Parkinson’s disease (PD) medication treatment planning is generally based on subjective data through in-office, physicianpatient interactions. The Personal KinetiGraphTM (PKG) has shown promise in enabling objective, continuous remote health monitoring for Parkinson’s patients. In this proof-of-concept study, we propose to use objective sensor data from the PKG and apply machine learning to subtype patients based on levodopa regimens and response. We apply k-means clustering to a dataset of with-in-subject Parkinson’s medication changes—clinically assessed by the PKG and Hoehn & Yahr (H&Y) staging. A random forest classification model was then used to predict patients’ cluster allocation based on their respective PKG data and demographic information. Clinically relevant clusters were developed based on longitudinal dopaminergic regimens—partitioned by levodopa dose, administration frequency, and total levodopa equivalent daily dose—with the PKG increasing cluster granularity compared to the H&Y staging. A random forest classifier was able to accurately classify subjects of the two most demographically similar clusters with an accuracy of 87:9 ±1:3