
Page 1/17

A Rapid Solo Software Development (RSSD) Methodology
based on Agile
Kristo Radion Purba (kr.purba@soton.ac.uk)

University of Southampton Malaysia
Rusyaizila Ramli

University of Southampton Malaysia

Research Article

Keywords: Software development, Methodology, Agile methodology, Solo software development, Software Development Life
Cycle (SDLC)

Posted Date: August 26th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1985368/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

https://doi.org/10.21203/rs.3.rs-1985368/v1
mailto:kr.purba@soton.ac.uk
https://doi.org/10.21203/rs.3.rs-1985368/v1
https://creativecommons.org/licenses/by/4.0/

Page 2/17

Abstract
Existing software development methodologies were mostly focused on team-based development. Solo development presents
its own challenges due to the lack of collaboration and resources. Existing solo development methodologies lacked e�ciency,
modularity, and revisitability, which become the values for the proposed RSSD (Rapid Solo Software Development)
methodology. RSSD adopts the same main phases from the Agile methodology (meet, plan, design, develop, test, and
evaluate), but with different subphases, values, and optimization measures. The e�ciency value focuses on streamlining the
planning process, including code structure planning and optimization strategies. Modularity focuses on dividing the codes into
smaller functions and reducing dependencies. Lastly, revisitability focuses on improving the clarity of the diagrams,
documentation, and code structure for easy revisits. The RSSD methodology was tested on 10 total projects, and respondents
agreed that it was helpful to streamline the development process, with an average score of 4.19 out of 5.0. This study
contributes to making a streamlined yet effective methodology that helps solo software developers to plan a project in a more
structured manner.

1. Introduction
Many methodologies have been developed for software development, but most of them are for team-based development
instead of for solo developers. Solo developers include freelancers, developers in small companies, and students on �nal-year
projects. Many solo developers prefer freelance work due to the �exibility of timing and project cost; however, self-managing
the project structure is challenging (White, 2015). Students on �nal year projects have a similar challenge in doing the project
systematically (Hassani et al., 2018). Furthermore, a survey showed that 60% of software companies started their activities
with a solo developer (Pagotto et al., 2016). Thus, a practical, systematic, and rapid solo software development methodology is
required.

Various solo software development methodologies have been proposed, such as Personal Extreme Programming (XP), Scrum
Solo, and a more recent Secure-SSDM (Moyo & Mnkandla, 2019). However, they lacked important aspects, namely e�ciency,
modularity, and revisitability. There are methodologies for team-based development, such as Agile and Waterfall, but they have
complexities and collaboration elements which are not applicable for solo development.

This paper aims to build the RSSD (Rapid Solo Software Development) methodology, with three main values, i.e., e�cient,
modular, and revisitable. The following research questions were studied, i.e., (Q1) What are the phases, subphases, values, and
optimization measures of the RSSD methodology? (Q2) How does RSSD help solo developers during the development
process? (Q3) What are the challenges faced by the respondents during the development using RSSD?

The rest of the paper is organized as follows; literature review on common software development methodologies, research
methodology, phases and values of RSSD, evaluation, and conclusion.

2. Literature Review
This section discusses the common team-based and solo software development methodologies, including Agile, Waterfall, and
their derivatives.

2.1 Agile Methodology and Its Derivatives

Agile-based Software development methodologies are rapidly expanding (Flora et al., 2014), with many derivations such as XP,
Scrum, Kanban, Lean and Crystal (Kumar et al., 2019). These methodologies were focused on team-based development. Agile
is also well-known for mobile software development due to its iterations and ability to adapt to challenges such as input
technology, usability, user interface design, portability and security (Shaydulin & Sybrandt, 2017).

Extreme programming (XP) allows developers to work closely with customers and works best on short-period projects.
Customers de�ne their initial requirement through an index card and then see the system in progress. The Scrum methodology

Page 3/17

focuses on the empirical processes to allow the team to respond rapidly whenever should there is any change needed (Hron &
Obwegeser, 2022). Scrum also applies transparency, where the changes will be seen by every team member and stakeholders.
However, such transparency increases the burden on the developers.

In Kanban, the team will manage the �ow of work using a visual signal to show the continuous �ow of improvement and
deliveries (Zayat & Senvar, 2020). However, as it relies on visual signals, there is a possibility that team members might
interpret tasks wrongly. Another popular Agile methodology is Lean Development. It allows the team to move any tasks that
they think are not applicable anymore as they go along the project to save time and money (Kišš & Rossi, 2018). However, this
requires experienced team members, and there is a risk involved in removing items. Lastly, the Crystal methodology gives
freedom for developers to develop their preferred process as they go (Chaudhari & Joshi, 2021). It focuses on members'
interaction.

2.2 Waterfall Methodology

The Waterfall methodology consists of linear, non-circular phases, where each phase is taken seriously to avoid issues in the
later phases. It consists of �ve basic phases which are requirement, design, coding, testing and operations (Bogdan-Alexandru
et al., 2019). It assumes that there will be no issues throughout the development thus there is no need to return to previous
phases. This is very unlikely to happen because clients usually change their requirements throughout the development even
though initial agreements were made.

2.3 Solo Development Methodologies

One of the latest methodologies for solo development is Secure Solo Software Development Methodology (Secure-SSDM)
(Moyo & Mnkandla, 2019), which is focused on security and is Agile-based. They also listed existing SSDMs including
Freelance as a Team (FAAT), Personal Extreme Programming (PXP1 and PXP2), Go-Scrum, Scrum solo, DeSoftIn and Initial
Software Development Method (MIDS) Adaptation. Those SSDMs have common phases, namely Planning, Development and
Evaluation (Moyo & Mnkandla, 2019). Personal XP assumes all of the requirements are detailed during the planning and does
not expect them to be changed during the project. Other SSDMs are more �exible in editing the requirements during the
development. Such �exibility can be a problem for solo development due to the lack of resources.

2.4 Comparison of Methodologies

Overall, the waterfall methodology is more strict compared to the Agile-based methodologies. Agile and its derivatives are more
realistic, streamlined, and �exible compared to other methodologies. Team-based methodologies have collaboration elements
which are not applicable for solo projects. There are few Agile methodologies for solo development. Personal XP has a detailed
planning process, and Secure-SSDM includes security aspects. However, existing solo methodologies lacked e�ciency (such
as code optimization and streamlined planning process), modularity (making modular codes), and revisitability (ability to
revisit the codes).

3. Research Methodology
There were four phases of this research, i.e. preparation, data collection, aggregation, and �nalization, as seen in Fig. 1. The
data was collected from 7 (seven) expert solo software developers which are described in Table 1. In total, 10 projects were
developed using RSSD.

Page 4/17

Table 1
Respondents (Developers)

Country Type of Developed Software

D1 Australia Information systems

D2 Indonesia Information systems

D3 Taiwan Mobile games

D4 Malaysia Games

D5 Indonesia Information systems

D6 Netherland Mobile applications

D7 Malaysia Mobile applications

During the preparation phase, the RSSD was designed, and we explained the methodology to professional solo software
developers in an open-ended discussion. In the data collection phase, the developers were asked to use RSSD in their
upcoming projects, and they will record their timelines accordingly. This phase was carried out for 11 months. After that, we
collected the feedback from the developers in the aggregation phase, which was then used to �nalize the RSSD methodology.

4. Phases Of Rssd Methodology
The Rapid Solo Software Development (RSSD) Methodology is summarized in Fig. 2. While it uses the same phases as Agile
(Meet, Plan, Design, Develop, Test, Evaluate), RSSD has different values and subphases. RSSD focuses on the following three
values: E�cient, modular and revisitable. The phases and subphases of RSSD are explained below, while the values are
explained in Section 5.

4.1. Meet Phase
The Meet Phase is the initial meeting between the developer and the stakeholders (or client), and it consists of the following
subphases, i.e., discuss, stickman, and list and decide. Here, the developer should create stickman diagrams (simple drawings)
that illustrate the features requested by the client to con�rm the �nal scope. This is to avoid communication and cultural
barriers (Zarewa, 2019). The developer should then write down the features and con�rm them before the meeting ends (list and
decide subphase).

4.2. Plan and Pre-Evaluation Phase
The Plan Phase starts with re-evaluating (think, visualize, imagine) the features to decide on the feasibility of the project.
Together with that, he/she can do the chunk subphase, which is to create a proposal that consists of the big and small chunks
of the project, and the cost breakdown. The proposal will then be proposed to the stakeholders in the pre-evaluation phase. The
developer can attach a copy of the draft list and diagrams from the initial meeting as an appendix when necessary.

4.3. Design Phase
The design phase consists of diagram and structure subphases. The developer should only draw some diagrams, especially
the global diagram(s) and the important procedures. For example, the diagram can be a class diagram for OOP (Object
Oriented Programming) projects, ERD (Entity Relationship Diagram) if it has a database, and Use Case Diagram for
information systems. Examples of the important procedures include the main form, user input form, enemy AI or player
controller (for a game), etc. In the structure subphase, developers need to create the functions and class declarations, with
some comments on how they intend to use them. The structures should be kept in a separate �le, which serves as
documentation before the bodies are written.

4.4. Develop Phase

Page 5/17

In this phase, the developer can create the code body based on the structure that was made in the previous phase. Developers
can cycle through the subphases when necessary, i.e., code body, integrate, and verify. The integrate subphase is to connect
different functions and classes, where one has to ensure that the output of a function is compatible with the input of another
related function. Since RSSD adopts modular as a value, the functions should be able to be veri�ed (verify subphase)
individually, with as few dependencies as possible.

4.5. Test Phase
The test phase includes test and optimize subphases. Developers should test each of the functions using different test cases,
as bugs usually happen when a function doesn't produce an expected result for certain inputs. Testing a function extensively
using the black box method (using test cases without looking at the internal structure of the unit) is a prefered choice
compared to using mathematical proof which is impractical in many cases (Clermont & Parnas, 2005). In addition, developers
should optimize the codes to ensure the longevity of the program. For example, optimizations of SQL queries (Győrödi et al.,
2021), arrays and loops (Sarma, 2015), have been proven to signi�cantly improve the application's performance as the number
of users grows.

4.6. Evaluate and Maintenance Phase
The Evaluate Phase consists of three subphases, i.e. discuss with stakeholders, demonstrate the software, and collect
feedback, which can happen in multiple meetings. The developer also needs to do the Maintenance phase at the same time to
�x bugs and change features as needed. In these phases, the developer needs to maintain a good relationship with the
stakeholders by setting a suitable threshold of the willingness to do reworks on features, especially for minor changes.
However, major changes should be discussed as they should incur additional costs. As for �xing bugs, the costs should not be
borne by the client. The developer needs to put up around 50–75% of the total costs for maintenance (Koskinen et al., 2003).

5. Values And Optimization Measures Of Rssd Methodology
Cycles during the development process are always inevitable, such as �xing bugs and changing features. Skipping proper
planning can lead to disagreements and more cycles. They can include wrong scope interpretations and con�icting contract
clauses, which in turn cause stringent relationships with stakeholders (Butt et al., 2016). The examples of project changes and
causes in software development are summarized in Table 2. The RSSD methodology, which focuses on being rapid, aims to
minimize these cycles by making sure that each phase of the development is anchored to the three RSSD values; e�cient,
modular, revisitable. In each value, multiple optimization measures can be implemented to further enhance the software
development process.

5.1. E�cient
In the Meet Phase, anchoring the initial agreement on both visuals (stickman diagram) and text (draft list of features) help to
reduce potential disagreements. When writing a proposal in the Plan Phase, developers need to understand the di�culty of the
project, which translates to costs breakdown, by identifying the big and small chunks of the program. Ideally, this has to be
recorded in a formal contract form, or at least a non-erasable written conversation.

The Design Phase includes designing UML diagrams to help developers to develop the software in a systematic way (Hafeez et
al., 2020), and the same goes for the code structure. This means making the declaration of classes and functions before doing
the code body, as much as possible. Developers can do this partially while consecutively doing the Develop Phase because
sometimes it's hard to visualize the whole idea before doing an implementation. Similarly, integrating codes can be done
partially after the code structure and body.

Page 6/17

Table 2
Examples of Project Changes in Software Development

Change Cause Example Direct Impacts Indirect Impacts

Overestimation Development turns out to be much simpler Developer gains time
and money bene�t

It can cause trust issues.
Developers can offer a
compensation.

Underestimation • Development turns out to be too complicated

• The system lags because there are more users
than expected

• Scope was not de�ned clearly. During
evaluation, the stakeholders expect more.

Developer needs to
spend more time, while
the initial budget might
be underestimated.

• Deadline missed

• Requesting for
additional budget is not
recommended unless
there's a clear
justi�cation.

Emergence of
new technology

Developer decides to make X from scratch
because such free library did not exist; it exists
then.

Developer has wasted
the time on
development.

Stakeholders feel that
the development cost
should've been lower.

Unawareness of
technology

Developer does not realize that there's an easier
way to develop X, he/she uses a complicated
one.

Developer has wasted
the time on
development.

Stakeholders feel that
the development cost
should've been lower.

Unwillingness to
adopt new
technology

Developer decides to use an existing technology
that he/she has been using for many years,
despite being aware of the problems of it.

In the long run,
vulnerability or stability
issues can rise.

Not communicating
such issue during the
initial stage can cause
trust issues.

Changes of
features during
development

Stakeholders want to add/remove features due
to new policies (Cáliz et al., 2016) or ideas (Assi
et al., 2021). Ideally, the features have to be
detailed during initial meeting.

Developer spends
more time to adapt the
changes. Additional
cost must be
discussed.

Being �exible as a
developer helps him/her
to gain more trust from
existing and new clients.

Unexpected
events

Hard drive corruptions, stability issues or wrong
calculation results during live testing (Coulon et
al., 2013), laptop got stolen.

• Need to �x the bugs
quickly.

• Need to redo some
works.

Can cause trust issues,
especially when
stakeholders feel like it's
just an excuse.

Solo developers don't typically need a lot of diagrams, and some UML diagrams might overlap in functionality with each other.
A �owchart is also a good option to brie�y sketch out a program (Winnie, 2021), but not very helpful for complicated codes.
Here is the list of UML diagrams, ordered from the most important (Reggio et al., 2014): Sequence, class, use case, state
machine, activity.

In the Test phase, developers should optimize the code as much as possible. Practically, this includes the following
optimizations (but not limited to), i.e., time complexity (loops, recursions, number of instructions), space complexity (number of
variables, arrays, constant folding) (Sarma, 2015), and SQL query optimizations (when applicable). Time complexity
optimization is especially important if the code complexity is N2 or above. Lastly, in the Evaluate Phase, the developer needs to
refer to the original contract when demonstrating the software.

5.2. Modular
The �nal product should be modular, i.e., divided into small functions as much as possible. Skipping careful planning can lead
to messy codes after several updates or revisits, especially when adding and removing features (Hare & Kaplan, 2017).

In the Plan phase, developers can start to think of ways to split the code into small chunks. In the Develop (and Design) phase,
the following aspects have to be taken care of when designing the code structure to ensure modularity (Litzsinger & Riddle,
2002) (Sankaranarayanan & Kulkarni, 2013) (Sierra & Bates, 2014):

1. Reduce complexity: Break down complex problems. Avoid deeply nested and complex logic; code should be separated into
functions.

Page 7/17

2. Increase �exibility: Make a �exible structure, such as using a global variable or database value for elements that need to be
adjusted frequently.
3. Eliminate repetition: Do not repeat codes, such as by grouping codes into functions.
4. Reduce dependency: Make functions less dependent on global variables.
In the Test phase, each function should be tested using multiple test cases to prevent bugs. Each function should be able to be
tested individually as much as possible, without having to preset any variables.

5.3. Revisitable
A software project can typically last for 3–12 months (Aguilar et al., 2014), and even up to 2–3 years for a solo development.
Revisiting the code after months can present a challenge to understanding the code. In the Plan and Pre-Evaluation Phase, the
�nal list of features and budget breakdown have to be made and understandable by both parties, which includes the project
timeline, architectural design, requirement speci�cation, and testing process (Debbiche et al., 2019). Some technical aspects
have to be included, which helps in solving possible disagreements, especially the types of algorithms and tools. Stakeholders
might expect newer algorithms (encryption method, compression algorithm, machine learning or AI method, etc.) or newer tools
(library version, language version, database technology, protocols, API version, etc.).

In the Develop (and Design) phase, codes should be easily revisited by considering the following aspects:

1. Comments Optimization: Add proper code comments to ensure comprehension (Rani et al., 2021). In the early stages of
development, developers typically rush to complete the task, with no time to write proper comments. They can revisit the codes
as early as possible to correct the comments, including documentation comments for languages like Java.
2. Readability Optimization: To ensure that codes are understandable (Holzmann, 2016) and self-explanatory (Lawrie et al.,
2006). Using English language for the identi�er namings and comments is preferable, to easily transfer the code to another
developer or to upload the code to code-sharing platforms.
3. OOP Optimization: Important points for object-oriented programming (OOP) include keeping variable scope as small as
possible, avoiding designing class with no methods, making use of overloading, avoiding long arguments list, using
getters/setters (Sierra & Bates, 2014)
In the Test, Evaluate and Maintenance phases, any logic changes have to be documented in the code comments. For example,
the initial code has a complexity of N2, and this code has been released. The developer then realized that it can be reduced, so
some logic was changed later. The comments on what was changed and when are helpful to identify potential failures in
future test cases. Additionally, a Version Control system with an appropriate interval between commits helps developers to
learn from mistakes. Lastly, in the Evaluate phase, the developer needs to create a checklist based on the initial contract. The
�nal agreement has to be recorded in written form.

6. Evaluation For Rssd Development Phases
The RSSD methodology was tested by the respondents (software developers) in 10 projects. The project timeline is shown in

Table 3. On average, the proportion of each phase of RSSD is shown in Fig. 3. The evaluation and maintenance phase was the
largest part of the project, reaching 42.1% of the total project, while the development phase was the second largest (35.09%).

Page 8/17

Table 3
RSSD Implementation Result on the Software Development Timeline

Case
#

Dev
#

Software
Name

Language Total
Days

Development Duration (% of total days)

Meet
*

Plan
& Pre-
Ev

Design Develop Test Eval. &
Maint.**

C1 D1 Academic
information
system

PHP + JS 194 7.7
(2)

4.6 5.2 35.1 5.7 41.8 (6)

C2 D1 Data
analytics
for
eCommerce

PHP + JS 202 8.9
(3)

5 6.4 30.2 4 45.5 (4)

C3 D2 Clinic
information
system

PHP + JS
(Laravel)

129 5.4(2) 6.2 5.4 34.9 3.9 44.2 (5)

C4 D2 Dental
clinic
system

PHP + JS
(Laravel)

115 8.7
(2)

7 5.2 29.6 5.2 44.3 (4)

C5 D3 Casual
game

Unity C# 130 5.4(2) 6.9 5.4 26.9 9.2 46.2 (3)

C6 D4 Online
poker game

Unity C# 256 5.5
(2)

4.3 2.7 31.3 6.3 50 (10)

C7 D5 Point of
sales
(metal
industry)

PHP + JS 175 0.6(1) 4.6 4.6 38.9 5.1 46.3 (6)

C8 D5 Point of
sales (cafe)

PHP + JS 154 4.5(2) 5.2 5.8 46.8 6.5 31.2 (3)

C9 D6 Health
mobile app

HTML + 
JS
(Cordova)

199 10.6
(5)

6 5.5 40.7 5 32.2 (4)

C10 D7 Attendance
system

Android &
Web

178 9 (3) 4.5 5.6 36.5 5.1 39.3 (7)

 Average 173.2 6.63% 5.43% 5.18% 35.09% 5.6% 42.10%

* Meet phase: Duration (number of meetings). The Meet and Plan phases were sometimes prolonged due to the
stakeholder's availability.

** Evaluation and Maintenance phase: Duration (number of meetings):

The evaluation phase starts from the �rst time the �nal draft was handed over to the stakeholder

The maintenance phase is based on 30 days cut-off period, where if there is no updates from the stakeholders, the (major)
maintenance period is considered over.

In addition, a post-interview was also conducted to measure the success of RSSD. The survey questions are listed in Table 4,
while the result is listed in Table 5. Each question was answered using the Likert scale (1–5). The overall score of the post-
interview was 4.19/5.0, which means that the respondents agreed that RSSD was helpful. The question Po1 scores 4.30/5.0,
which means RSSD helped in streamlining the development process. The results for each phase are discussed below.

Page 9/17

Table 4
Post-Interview Questions (Quantitative)

Dev. Phase Interview Question Scale*

Po1 All RSSD methodology helps in streamlining the development process, while maintaining
the robustness and scalability of the software

1–5

Po2 Meet Drawing sketches and showing them to the stakeholders were useful 1–5

Po3 Meet The initial meeting went smoothly 1–5

Po4 Plan and Pre-
Evaluation

The plan phase went smoothly as all information was collected thoroughly during the
initial meeting

1–5

Po5 Plan and Pre-
Evaluation

Identifying the small and big chunk of codes was useful 1–5

Po6 Design Drawing only several diagrams were useful for better planning 1–5

Po7 Design Making code structures before the development were useful 1–5

Po8 Develop The development went smoothly because there was a careful planning 1–5

Po9 Develop The di�culties during the development can be handled well 1–5

Po10 Test Testing the codes with different test cases was useful to ensure stability 1–5

Po11 Test Optimizing codes, such as minimizing loops and arrays, was useful 1–5

Po12 Evaluate The presentation to the stakeholders went smoothly 1–5

Po13 Evaluate The evaluate phase went smoothly, with minimal reworks needed 1–5

Po14 Maintenance Changes during the maintenance phase can be handled well as there were careful
plannings beforehand

1–5

* Likert Scale 1–5: 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = strongly agree

Table 5. Post-Interview Results

Page 10/17

6.1. Meet Phase
Questions Po2 and Po3 are related to the Meet phase, which produced scores of 4.1 and 4.6 out of 5.0, respectively.
Respondent D7 stated that drawing sketches (Po2) were sometimes not doable when the meeting time is short.

6.2. Plan and Pre-Evaluation Phase
The questions Po4 and Po5 are related to the Plan Phase, which produced scores of 4.2 and 4.0 out of 5.0, respectively. Based
on Po4, the respondents agreed that the Plan phase was smooth. Respondent D7 highlighted that identifying the big and small
chunks during this phase (Po5) is useful. Respondent D4 stated that project C6 was smooth during the initial meeting.
However, there were disagreements about the online system during the Plan phase as there were overlooked aspects during the
meeting. It should've been better planned.

6.3. Design Phase
For the design phase, based on Po6 and Po7, the respondents generally agreed that creating diagrams and code structures
was helpful in the later phases. As stated by D1:

"…For developing information systems, especially, I found it useful to create the code structure before implementing it, because
big projects tend to be messier the longer it goes…" (D1)

Respondents D2 and D3 highlighted that creating diagrams and structure was a bit complicated at �rst, especially for a
medium project for solo developers; however, they were eventually useful:

"…As a solo developer, I don't usually create diagrams. However, making some important diagrams (sequence, in my case)
helped me to plan my app more systematically, which in turn decreases complications in the end…" (D2)

"…The systematic subphases in RSSD really helped me to develop my game more quickly. The initial subphases, such as
creating structure and diagrams look complicated for solo development, but it helped me to focus on the codes…" (D3)

6.4. Develop Phase

Page 11/17

Based on questions Po8 and Po9, respondents generally agreed that the Develop phase was smooth and di�culties can be
handled well. Respondent D4 highlighted that the code structure that was made during the Design Phase was helpful,
especially in di�cult projects:

"…The meeting was smooth, even though I encountered a lot of di�culties during the implementation, especially on the
synchronization processes. During the design phase, I planned by making codes structure as suggested. The structure and the
diagrams serve as guides as the codes grow tremendously…" (D4)

Respondents D5 and D6 also highlighted that the Develop phase was smooth, particularly to develop the software
systematically:

"…During the development, creating the code structure helps during the integration…" (D5)

"…As mainly information systems developers, the detailed subphases of RSSD are very practical. It prevents hassle towards the
end of the project. The project is my master thesis, and RSSD has helped me develop the app in a systematic way…" (D6)

6.5. Test Phase
The respondents generally agreed that the Test Phase was smooth, based on Po10 and Po11. However, the average score for
the Test Phase is the lowest among all the phases, which is 4.0. Some respondents �nd it useful to do code testing and
optimization to prevent mess during the maintenance:

"…The methodology has made me realize the importance of code optimization before the amount of data in the system
becomes much larger. I found an ine�cient loop in my system that causes the student's grade saving process to be 70%
slower. I wish I knew this earlier…" (D1)

"…Testing each method individually helped me to quickly identify wrong loops, excessive array usage, ine�cient SQL queries,
vulnerabilities, etc…" (D7)

"…I also constantly made code optimizations as the number of users in the game grows, especially for the socket system and
queries, which reduced the database and server load signi�cantly…" (D4)

In contrast, respondent D3 stated that code optimization might not be needed for projects that have to be completed quickly,
and respondent D5 prefer not to optimize the code because there were only a few users using the software:

"…As for the code optimization part, I did that for the enemy AI code that slightly reduced the CPU usage. Even though such
optimization might be more critical for information systems or bigger games, as opposed to small games with a quick
development cycle, I think it helps to reduce the complexity of codes, especially for revisits…" (D3)

"…During the test phase, I successfully tested the methods using different test cases. However, for optimization, I only did some
SQL query optimization, because I think the app will still work �ne with just a few concurrent users…" (D5)

6.6. Evaluate and Maintenance Phase
Based on Po12, Po13, and Po14, the Evaluate and Maintenance phases went smoothly with minimal re-works needed due to
the careful planning in the earlier phases. Project C6 was a di�cult project with the longest project duration (256 days) and the
longest Evaluate and Maintenance Phases (50% of the total project). However, RSSD helped to easier project navigation:

"…The evaluate and maintenance phases were still di�cult simply because the app is huge with a lot of users involved, which
produced a lot of varieties. Still, the plans from the earlier phases have helped me to navigate the project…" (D4)

7. Evaluation For Rssd Values And Optimization Measures

Page 12/17

RSSD aims to minimize project cycles by doing optimization measures based on the three RSSD values, as discussed in
Section 5. The testing result for the optimization measures is shown in Fig. 4, separated by each value and each optimization
measure. Overall, the average implementation score is lower than important (4.52 vs. 4.32, respectively). While these measures
are important, sometimes budget and time become the main constraints.

In the Meet phase, both the stickman diagram and draft feature list were mostly implemented, even though the stickman
diagram was considered as not as important as the draft list. This was due to, in some meetings, the developers didn’t have a
large screen to project the diagram and the list. In the Plan and Pre-Evaluation phases, developers generally agreed that the
measures are important and have been implemented, except for item Vq4. The developers argued that for the Plan phase,
listing the big chunks is enough to start the project and estimate the budget.

In the Design phase, Vq7 (UML diagram) fell into the range of 3.0–4.0 for the implementation score, which is very different
from the importance score (4.13). As solo developers, the respondents feel that they can directly start a project without having
any diagrams, even though the RSSD document already mentioned that only some necessary UML diagrams are needed.
Despite so, the average importance of UML diagrams is higher for information systems (project C1, C3, C7, C8, C10) compared
to other types of projects, which is 4.4 vs. 3.67, respectively. Two respondents (projects C4 and C5) answered n.a. for Vq7, and
these two projects were the shortest in duration among others. These facts indicate that UML diagrams are still necessary for
longer projects, especially for information systems.

The importance of making functions structure (Vq8) was also rated as very important, and it was very well implemented.
However, the class structure (Vq9) fell into the range of 3.0–4.0 for implementation even though it was considered very
important. This was because expert developers can start the development without much planning. For Vq9, since most projects
are not OOP-based, six respondents answered n.a.

In the Develop phase, all the optimization measures were considered very important. Interestingly, some time-consuming
measures (Vq12, Vq14, Vq15) fell into the range of 3.0–4.0 for implementation. These measures are important for the
longevity of a project, especially when there will be many changes. However, most projects were limited by time and budget
constraints. Developer D1 also mentioned that these measures, especially to increase �exibility, are useful for adapting
previous projects to a new one.

In the Test phase, the optimization measures are aimed at reducing time and space complexity. All measures (Vq18 to Vq27)
were rated as very important, except for constant folding (Vq23). Compared to other optimization measures, constant folding is
a less popular technique and might not be available on all compilers. The optimization of the number of variables and arrays
(Vq21 and Vq22) was rated the highest among others. SQL query optimization (Vq24), on the other hand, has a high
importance score (4.88) but is slightly lower in implementation score (4.38). According to the respondents, this is because
optimizing queries is trickier compared to optimizing other aspects.

Lastly, in the Evaluation and Maintenance phases, the optimizations measures are rated as very important. However, while
documenting code changes (Vq28) is very important, some developers were reluctant to do it because, by the time they reach
the maintenance phase, they were usually busy with new projects, with not much time to focus on previous projects.

8. Conclusion
Overall, the proposed RSSD methodology was well accepted by the respondents. Compared to Agile, it has different subphases
to cater for the need for rapid solo development. Additionally, RSSD follows the following values: E�cient, modular, and
revisitable. Each value has its own optimization measures. According to the testing results, important optimization measures
include reducing complexity and eliminating repetition during the Develop phase, optimizing variables and arrays in the Test
phase, testing with test cases during both the Develop and Test phases, etc.

The developers agreed that following the whole RSSD process is useful to prevent various future problems. However, there
were constraints, such as (1) Limited time in the initial meeting, which leads to some overlooked aspects; (2) Some projects

Page 13/17

have a limited timeframe, thus creating diagrams and structure during the design phase is challenging; (3) Some developers
decided not to do a thorough code optimization because the project is small or have a limited budget; and (4) Maintenance
phase can be challenging because the developers will have new projects by that time.

In future works, researchers can contribute by enriching the values and the phases in software development. Certain aspects of
the methodology can be categorized, such as different phases for different software types and scopes.

Declarations
CONFLICT OF INTEREST

The authors declared that they have no con�ict of interest.

Author Contributions

All authors were involved in the whole discussion, initiative, and �nal review process. Kristo Radion Purba wrote the main
manuscript text, except for Chapter 2. Rusyaizila Ramli wrote Chapter 2 of the manuscript.

FUNDING ACKNOWLEDGEMENTS

The authors received no �nancial support for the research, authorship, and/or publication of this article.

References
1. Aguilar, J., Sanchez, M., Fernandez-y-Fernandez, C., Rocha, E., Martinez, D., & Figueroa, J. (2014). The size of software

projects developed by Mexican companies. ArXiv Preprint ArXiv:1408.1068.

2. Assi, I., Tailakh, R., & Sayyad, A. (2021). Survey on Software Changes: Reasons and Remedies. International Arab Journal
of Information Technology, 18, 248. https://doi.org/10.34028/iajit/18/2/14

3. Bogdan-Alexandru, A., Andrei-Cosmin, C.-P., Sorin-Catalin, G., & Costin-Anton,, BOIANGIU. (2019). A Study On Using
Waterfall And Agile Methods In Software Project Management. JOURNAL OF INFORMATION SYSTEMS & OPERATIONS
MANAGEMENT .

4. Butt, A., Naaranoja, M., & Savolainen, J. (2016). Project change stakeholder communication. International Journal of
Project Management, 34, 1579–1595. https://doi.org/10.1016/j.ijproman.2016.08.010

5. Cáliz, D., Samaniego, G., & Cáliz, R. (2016). Methodological Proposal of Policies and Procedures for Quality Assurance in
Information Systems for Software Development Companies Based on CMMI. Journal of Software, 11, 230–241.
https://doi.org/10.17706/jsw.11.3.230-241

�. Chaudhari, A. R., & Joshi, S. D. (2021). Study of effect of Agile software development Methodology on Software
Development Process. 2021 Second International Conference on Electronics and Sustainable Communication Systems
(ICESC), 1–4. https://doi.org/10.1109/ICESC51422.2021.9532842

7. Clermont, M., & Parnas, D. (2005). Using information about functions in selecting test cases. Proceedings of the 1st
International Workshop on Advances in Model-Based Testing, A-MOST ’05, 30. https://doi.org/10.1145/1083274.1083276

�. Coulon, T., Barki, H., & Pare, G. (2013). Conceptualizing unexpected events in IT projects. International Conference on
Information Systems (ICIS 2013): Reshaping Society Through Information Systems Design, 1.

9. Debbiche, F., Wrang, M., & Sinkala, K. (2019). Accelerating software delivery in the context of requirements analysis and
breakdown for devops: A multiple-case study.

10. Flora, H., Wang, X., & Chande, S. (2014). Adopting an Agile Approach for the Development of Mobile Applications.
International Journal of Computer Applications, 94, 43–50. https://doi.org/10.5120/16454-6199

11. Győrödi, C., Dumşe-Burescu, D., Gyorodi, R., Zmaranda, D., Livia, B., & Popescu, D. (2021). Performance Impact of
Optimization Methods on MySQL Document-Based and Relational Databases. Applied Sciences, 11, 6794.

Page 14/17

https://doi.org/10.3390/app11156794

12. Hafeez, A., Khuhro, M., Furqan, M., & Husain, I. (2020). Importance and Impact of Class Diagram in Software Development.

13. Hare, E., & Kaplan, A. (2017). Designing modular software: a case study in introductory statistics. Journal of
Computational and Graphical Statistics, 26(3), 493–500.

14. Hassani, H., Kadir, G., Al-Salihi, N., Monnet, W., Ali-Yahiya, T., & Alizadeh, F. (2018). Supervision of Undergraduate Final Year
Projects in Computing: A Case Study. 8, 210. https://doi.org/10.3390/educsci8040210

15. Holzmann, G. (2016). Code Clarity. IEEE Software, 33, 22–25. https://doi.org/10.1109/MS.2016.44

1�. Hron, M., & Obwegeser, N. (2022). Why and how is Scrum being adapted in practice: A systematic review. Journal of
Systems and Software, 183, 111110. https://doi.org/10.1016/J.JSS.2021.111110

17. Kišš, F., & Rossi, B. (2018). Agile to Lean Software Development Transformation: A Systematic Literature Review. 2018
Federated Conference on Computer Science and Information Systems (FedCSIS), 969–973.

1�. Koskinen, J., Lahtonen, H., & Tilus, T. (2003). Software Maintenance Cost Estimation and Modernization Support 6
Approaches for Software Modernization and Its Support.

19. Kumar, R., Maheswary, P., & Malche, T. (2019). Inside Agile Family Software Development Methodologies. INTERNATIONAL
JOURNAL OF COMPUTER SCIENCES AND ENGINEERING.

20. Lawrie, D., Morrell, C., Feild, H., & Binkley, D. (2006). What’s in a Name? A Study of Identi�ers. 14th IEEE International
Conference on Program Comprehension (ICPC’06), 3–12.

21. Litzsinger, M. A., & Riddle, M. A. (2002). A Modular Approach to Portable Programming. SAS Conference Proceedings: SAS
Users Group International 27 (SUGI 27).

22. Moyo, S., & Mnkandla, E. (2019). A Metasynthesis of Solo Software Development Methodologies. 2019 International
Multidisciplinary Information Technology and Engineering Conference (IMITEC), 1–8.
https://doi.org/10.1109/IMITEC45504.2019.9015867

23. Pagotto, T., Fabri, J. A., Lerario, A., & Goncalves, J. (2016). Scrum solo: Software process for individual development. 1–6.
https://doi.org/10.1109/CISTI.2016.7521555

24. Rani, P., Birrer, M., Panichella, S., Ghafari, M., & Nierstrasz, O. (2021). What do developers discuss about code comments?
2021 IEEE 21st International Working Conference on Source Code Analysis and Manipulation (SCAM), 153–164.

25. Reggio, G., Leotta, M., & Ricca, F. (2014). Who knows/uses what of the UML: A personal opinion survey. International
Conference on Model Driven Engineering Languages and Systems, 149–165.

2�. Sankaranarayanan, H., & Kulkarni, P. (2013). Source-to-Source Refactoring and Elimination of Global Variables in C
Programs. Journal of Software Engineering and Applications, 06, 264–273. https://doi.org/10.4236/jsea.2013.65033

27. Sarma, A. (2015). New trends and Challenges in Source Code Optimization. International Journal of Computer
Applications, 131, 975–8887. https://doi.org/10.5120/ijca2015907609

2�. Shaydulin, R., & Sybrandt, J. (2017). To Agile, or not to Agile: A Comparison of Software Development Methodologies.
ArXiv, abs/1704.07469.

29. Sierra, K., & Bates, B. (2014). OCA/OCP Java SE 7 Programmer I & II Study Guide, Exams 1Z0-803 & 1Z0-804. McGraw-Hill
Education Group.

30. White, K. (2015). Freelancing – Are you ready to go solo? Medical Writing, 24, 140–144.
https://doi.org/10.1179/2047480615Z.000000000309

31. Winnie, D. (2021). Flowcharting. In Essential Java for AP CompSci: From Programming to Computer Science (pp. 23–27).
Apress. https://doi.org/10.1007/978-1-4842-6183-5_7

32. Zarewa, G. (2019). Barriers to Effective Stakeholder Management in the Delivery of Multifarious Infrastructure Projects
(MIPs). Journal of Engineering, Project, and Production Management, 9, 85–96. https://doi.org/10.2478/jeppm-2019-0010

33. Zayat, W., & Senvar, O. (2020). Framework Study for Agile Software Development Via Scrum and Kanban. International
Journal of Innovation and Technology Management, 17(04), 2030002. https://doi.org/10.1142/S0219877020300025

Page 15/17

Figures

Figure 1

Research Methodology

Page 16/17

Figure 2

Rapid Solo Software Development (RSSD) Methodology

Figure 3

Average Proportion of Each Phase of RSSD

Page 17/17

Figure 4

Evaluation for RSSD Values and Optimization Measures. The questions were answered for each project. For each question, the
developer should answer whether it is not applicable (shown as n.a., and the number shows the count of it), how important it is
in the project (shown as Likert scale 1-5; 1=not important, 2=less important, 3=neutral, 4=important, 5=very important), and
how much it is implemented in the project (shown as Likert scale 1-5; 1=not implemented, 2=less implemented,
3=implemented, 4=well implemented, 5=very well implemented).

