[1] Walsh, C. T., Garneau-Tsodikova, S. & Gatto Jr., G. J. Protein Posttranslational Modifications: The Chemistry of Proteome Diversifications. Angew. Chem. Int. Ed. 44, 7342-7372 (2005).
[2] a) Kent, S. B. Total chemical synthesis of proteins. Chem. Soc. Rev. 38, 338-351 (2009); b) Kent, S. Chemical protein synthesis: Inventing synthetic methods to decipher how proteins work. Bioorg. Med. Chem. 25, 4926-4937 (2017).
[3] a) Hoyt, E. A., Cal, P. M. S. D., Oliveira, B. L. & Bernardes, G. J. L. Contemporary approaches to site-selective protein modification. Nat. Rev. Chem. 3, 147-171 (2019); b) Wright, T. H. et al. Posttranslational mutagenesis: A chemical strategy for exploring protein side-chain diversity. Science 354, agg1465 (2016).
[4] a) Hsieh-Wilson, L. C. & Griffin, M. E. Improving Biologic Drugs via Total Chemical Synthesis. Science 342, 1332-1333 (2013); b) Liu, Y. et al. Development and application of novel electrophilic warheads in target identification and drug discovery. Biochem. Pharmacol. 190, 114636 (2021).
[5] a) Tamura, T. & Hamachi, I. Chemistry for Covalent Modification of Endogenous/Native Proteins: From Test Tubes to Complex Biological Systems. J. Am. Chem. Soc. 141, 2782-2799 (2019); b) Shiraiwa, K., Cheng, R., Nonaka, H., Tamura, T. & Hamachi, I. Chemical Tools for Endogenous Protein Labeling and Profiling. Cell Chem. Biol. 27, 970-985 (2020).
[6] Vantourout, J. C. et al. Serine-Selective Bioconjugation. J. Am. Chem. Soc. 142, 17236-17242 (2020).
[7] a) Zhao, Z., Shimon, D. & Metanis, N. Chemoselective Copper-Mediated Modification of Selenocysteines in Peptides and Proteins. J. Am. Chem. Soc. 143, 12817-12824 (2021); b) Cohen, D. T., Zhang, C., Pentelute, B. L. & Buchwald, S. L. An Umpolung Approach for the Chemoselective Arylation of Selenocysteine in Unprotected Peptides. J. Am. Chem. Soc. 137, 9784-9787 (2015); c) Cohen, D. T. et al. A chemoselective strategy for late-stage functionalization of complex small molecules with polypeptides and proteins. Nat. Chem. 11, 78-85 (2019).
[8] Jia, S., He, D. & Chang, C. J. Bioinspired Thiophosphorodichloridate Reagents for Chemoselective Histidine Bioconjugation. J. Am. Chem. Soc. 141, 7294-7301 (2019).
[9] a) Lin, S. et al. Redox-based reagents for chemoselective methionine bioconjugation. Science 355, 597-602, (2017); b) Taylor, M. T., Nelson, J. E., Suero, M. G. & Gaunt, M. J. A protein functionalization platform based on selective reactions at methionine residues. Nature 562, 563-568 (2018); c) Kim, J. et al. Site-Selective Functionalization of Methionine Residues via Photoredox Catalysis. J. Am. Chem. Soc. 142, 21260-21266 (2020); d) Zang, J., Chen, Y., Zhu, W. & Lin, S. Chemoselective Methionine Bioconjugation on a Polypeptide, Protein, and Proteome. Biochemistry (Mosc.) 59, 132-138 (2020).
[10] Flood, D. T. et al. Selenomethionine as an expressible handle for bioconjugations. Proc. Natl. Acad. Sci. U. S. A. 118, e2005164118 (2021).
[11] a) Alvarez, D., Deniaud, D., Mevel, M. & Gouin, S. G. Tyrosine Conjugation Methods for Protein Labelling. Chem. Eur. J. 26, 14257-14269 (2020); b) Sato, S. et al. Site-Selective Protein Chemical Modification of Exposed Tyrosine Residues Using Tyrosine Click Reaction. Bioconjugate Chem. 31, 1417-1424 (2020); c) Sato, S. et al. Site-Selective Protein Chemical Modification of Exposed Tyrosine Residues Using Tyrosine Click Reaction. Bioconjugate Chem. 31, 1417-1424 (2020); d) Li, B. X. et al. Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation. Nat. Chem. 13, 902-908 (2021); e) Choi, E. J., Jung, D., Kim, J. S., Lee, Y. & Kim, B. M. Chemoselective Tyrosine Bioconjugation through Sulfate Click Reaction. Chem. Eur. J. 24, 10948-10952 (2018).
[12] a) Tower, S. J., Hetcher, W. J., Myers, T. E., Kuehl, N. J. & Taylor, M. T. Selective Modification of Tryptophan Residues in Peptides and Proteins Using a Biomimetic Electron Transfer Process. J. Am. Chem. Soc. 142, 9112-9118 (2020); b) Hansen, M. B., Hubalek, F., Skrydstrup, T. & Hoeg-Jensen, T. Chemo- and Regioselective Ethynylation of Tryptophan-Containing Peptides and Proteins. Chem. Eur. J. 22, 1572-1576 (2016).
27 Seki, Y. et al. Transition Metal-Free Tryptophan-Selective Bioconjugation of Proteins. J. Am. Chem. Soc. 138, 10798-10801 (2016); c) Seki, Y. et al. Transition Metal-Free Tryptophan-Selective Bioconjugation of Proteins. J. Am. Chem. Soc. 138, 10798-10801 (2016).
[13] a) Dempsey, D. R., Jiang, H., Kalin, J. H., Chen, Z. & Cole, P. A. Site-Specific Protein Labeling with N-Hydroxysuccinimide-Esters and the Analysis of Ubiquitin Ligase Mechanisms. J. Am. Chem. Soc. 140, 9374-9378 (2018).; b) Matos, M. J. et al. Chemo- and Regioselective Lysine Modification on Native Proteins. J. Am. Chem. Soc. 140, 4004-4017 (2018); c) Apel, C., Kasper, M. A., Stieger, C. E., Hackenberger, C. P. R. & Christmann, M. Protein Modification of Lysine with 2-(2-Styrylcyclopropyl)ethanal. Org. Lett. 21, 10043-10047 (2019); d) Adusumalli, S. R. et al. Chemoselective and Site-Selective Lysine-Directed Lysine Modification Enables Single-Site Labeling of Native Proteins. Angew. Chem. Int. Ed. 59, 10332-10336 (2020); e) Hymel, D. & Liu, F. Selective Lysine Modification Enabled by Intramolecular Acyl Transfer. Org. Lett. 22, 3067-3071 (2020); f) Liu, J. et al. A Genetically Encoded Fluorosulfonyloxybenzoyl-l-lysine for Expansive Covalent Bonding of Proteins via SuFEx Chemistry. J. Am. Chem. Soc. 143, 10341-10351 (2021).
[14] a) Ochtrop, P. & Hackenberger, C. P. R. Recent advances of thiol-selective bioconjugation reactions. Curr. Opin. Chem. Biol. 58, 28-36 (2020); b) Abbas, A., Xing, B. & Loh, T.-P. Allenamides as Orthogonal Handles for Selective Modification of Cysteine in Peptides and Proteins. Angew. Chem. Int. Ed. 53, 7491-7494 (2014); c) Kang, M. S., Kong, T. W. S., Khoo, J. Y. X. & Loh, T.-P. Recent developments in chemical conjugation strategies targeting native amino acids in proteins and their applications in antibody–drug conjugates. Chem. Sci. 12, 13613-13647 (2021).
[15] a) Deng, J. R. et al. Chemoselective and photocleavable cysteine modification of peptides and proteins using isoxazoliniums. Commun. Chem. 2, 93 (2019); b) Reddy, N. C., Kumar, M., Molla, R. & Rai, V. Chemical methods for modification of proteins. Org. Biomol. Chem. 18, 4669-4691 (2020).
[16] Hacker, S. M. et al. Global profiling of lysine reactivity and ligandability in the human proteome. Nat. Chem. 9, 1181-1190 (2017).
[17] Marino, S. M. & Gladyshev, V. N. Cysteine function governs its conservation and degeneration and restricts its utilization on protein surfaces. J. Mol. Biol. 404, 902-916 (2010).
[18] a) Bernardim, B. et al. Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents. Nat. Commun. 7, 13128 (2016); b) Seki, H. et al. Rapid and robust cysteine bioconjugation with vinylheteroarenes. Chem. Sci. 12, 9060-9068 (2021); c) Zhang, Y. et al. Thiol Specific and Tracelessly Removable Bioconjugation via Michael Addition to 5-Methylene Pyrrolones. J. Am. Chem. Soc. 139, 6146-6151 (2017); d) Shi, M. et al. A Protein-Binding Molecular Photothermal Agent for Tumor Ablation. Angewandte Chemie International Edition 60, 13564-13568 (2021); e) S. Ariyasu, S., Hayashi, H., Xing, B. & Chiba, S. Site-Specific Dual Functionalization of Cysteine Residue in Peptides and Proteins with 2-Azidoacrylates. Bioconjugate Chem. 28, 897-902 (2017); f) Seki, H. Walsh, S. J. Bargh, J. D. Parker, J. S. Carroll, J. & Spring, D. R. Rapid and robust cysteine bioconjugation with vinylheteroarenes. Chem. Sci. 12, 9060-9068 (2021)..
[19] a) Allouche, E. M. D., Grinhagena, E. & Waser, J. Hypervalent Iodine-Mediated Late-Stage Peptide and Protein Functionalization. Angew. Chem. Int. Ed. 61, e202112287 (2022); b) Byrne, S. A. et al. Late-stage modification of peptides and proteins at cysteine with diaryliodonium salts. Chem. Sci. 12, 14159-14166 (2021).
[20] a) Messina, M. S. et al. Organometallic Gold(III) Reagents for Cysteine Arylation. J. Am. Chem. Soc. 140, 7065-7069 (2018); b) Vinogradova, E. V., Zhang, C., Spokoyny, A. M., Pentelute, B. L. & Buchwald, S. L. Organometallic palladium reagents for cysteine bioconjugation. Nature 526, 687-691 (2015); c) Rodriguez, J. & Martinez-Calvo, M. Transition-Metal-Mediated Modification of Biomolecules. Chem. Eur. J. 26, 9792-9813 (2020); d) Schlatzer, T. et al. Labeling and Natural Post-Translational Modification of Peptides and Proteins via Chemoselective Pd-Catalyzed Prenylation of Cysteine. J. Am. Chem. Soc. 141, 14931-14937 (2019).
[21] a) Embaby, A. M., Schoffelen, S., Kofoed, C., Meldal, M. & Diness, F. Rational Tuning of Fluorobenzene Probes for Cysteine-Selective Protein Modification. Angew. Chem. Int. Ed. 57, 8022-8026 (2018); b) Zhang, C., Vinogradova, E. V., Spokoyny, A. M., Buchwald, S. L. & Pentelute, B. L. Arylation Chemistry for Bioconjugation. Angew. Chem. Int. Ed. 58, 4810-4839 (2019); c) Xu, L., Silva, M., Gois, P. M. P., Kuan, S. L. & Weil, T. Chemoselective cysteine or disulfide modification via single atom substitution in chloromethyl acryl reagents. Chem Sci 12, 13321-13330 (2021); d) Zhang, Y. et al. Cysteine-specific protein multi-functionalization and disulfide bridging using 3-bromo-5-methylene pyrrolones. Nat. Commun. 11, 1015 (2020); e) Wan, L. Q. et al. Nonenzymatic Stereoselective S-Glycosylation of Polypeptides and Proteins. J. Am. Chem. Soc. 143, 11919-11926 (2021); f) Chu, G.-C. et al. Cysteine-Aminoethylation-Assisted Chemical Ubiquitination of Recombinant Histones. J. Am. Chem. Soc. 141, 3654-3663 (2019).
[22] a) Choi, H., Kim, M., Jang, J. & Hong, S. Visible-Light-Induced Cysteine-Specific Bioconjugation: Biocompatible Thiol-Ene Click Chemistry. Angew. Chem. Int. Ed. 59, 22514-22522 (2020); b) Sato, S. & Nakamura, H. Protein Chemical Labeling Using Biomimetic Radical Chemistry. Molecules 24, 3980 (2019); c) Hu, K. et al. An In-tether Chiral Center Modulates the Helicity, Cell Permeability, and Target Binding Affinity of a Peptide. Angew Chem Int Ed 55, 8013-8017 (2016); d) McLean, J. T., Benny, A., Nolan, M. D., Swinand, G. & Scanlan, E. M. Cysteinyl radicals in chemical synthesis and in nature. Chem. Soc. Rev. 50, 10857-10894 (2021); e) Arumugam, S. Guo, J. Mbua, N. E. Friscourt, F. Lin, N. Nekongo, E. Boons, G.-J. & Popik, V. V. Selective and reversible photochemical derivatization of cysteine residues in peptides and proteins. Chem. Sci. 5, 1591-1598 (2014).
[23] a) Moore, J. E. & Ward, W. H. Cross-linking of Bovine Plasma Albumin and Wool Keratin. J. Am. Chem. Soc. 78, 2414-2418, (2002); b) Kalia, D., Malekar, P. V. & Parthasarathy, M. Exocyclic Olefinic Maleimides: Synthesis and Application for Stable and Thiol-Selective Bioconjugation. Angew. Chem. Int. Ed. 55, 1432-1435 (2016).
[24] a) Chalker, J. M., Bernardes, G. J., Lin, Y. A. & Davis, B. G. Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem. Asian J. 4, 630-640 (2009); b) Gunnoo, S. B. & Madder, A. Chemical Protein Modification through Cysteine. Chembiochem 17, 529-553 (2016); c) Xu, L., Kuan, S. L. & Weil, T. Contemporary Approaches for Site-Selective Dual Functionalization of Proteins. Angew. Chem. Int. Ed. 60, 13757-13777 (2021); d) Baumann, A. L. et al. Chemically Induced Vinylphosphonothiolate Electrophiles for Thiol-Thiol Bioconjugations. J. Am. Chem. Soc. 142, 9544-9552 (2020).
[25] Sauerland, M. et al. Kinetic assessment of Michael addition reactions of alpha, beta-unsaturated carbonyl compounds to amino acid and protein thiols. Free Radic. Biol. Med. 169, 1-11 (2021).
[26] a) Shiu, H. Y. et al. Electron-deficient alkynes as cleavable reagents for the modification of cysteine-containing peptides in aqueous medium. Chem. Eur. J. 15, 3839-3850 (2009); b) Yu, J., Yang, X., Sun, Y. & Yin, Z. Highly Reactive and Tracelessly Cleavable Cysteine-Specific Modification of Proteins via 4-Substituted Cyclopentenone. Angew. Chem. Int. Ed. 57, 11598-11602 (2018); c) Shen, B. Q. et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotechnol. 30, 184-189 (2012).
[27] Cameron, A. J., Harris, P. W. R. & Brimble, M. A. On-Resin Preparation of Allenamidyl Peptides: A Versatile Chemoselective Conjugation and Intramolecular Cyclisation Tool. Angew Chem Int Ed 59, 18054-18061 (2020).
[28] a) Kasper, M. A. et al. Cysteine-Selective Phosphonamidate Electrophiles for Modular Protein Bioconjugations. Angew. Chem. Int. Ed. 58, 11625-11630 (2019); b) Stieger, C. E., Franz, L., Korlin, F. & Hackenberger, C. P. R. Diethynyl Phosphinates for Cysteine-Selective Protein Labeling and Disulfide Rebridging. Angew. Chem. Int. Ed. 60, 15359-15364 (2021).
[29] DeKorver, K. A. et al. Ynamides: a modern functional group for the new millennium. Chem. Rev. 110, 5064-5106 (2010).
[30] Evano, G., Coste, A. & Jouvin, K. Ynamides: versatile tools in organic synthesis. Angew. Chem. Int. Ed. 49, 2840-2859 (2010).
[31] Koniev, O. & Wagner, A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev. 44, 5495-5551 (2015).
[32] a) Yang, J., Wang, C., Xu, S. & Zhao, J. Ynamide-Mediated Thiopeptide Synthesis. Angew. Chem. Int. Ed. 58, 1382-1386 (2019); b) Hu, L. et al. Ynamides as Racemization-Free Coupling Reagents for Amide and Peptide Synthesis. J. Am. Chem. Soc. 138, 13135-13138 (2016).
[33] Yang, M., Wang, X. W. & Zhao, J. F. Ynamide-Mediated Macrolactonization. ACS Catal. 10, 5230-5235 (2020).
[34] a) Peng, Z., Zhang, Z., Tu, Y., Zeng, X. & Zhao, J. Regio- and Stereo-Selective Intermolecular Hydroamidation of Ynamides: An Approach to (Z)-Ethene-1,2-Diamides. Org. Lett. 20, 5688-5691 (2018); b) Peng, Z., Zhang, Z., Zeng, X., Tu, Y. & Zhao, J. Regio‐ and Stereoselective Hydrophosphorylation of Ynamides: A Facile Approach to (Z)‐β‐Phosphor‐Enamides. Adv. Synth. Catal. 361, 4489-4494 (2019); c) Hentz, A., Retailleau, P., Gandon, V., Cariou, K. & Dodd, R. H. Transition-Metal-Free Tunable Chemoselective N Functionalization of Indoles with Ynamides. Angew. Chem. Int. Ed. 53, 8333-8337 (2014).
[35] Grant-Mackie, E. S., Williams, E. T., Harris, P. W. R. & Brimble, M. A. Aminovinyl Cysteine Containing Peptides: A Unique Motif That Imparts Key Biological Activity. JACS Au 1, 1527-1540 (2021).
[36] Evano, G., Michelet, B. & Zhang, C. The anionic chemistry of ynamides: A review. Comptes Rendus Chimie 20, 648-664 (2017).
[37] a) Sato, A., Yorimitsu, H. & Oshima, K. Thieme Chemistry Journal Awardees - Where are They Now? Regio- and Stereoselective Radical Additions of Thiols to Ynamides. Synlett 2009, 28-31 (2009); b) Sato, A., Yorimitsu, H. & Oshima, K. Radical Additions of Arenethiols to Ynamides for the Selective Synthesis of N-[(Z)-2-(Arylsulfanyl)-1-alkenyl]amides. Bull. Korean Chem. Soc. 31, 570-576 (2010).
[38] Banerjee, B., Litvinov, D. N., Kang, J., Bettale, J. D. & Castle, S. L. Stereoselective additions of thiyl radicals to terminal ynamides. Org. Lett. 12, 2650-2652 (2010).
[39] Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed 40, 2004-2021 (2001).
[40] a) Merrifield, R. B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 85, 2149-2154 (1963); b) Carpino, L. A. & Han, G. Y. 9-Fluorenylmethoxycarbonyl function, a new base-sensitive amino-protecting group. J. Am. Chem. Soc. 92, 5748-5749 (1970); c) Dawson, P. E., Muir, T. W., Clarklewis, I. & Kent, S. B. H. Synthesis of Proteins by Native Chemical Ligation. Science 266, 776-779 (1994); d) Mousa, R., Lansky, S., Shoham, G. & Metanis, N. BPTI folding revisited: switching a disulfide into methylene thioacetal reveals a previously hidden path. Chem. Sci. 9, 4814-4820 (2018).
[41] Ascenzi, P. et al. The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor): a milestone protein. Curr. Protein. Pept. Sci. 4, 231-251 (2003).
[42] Hudis, C. A. Trastuzumab--mechanism of action and use in clinical practice. N. Engl. J. Med. 357, 39-51 (2007).