samples
To replicate any signi�cant interactions, we chose �ve Finnish sub-samples with genetic and cigarette
use data available as a replication sample. These �ve sub-samples include: FinHealth 2017 study
(FinHealth) [37], FINRISK [38], Finnish Twin Cohort (FTC) [39, 40], GeneRISK [41], and the Health-2000-
2011 (T2000-2011) [42]. These datasets varied in sample size (ranging from around 994 smoking
individuals in GeneRISK up to 26 751 in FINRISK) and the granularity of the cigarette use outcome (i.e.,
cigarettes per day versus binned cigarettes per day). For more information on these samples, please see
Supplementary Methods. The minor allele (A) frequency for rs16969968 in Finland is 0.33 and does not
differ from other European populations. We con�rmed our Finnish sample was an appropriate replication
sample by comparing the Finnish linkage disequilibrium patterns of any gene regions of interest to those
in our original UKB European sample (Fig.S6).

We performed a rs16969968×SNP interaction analysis for any replication regions in each of the �ve
Finnish samples as described previously for the genome-wide interaction analyses. Then, we aggregated
the interaction signals from our replication region to genes using MAGMA v.1.09 as performed in our
previous UK Biobank analyses. Lastly, we meta-analyzed the results from the �ve Finnish subsets for
both the rs16969968×SNP and gene-level analyses using METAL’s inverse variance weighing model [43].

Genome-wide Interaction Study of rs16969968
We used PLINK2 to run a linear regression model (plink2 command: --linear interaction) to estimate SNP-
by-rs16969968 interaction associations with CPD. We included all rs16969968×covariate and
SNPj×covariate interactions to avoid potential confounding [44]. Because covariate scales varied widely,
all covariates and their products were further standardized (plink2 command: --covar-variance-
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standardize). We used a standard GWAS threshold of 5x10− 8 for this analysis. Our regression model took
the following form:

 

Where Xp indicates the 1...q covariates, G indicates the number of risk alleles at rs16969968, Zj indicates

the jth SNP in the G×GWAS,  denotes environmental noise and measurement error.

In the Finnish samples, we de�ned a replication region as all SNPs within 250kb of the lead SNP in a
signi�cant gene interaction from the UKB analyses. This ensured that all SNPs in common between the
Finnish and UKB samples in our region of interest plus any new SNPs that were likely to be in linkage
disequilibrium with our SNPs of interest would also be included. We performed a rs16969968xSNP
interaction analysis for any replication regions in each of the �ve Finnish samples as described
previously for the genome-wide interaction analyses. We meta-analyzed the results from the
rs16969968xSNP analyses across only the Finnish sub-samples (labelled Fin_Meta-analysis) and across
both Finnish and UKB samples (labelled All_Meta-analysis) using METAL’s inverse variance weighing
model [43]. To determine the number of independent tests conducted, we performed a principal
component analysis using the UKB on all the SNPs within any replication regions of interest using R.

MAGMA Gene-Level Analyses
To investigate rs16969968 interactions with gene level effects, we fed the resulting rs16969968-by-SNPj

p-values into the multi-marker analysis of genomic annotation (MAGMA) [45] v.1.09 to test gene-level
interaction associations for CPD and log10-transformed CPD. Using MAGMA, one can employ either the
“SNP-wise mean” or the “SNP-wise top” model to aggregate genome-wide signals at the gene level. The
SNP-wise mean model is more powerful when several SNPs within a gene show a moderate association
with the outcome of interest; the SNP-wise top model, on the other hand, is more powerful when a single
SNP is strongly associated with the trait [46, 47]. To ensure our analyses would be sensitive to varying
unknown genetic architectures, we used both MAGMA’s top and mean p-value models separately
(MAGMA commands --model SNP-wise top and --model SNP-wise mean, respectively). To our knowledge,
this was the �rst time MAGMA has been used to perform GxGWAS interaction analyses. We investigated
the likelihood of getting spurious results from using MAGMA in this novel fashion by simulating a
random phenotype and running our rs16969968×SNP and subsequently our rs16969968×Gene analyses
genome wide (See Supplementary Methods). While we did see in�ation of the p-values across both the
SNP-wise mean and SNP-wise top models, no genes were signi�cant after controlling for multiple testing
via a Bonferroni correction (Fig. S7).

ϵ
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In all the MAGMA analyses, variants were annotated to genes using a 25Kb window around the start and
end of a gene. SNPs were successfully mapped onto a total of 18,573 genes using genome build 38. We
used the SNP x rs16969968 interaction p-values for each SNP from the original GWAS, which accounted
for the appropriate main effects, covariates and covariate interactions as described above, and included
MAGMA’s default covariates in the analysis (gene size, density, inverse minor allele count, per-gene
sample size, plus the log value of each). We used a Bonferroni multiple testing correction signi�cance
threshold based on the number of genes tested (p = 0.05/18 573 = 2.70x10− 6), which is conservative
given LD structure and overlap of gene regions.

In the Finnish samples, we aggregated the interaction signals from any replication regions to genes using
MAGMA v.1.09 as performed in our previous UK Biobank analyses. We meta-analyzed the results from
the rs16969968xSNP analyses across Finnish sub-samples (labelled Fin_Meta-analysis) using METAL’s
inverse variance weighing model.

Characterizing Signi�cant Interactions
For any statistically signi�cant genes from the gene-level MAGMA analysis (p = 2.70x10− 6), we followed
up by inspecting the linkage disequilibrium patterns and performing additional conditional analyses on
any gene regions of interest. Gene regions of interest include all the SNPs within a signi�cant gene with a
suggestive signi�cance of p < 1x10− 5. We used HaploView [48] as well as LocusZoom [49] to visualize
the linkage disequilibrium pattern of the gene regions of interest for any genes that reached statistical
signi�cance. To test whether a signi�cant gene contained a single or multiple signals, we conducted
interaction analyses on the all the SNPs within a gene region of interest while conditioning on the top
SNP of that gene region. Our multiple testing correction threshold for these conditional analyses was
de�ned by the number of SNPs in that region. To test the interactive effect of other SNPs in the gene with
rs16969968 while conditioning on the top SNP, we exported the additive coding of all SNPs in the gene
within MAGMA’s 25kb window using PLINK (plink �ag: --recode A), included the interaction between the
top SNP and rs16969968 as well as the main effect of the top SNP and its interaction with the rest of our
covariates. The conditional analysis followed the following regression model:

rs16969968 x Nicotinic Receptor Genes
Following the basic gene-level analysis, we ran a competitive gene set analysis using MAGMA v. 1.09 and
the results from both our top and mean models in the UKB. We tested whether a nicotinic gene set
previously curated by Melroy-Greif et al. (2017) interacted with rs16969968 more than other genes in the
genome. This nicotinic gene set included 107 genes curated through a literature search that have been
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previously found to be involved in the function, processing, upregulation, or downstream effects of
nicotinic receptors [50].

Results

Genome-wide Interaction Study of rs16969968
We found no genome-wide signi�cant interactions of SNPs with rs16969968 for either CPD or log-
transformed CPD (Fig. 1A & Fig.S2, respectively). However, 11 SNPs on chromosome 20 were
suggestively signi�cant (Fig. 1A). For example, rs17178947 and rs73586411 (p = 6.60x10− 8, p = 7.49x10− 

8 respectively) are located within the CDS2 gene and close to TMEM and PCNA. Most of the
rs16969968xSNP interactions nearing signi�cance were within this region, highlighting it as a potential
epistatic region. To visualize this potential interaction, we plotted the average number of cigarettes per
day smoked across genotypes for rs16969968 and rs73586411 (Fig.S3A). The MAF for the T allele
tagging the interaction is 0.092, which explains our modest case counts.

We also tested this region in our Finnish replication sample. When meta-analyzing across both the UKB
and the Finnish sub-sets, the SNP-level interaction for rs16969968×rs73586411 reached genome-wide
signi�cance (Table S1, p = 2.31x10− 8), though we note that this statistic suffers from winner’s curse bias
in that we meta-analyzed the SNP×SNP results because of the signi�cant SNP×Gene interaction. Figure 3
shows the estimated effect sizes for this interaction within individual samples and across all samples.
When meta-analyzing only across the Finnish samples, we �rst determined that the number of
independent tests in our region of interest equaled 4 through principal component analysis (See
Methods). Across the Finnish sub-samples, nine SNPs were nominally signi�cant (p < 0.04; Table S1), but
no SNP reached signi�cance after adjusting for multiple testing (p < 0.05/4 = 1.25x10− 2).

rs16969968xGene Analyses
We used MAGMA to aggregate the resulting p-values from the rs16969968×SNP analysis by gene to
detect any potential gene-level interactions with rs16969968. In both the SNP-wise Mean and Top models,
we found the PCNA gene to signi�cantly interact with rs16969968 when raw CPD was our outcome
measure (Fig. 1B, p = 8.02x10− 7; Fig. 1C, p = 3.67x10− 7, respectively). However, no genes reached
genome-wide signi�cance for log10CPD in either model (Fig. S4A, p = 2.71x10− 5; Fig. S4B, p = 2.21x10− 5).
We went back to the rs16969968×SNP results to investigate the SNP-level signals driving the signi�cant
interaction with the PCNA gene. Seeing that the SNP signals driving this signi�cant gene interaction were
located within the CDS2 gene but were part of MAGMA’s gene analyses for PCNA, CDS2, and TMEM230,
we followed up on all three of these genes in our Finnish replication study, underscoring that the signal is
shared across these three genes. In our rs16969968×Gene meta-analysis of the Finnish samples, all three
genes (CDS2, TMEM230, and PCNA) were signi�cant after multiple-testing correction (p < 1.67x10− 2)
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across both the SNP-wise Mean and SNP-wise Top models (Table 1A and 1B, respectively); thereby
successfully replicating our results for the PCNA gene in the UKB.

Exploring the suggestive interaction of rs16969968 x
rs73586411
We used LocusZoom and HaploView to visualize the pattern of associations as a function of their
linkage disequilibrium with the lead SNP (rs73586411) in the PCNA gene. All our suggestively signi�cant
interactions (p < 1x10− 5) from the rs16969968×SNP analyses for the PCNA gene were highly correlated
with one another (Fig. 2) and aggregated in a single LD block, block 3 (Fig. S4).

To con�rm whether this was a single signal, we conducted rs16969968×SNP interaction analyses for the
SNPs within PCNA, conditioning on the rs16969968×rs7586411 interaction, the interaction with the
lowest p-value in the PCNA gene. No SNPs were signi�cant after controlling for multiple testing (p = 
0.05/61 SNPs in the region = 0.00082).

rs16969968 x Nicotinic Receptor Genes
We performed competitive gene set analyses on CPD and log10-transformed CPD using the nicotinic gene
set curated by Melroy-Greif et al. (2017) to test whether these genes signi�cantly interacted with
rs16969968 more strongly than other genes in the genome. Neither the SNP-wise mean (p = 0.29) nor the
SNP-wise top (p = 0.10) competitive tests were signi�cant, meaning that nicotinic gene set genes curated
by Melroy-Greif et al (2017) do not more strongly interact with rs16969968 to in�uence CPD or its log10
transform compared to other genes in the genome.

Discussion
We conducted an exploratory study of SNP and gene interactions with the SNP rs16969968 on daily
cigarette consumption. In the single SNP G×GWAS interaction analysis, none of the individual SNPs
reached genome-wide signi�cance. Notably, in the gene-level analysis, one gene, PCNA, did achieve
genome-wide signi�cance when aggregating our rs16969968×SNP p-values at the gene-level. This result
was consistent with the individual SNP analysis, where some SNPs in the same region (tagged by
rs73586411) had p-values approaching signi�cance. Importantly, we replicated this gene-level �nding in
an independent dataset of �ve Finnish samples by speci�cally testing for an interaction between
rs16969968 and three genes and meta-analyzing the results. Collectively, this replication sample
con�rmed our novel �nding for all three genes, with p-values ranging from 0.0017 to 3.67x10− 7,
depending on the model used. The fact that all three of these genes were statistically signi�cant in our
replication analyses using the Finnish samples supports our conclusion that a region tagged by lead SNP
rs73586411 and shared across these three genes signi�cantly modulates the effect of the risk allele of
rs16969968 and its effects on daily cigarette consumption.
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A caveat is that both the SNP and gene level interactions for log10-transformed cigarettes per day were
insigni�cant. At the SNP level using log10-transformed CPD, the p-value for rs73586411 was 9.66x10− 5

compared to 7.50x10− 8 for raw CPD. However, at the gene level, the interaction between rs16969968 and
PCNA for log10-CPD was suggestively signi�cant (p = 2.71x10− 5 for SNP-wise mean, p = 2.21x10− 5 for
SNP-wise top model). Therefore, while there is some evidence to suggest that the interaction disappears
on the multiplicative scale, we believe that our replication using an independent sample supports our
initial �ndings of a signi�cant interaction between rs16969968 and one or more SNPs found near the
PCNA gene.

We explored the LD structure of the SNPs in the PCNA gene and conducted conditional analyses to
determine that this is a single signal coming from an LD block containing 11 SNPs. We note that since
we used a 25kb window, all these 11 nominally signi�cant SNPs driving the interaction with PCNA also
span part of the CDS2 and TMEM230 genes [51]. It is likely that the reason why PCNA resulted as
statistically signi�cant in our UKB analyses while not CDS2 nor TMEM230 was because the PCNA gene
boundary used contained 48 SNPs, whereas the CDS2 and TMEM230 gene region boundaries contained
221 and 67, respectively. Therefore, we hypothesize that the higher number of SNPs in CDS2 and
TMEM230 genes diluted the interaction signal between rs16969968 and rs73586411. None of the SNPs
in high linkage disequilibrium are located within coding regions of any of the three genes. Most are
located within intronic regions of CDS2, but there is no evidence for functional impact based on current
information available for possible epigenetic areas or other known gene regulatory elements. In sum, we
emphasize that this interaction is due to a single signal within the PCNA, CDS2, and TMEM230 region of
chromosome 20, but prioritization of possible functional SNPs cannot be identi�ed in our analysis.

PCNA encodes for proliferating cell nuclear antigen, which is widely expressed across many tissues and
involved in leading strand synthesis of DNA during replication. According to the GWAS catalog [52],
height is the only phenotype with evidence of association with PCNA [53]. In contrast to GWAS, animal
and transcriptomic studies have linked PCNA to smoking. For example, animal studies have linked
nicotine exposure to PCNA damage in lung and kidney cell cultures in a dose-dependent fashion [54].
Interestingly, PCNA expression levels were higher in hepatic and pancreatic cells of rats exposed to both
ethanol and tobacco compared to tobacco alone [55]. According to GeneWeaver [56], in humans, PCNA
has been previously linked to tobacco smoke pollution, as well as having a couple of publications linking
PCNA to nicotine according to the Comparative Toxicogenomics Database. CDS2 codes for CDP-
diacylglycerol synthase 2, which is an enzyme that regulates levels of phosphatidylinositol and is
therefore involved in second messenger signaling for regulating cell growth, calcium metabolism, and
protein kinase C activity. Notably, there are two genes that code for this enzyme, the other of which is
located on chromosome 4q21. CDS2 has emerged in four GWAS reports: two studies of height [57, 58],
one on Ebbinghaus illusion, an inability to contextualize relative size perception [59], and most relevant to
the present study, another identifying gene-gene interactions with pathological hallmarks of Alzheimer’s
disease [60]. TMEM230, transmembrane 230, is expressed in neurons, as well as many other tissues, and
may be involved in synaptic vesicle tra�cking and recycling. It was identi�ed in a GWAS study of acute
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myeloid leukemia [61], another with hair morphology [62], and there is ongoing debate about whether it
may be associated with Parkinson’s Disease [63]. In short, of the three genes encompassing our epistatic
region of interest, to our knowledge, PCNA is the only one previously linked to smoking behaviors.

Our two-step approach of conducting a genome-wide interaction study and later aggregating these
signals within genes successfully increased our power to detect genome-wide interactions while keeping
our type I error rate low when evaluating unlinked SNPs; we recognize that LD among interacting SNPs
can lead to false positive tests of epistasis [64, 65]. Moreover, it provided the �exibility to increase power
while also allowing for follow-up of identi�ed SNP×SNP results for further examination. The approach
developed here will be useful for other researchers in the �eld attempting to discover genome-wide
interactions with a wide range of complex traits. We used a 25kb window around the start and end of
each gene, but there is no clear standard in the �eld for this. When using genes discovered in model
organisms associated with nicotine consumption, Palmer et al. found that heritability for human nicotine
consumption was enriched in genomic regions surrounding the genes compared to the protein-coding
regions of these genes. In addition, after comparing 5, 10, 25, and 35kb gene windows, they found that
enrichment began decreasing after 10kb [66]. These �ndings suggest that it is bene�cial to use a gene
window, although the best size of the window still merits further investigation and could vary across traits
and across genes. In general, we recommend pooling data from multiple datasets to increase sample
size, limiting SNP×SNP epistatic analyses to common variants, and using a 10kb-25kb upstream and
downstream gene window when aggregating SNP×SNP results at the gene-level. These results serve as a
guide for others in the �eld as they also attempt to study epistatic interactions at the SNP level.

In summary, this is the �rst study to report an interaction between rs16969968 and any genome-wide loci
in�uencing cigarette consumption. Five of our nominally signi�cant SNPs, such as rs73586411 and
rs6053152, previously failed to reach signi�cance for cigarettes per day in GSCAN, with sample sizes
roughly 3–10 times the size used here [7]. This highlights the power of interaction studies to detect novel
variants that would not be found otherwise. Future work could expand on our current pipeline to
investigate interactions between rs16969968 and genome-wide loci for other smoking behaviors such as
smoking cessation. In addition, one could apply our two-stage pipeline to SNP hits from large scale meta-
analyses such as GSCAN to investigate other potential genome-wide interactions in�uencing smoking
behaviors. These �ndings will help inform the work of basic scientists who are working on characterizing
epistatic effects in�uencing smoking behaviors using animal models. Understanding how well-
established risk variants such as rs16969968 alter risk for smoking behaviors in conjunction with the rest
of the genome is increasingly important with the rise of precision medicine.
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Figure 1

(A) Manhattan plot of associations with cigarettes per day for interactions between rs16969968 and
genome-wide SNPs. Red line denotes genome-wide signi�cance (p < 5x10-8), while the blue line denotes
suggestive signi�cance (p < 1x10-5).
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(B) PCNA gene signi�cantly interacts with rs16969968 to in�uence raw CPD when aggregating the
rs16969968×SNP signals within genes and investigating the average association within genes. Blue line
on the MAGMA results denotes genome-wide signi�cance after correcting for the number of genes tested
(p < 2.70x10-6).

(C) PCNA gene again showed a signi�cant association with cigarettes per day when aggregating the
rs16969968×SNP results within genes and testing the top association of each gene. 

Figure 2
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Locus Zoom plot for region of interest, tagged by rs73586411. 

Figure 3

Estimated rs16969968×rs735864111effect sizes, alongside their standard error for those estimates
across samples. The sample size of each sample is denoted in parentheses; samples are ordered
according to decreasing sample size. 
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