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Abstract
Background: As a new variety of Jatropha, the female to male flower ratio and yield of Jatropha
nigroviensrugosus are higher than the common J. curcas. Using pre-transcriptome data, the full-length
gene sequence, subcellular function localization, and verification of the transgenic function were
obtained in order to understand the specific functions of differentially expressed genes (DEGs).

Results: Results revealed that the open reading frame (ORF) of J. nigroviensrugosus CYCD3;1
(JnCYCD3;1) was 414 bp long, encoding 137 amino acids (aa). Compared to J. curcas, the presence of
intron retention led to early termination of the coding frame. JnCYCD3;1 had the highest expression in
new leaves, which was 68.42 times root expression, followed by inflorescence buds. The JnMYC2 ORF
was 2025 bp, encoding 674 aa. JnMYC2 had the highest expression levels in inflorescence buds.
JnCYCD3;1 functioned in the nucleus, while JnMYC2 was distributed in both the nucleus and cytoplasm
and may possess transmembrane membrane behavior. Bimolecular fluorescence complementation
(BIFC) experiments indicated that JnMYC2 interacted with JnCYCD3;1. JnCYCD3;1 transgenic tobacco
considerably advanced the reproductive cycle and may promote flower formation and transformation.

Conclusions:The related experiments obtained new CYCD3;1 transcript, verified that CYCD3;1 is related to
flower bud differentiation, proved the interaction between hormones-related genes. The study provides a
new research direction for gene function of CYCD3;1.

Background
Jatropha nigroviensrugosus CV Yang is a natural mutant of Jatropha curcas L that was discovered by
Yang et al. [1] through field investigations. Compared to J. curcas L, J. nigroviensrugosus has more
female flowers, a greater proportion of female to male flowers, and a higher seed yield [2]. Several
previous studies have been conducted on how to adjust the proportion of male to female flowers and
increase overall seed yield. Most studies focus on the flowering process of J. curcas [3–5], before and
after hormone treatment [6–7]. However, preliminary research data are lacking on the differences between
cultivars in the expression of flower buds. In a previous study, the MYC2, CYCD3, and DELLA genes were
found to be up-regulated during the formation of J. nigroviensrugosus inflorescence buds, and these
genes may be involved in male flower primordial abortion and the determination of female flowers [8]. In
order to investigate the regulatory mechanism of transition from monoecious to gynoecious plants, a
comparative transcriptome analysis between gynoecious and monoecious inflorescences was
conducted. Six homologous genes, including knotted1-like homeobox gene 6 (KNAT6) and MYC2, may be
candidate genes for sex differentiation [9]. During the flower bud stage in Rhododendron, transcripts of
MYC2, TIR1, CYCD3, COL-1, and EIN3 peak [10]. Additionally, up-regulation of CYCD3 is thought to be
associated with increased inflorescence meristems of J. curcas [11].

CYCD3;1 is an unstable protein (half-life, 7 min) that is involved in cell cycle regulation. As a plant
hormone signal, it changes in-cell cycle regulator expression and has an effect on the development of
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leaves and other organs [12]. Cytokinins can increase the rate of cell division by inducing CYCD3
expression [13]. Overexpression of CYCD3;1 can replace the cytokinins required to induce callus in
Arabidopsis leaves; on cytokinin-free medium, the number of tissues formed by callus was 5-times
greater than the control [14]. Moreover, CYCD3;1 overexpressing Arabidopsis leaves significantly
increased smaller cells and cell division replaced cell expansion as the primary mechanism for leaf
growth [15].

MYC2 belongs to the bHLH gene family and is a central component of the JA signaling pathway. The
MYC2 transcription factor (TF) plays a regulatory role by forming the COI1/JAZS/MYC2 complex. JAZ
then binds to MYC2 and inhibits transcription at lower concentrations of JA, endogenous JA-Ile
concentrations increase during environmental or developmental stimulation, the JAZ protein is degraded
by the 26S proteasome, COI1 binds to JA-Ile and recruits the JAZ transcriptional repressor, and MYC2’s
activity is thereby restored, which then binds to the JA-reactive element (G-box) and initiates transcription
[16]. Given the important role of MYC2, it has been proposed as the primary mediator of JA signaling and
crosstalk along with abscisic acid, ethylene, and optical signaling pathways [17]. The myc2 mutant has a
similar flowering time as wild-type Arabidopsis, while the triple mutant of myc2/3/4 exhibits an early
flowering phenotype, and MYC2 is considered a negative regulator of the FT gene [18]. As the core
regulator of JA, MYC2 may play an important role in multi-hormone crosstalk.

The question remains, however, as to why MYC2 and CYCD3;1 are up-regulated during flower
differentiation in J. nigroviensrugosus. Is there an interaction between the two genes? The sequence
cloning and expression analysis of differentially expressed genes (DEGs) are helpful for understanding
the function of these genes and provide preliminary data on the underlying mechanism of flowering in J.
nigroviensrugosus. This study focused on the cloning of MYC2 and CYCD3;1 gene expression and the
gene expression of different tissues. Subcellular functional localization and bimolecular fluorescence
complementation (BIFC) experiments were conducted in order to identify the location where JnCYCD3;1
functions and discovers complex proteins. The findings of this study will provide a basic resource for
future flowering regulation and flower and fruit management.

Results

Expression correlation analysis
Results of the correlation analysis revealed that the expression of MYC2, CYCD3, and DELLA was
positively correlated with different parts of J. nigroviensrugosus. CYCD3 expression was negatively
correlated with JAZ (Fig. 1A). MYC2 and CYCD3 expression were positively correlated. MYC2
(gene11878) exhibited higher transcript expression levels in the inflorescence buds of cluster1 (Fig. 1B),
while DELLA (gene13701) and CYCD3 (gene38) were in cluster3 and exhibited higher transcript
expression levels in new leaves, followed by inflorescence buds.

Sequence structure analysis
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The JnCYCD3;1 sequence was obtained by cloning, and the ORF finder predicted to obtain 534 bp. The
predicted analysis revealed that the JnCYCD3;1 protein structure has a Cyclin_N conserved domain at
positions 292–513. NCBI blastp alignment revealed that JnCYCD3;1 and J. curcas CYCD3
(XM_012210210.2) had 95% sequence coverage identity compared to its genomic sequence
(NW_012124049.1) and XM_012210210.2. JnCYCD3;1 had an intron retention, resulting in the early
termination of its coding frame (Fig. 2). The JnMYC2 sequence was also obtained by cloning. The
JnMYC2 ORF was 2025 bp long, encoding 674 amino acids (aa), the protein molecular weight was
73,960.83, and the PI was 5.42. The predictive analysis revealed that JnMYC2 has a bHLH-MYC_N
domain at positions 69–249, a helix-loop-helix domain at 496–547, and an SMC_N super family domain
at 455–572.

Expression analysis during flowering
The quantitative expression level of fluorescence indicated that JnCYCD3;1 was expressed in all parts of
the plant (Fig. 3). The highest expression levels were observed in new leaves, which were 68.42 times
greater than root expression, followed by inflorescence buds; expression levels were the lowest during the
pollen formation period. JnMYC2 exhibited the highest expression levels in parts of the inflorescence
buds, which was 2.6 times greater than root expression. There was no difference between the expression
of new leaves and female or male flowers (Fig. 4).

Subcellular function localization
The C-terminal fusion GFP expression vector, pBWA(V)HS-JnCYCD3;1-GFP, was transformed into
Arabidopsis protoplasts and observed by laser confocal microscopy (Fig. 5). Green fluorescence of
35S::JnCYCD3;1 fused to GFP was observed in the nucleus. The green fluorescence was bright and
coincided with the position of the nucleus Mark; thus, JnCYCD3;1 was determined to be located in the
nucleus.

The C-terminal fusion GFP expression vector, pBWA(V)HS-JnMYC2-GFP, was transformed into
Arabidopsis protoplasts and observed by laser confocal microscopy (Fig. 6). Green fluorescence of
35S::JnMYC2 fused with GFP was not solely present in the nucleus, showing polymerization and
dispersion. JnMYC2 was distributed in both the nucleus and cytoplasm. Thus, it is speculated that
JnMYC2 may possess transmembrane membrane behavior.

BIFC experiment
The transcript expression levels of MYC2, CYCD3, and DELLA were positively correlated (Fig. 1). JnMYC2
was distributed in the nucleus and cytoplasm, while JnCYCD3;1 was distributed only in the nucleus,
indicating that JnMYC2 and JnCYCD3;1 could possibly interact. The results of the BIFC experiments
revealed that the pairing of pBWD(LB)1C-YN(JnMYC2)-CCDB and pBWD(LA)1C-Yc(JnCYCD3;1)-CCDB
exhibited fluorescence; thus, JnMYC2 and JnCYCD3;1 appear to interactively exist (Fig. 7).
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Genetically modified function verification
After transgenic tobacco was differentiated and rooted (Fig. 8), it was transferred to a substrate for
culturing. During the transfer process, the root medium was cleaned and placed indoors for refining. By
conducting PCR (detection primers were hygromycin primers and JnCYCD3; 1 specific primers) (Table 1),
transgenic tobacco was obtained for further phenotypic and functional identification.
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Table 1
List of related primers.

Primer name Primer sequence (5'-3') Function

Actin_F CTCCTCTCAACCCCAAAGCCAA Reference gene

Actin_R CACCAGAATCCAGCACGATACCA

CYCD3-F ACACCACAAACCCTGACCAA Fluorescent quantitative
expression

CYCD3-R ACGAGCAACAGAGAGGGAAG

MYC2_F GCCTTCTTCTGGTGTGGTGA

MYC2_R ATTGCATCGCCAAGGAGTGA

JnCYCD3;1_F ATGGAACACATCAACACCACAAACC mRNA clone

JnCYCD3;1_R GACCCATCTCCATATCCTTCCT

JnMYC2_F ATGACGGACTATCGAATAGCATC

JnMYC2_R TCAGGTGTCACCAACTTTGGTTGAT

pBWA(V)HS-
JnCYCD3;1(+)

cagtGGTCTCacaacatggaacacatcaacaccac Subcellular function
localization

pBWA(V)HS-
JnCYCD3;1(-)

cgatGGTCTCaaaagaaaaaatgacaataac

GFP(+) cagtGGTCTCacttttgtatcgtgaagggcgagga

GFP(-) cagtGGTCTCatacatcagtagagctcgtccatgc

pBWA(V)HS-
JnMYC2(+)

cagtGAAGACaacaacatgacggactatcgaatagc

pBWA(V)HS-JnMYC2(-) cgatGAAGACaaggtgtcaccaactttggttgat

GFP(+) cagtGAAGACaacacctgtatcgtgaagggcgagga

GFP(-) cagtGAAGACaatacatcagtagagctcgtccatgc

JnMYC2-vn(+) cagtGAAGACaacaagatgacggactatcgaatagc BIFC

JnMYC2-vn(-) cagtGAAGACaaggcgggtgtcaccaactttggttg

JnCYCD3;1-vc(+) cagtGGTCTCacgctatggaacacatcaacaccac

JnCYCD3;1-vc(-) cagtGGTCTCaaggcaaagaaaaaatgacaataac

JnCYCD3;1(+) ATGTTGCCGTACGATTCCGA Transgenic molecular
identification

JnCYCD3;1(-) AAGAAAAAATGACAATAAC

hyg(280)+ ACGGTGTCGTCCATCACAGTTTGCC
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Primer name Primer sequence (5'-3') Function

hyg(280)- TTCCGGAAGTGCTTGACATTGGGGA

Compared to wild-type tobacco, JnCYCD3;1 transgenic tobacco exhibited obvious flower formation
during the seedling stage (Fig. 9). Flowers were in a fixed position, and some were formed in the stem
(Fig. 9A and B), while others were formed at the top. Near the genital bud (Fig. 9C), flowers formed 5
stamen and 1 pistil (Fig. 9D–F), and the transgenic tobacco flowered considerably earlier than the wild-
type plants (Fig. 9G). Subsequent observations revealed that transgenic tobacco seedlings had flowering
formations at each attachment of the leaves (Fig. 9H and I), indicating that JnCYCD3;1 can considerably
advance the reproductive cycle and promote flower formation and transformation.

Discussion
In previous studies, the PD-NINJA complex was found to control the initial shape of the leaf and inhibit
CYCD3, thereby controlling leaf flatness in angiosperms [18]. Boucheron et al. [19] transferred CYCD3 to
tobacco, which resulted in increased leaf growth rates and changes in the structure of the shoot apical
meristem. Dewitte et al. [15] found that Arabidopsis leaves transfected with CYCD3 curled toward the
medial axis. The A. thaliana AtCYCD3;1 gene was also found to wrinkle and curl leaves in transgenic
tobacco [20]. CYCD3 overexpression caused delayed morphological differences in SAM and leaf
senescence [14]. Additionally, CYCD3 was also found to be expressed at its highest levels during the
flower bud stage in Rhododendron [10]. Taihangia unisexual male flowers downregulated the expression
of CYCA1 and CYCD3, which resulted in the disturbance of the cell cycle in gynoecium primordia and
subsequently determined the arrest of pistil development [21]. Currently, CYCD3 is the main focus of
herbaceous plant investigations, which are mostly limited to overexpression. However, CYCD3 against
woody plants is rarely reported, and the expression of inhibition after gene silencing is hardly described.
The cyclin aa of woody plants varies widely, and existing studies have not been able to clarify the
function of woody plant CYCD3. The transcription factor AINTEGUMENTA (ANT) and the D-type cyclin
CYCD3;1 are expressed in the vascular cambium of Arabidopsis roots, respond to cytokinins and are both
required for proper root secondary thickening, AIL1 can directly interact with the promoters of CYCD3:2
and CYCD6:1, AIL1 presumably participates in the regulation of cell division in meristematic tissues at the
shoot apex [22–23]. However, there are few reports on the regulation of flowering by CYCD3 in woody
plants, and the expression of inhibition after gene silencing is hardly recorded, and the expression of
inhibition after gene silencing is hardly described. The cyclin aa of woody plants varies widely, and
existing studies have not been able to clarify the function of woody plant CYCD3.

Typical animal or plant cyclins contain a conserved region called the cyclin core, which is ~ 250 aa and
consists of 2 domains: Cyclin_N and Cyclin_C. Cyclins have certain structural differences, but they all
have highly conserved cyclin cassette sequences. Cyclin_N is required for the binding and activation of
cyclin-dependent kinase (CDK), while Cyclin_C is less conserved and may not be present in some cyclins
[24–27]. Arabidopsis C-, D-, H-, T-, L-, and P-type cyclins have a Cyclin_N domain, but no Cyclin_C domain;
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thus, the Cyclin_C domain may not be critical for its function [28]. Intron retention is the most common
alternative splicing form in plants [29]. In JnCYCD3;1, retention of the first intron leads to its coding frame
in advance. However, the termination or loss of the Cyclin_C domain, whose structural differences may
lead to changes in traits, requires further investigation. The expression pattern of CYCD3 in different
tissues of 2 varieties of J. curcas was essentially the same, and both were the highest expressed in young
leaves, followed by inflorescence buds during the differentiation process. Transcript abundance of
CYCD3;1 increased more than 5-fold during the early stages of L1 flower development (the first 10
inflorescences of each tomato plant retaining the fruit of the second inflorescence) and is possibly
involved in cell cycle regulation in response to mitosis signals [30]. Brassica napus BnCYCD3-1-like-2-1
and BnCYCD3-1-like-2-2 are different splicing bodies of the same gene and have the highest expression
levels in leaves. Additionally, the variable cleavage of CYCD3:1 could possibly help rapeseed cope with
environmental stress by coordinating the transcript levels of different splices [31].

Subcellular functional localization indicated that JnCYCD3;1 functions in the nucleus. BIFC experiments
indicated that JnMYC2 interacts with JnCYCD3;1. The transgenic seedlings demonstrated that
JnCYCD3;1 can considerably advance the reproductive cycle, which may promote flower formation and
transformation. However, the cause of this phenomenon, as well as research on transcription,
metabolism, and late phenotypes of wild-type plants, requires further investigation. Because tobacco is a
hermaphroditic plant, if JnCYCD3;1 leads to the proliferation of female flower primordia, it is necessary to
construct a related overexpression/RNAi vector and introduce it to medicinal J. curcas/nigroviensrugosus
in future observations.

Conclusion
In this study, comparative transcriptomics data, using ene cloning, relative fluorescence quantification,
and subcellular functional localization, were used to explore the reproductive advantages of J.
nigroviensrugosus. The JnCYCD3;1 ORF was found to be 414 bp, encoding 137 aa. Compared to J.
curcas, the presence of intron retention led to early termination of the coding frame. RT-qPCR indicated
that JnCYCD3;1 exhibited the highest expression levels in new leaves, which was 68.42 times greater
than root expression, followed by inflorescence buds. JnCYCD3;1 was also found to play a role in the
nucleus. BIFC experiments demonstrated that JnMYC2 interacts with JnCYCD3;1. JnCYCD3; 1 transgenic
tobacco considerably advanced the reproductive cycle and may promote flowering formation and
transformation.

Methods

Materials
Experimental materials were obtained from 8-year-old J. nigroviensrugosus found in the Qiaoma Forest
Farm, Ceheng County, Guizhou Province, China. None permissions were necessary to collect such
samples, the specie was confirmed to be J. nigroviensrugosus by the Professor Xu Gang and Fan Fuhua
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(Institute for Forest Resources & Environment of Guizhou, Guizhou University), the voucher specimen is
accessible at the Institute for Forest Resources & Environment of Guizhou, Guizhou University
(accessions No. JN-001-1). This plant is not an endangered plant. Related experimental research,
including the collection of plant materials, complies with institutional, national or international guidelines.
Mature leaves of J. nigroviensrugosus were used as cloning materials. Fluorescent quantitative materials
were collected as follows: (1) Jn_r: roots (main roots); (2) Jn_s:stems; (3) Jn_l: young leaves (red-red
neonatal leaf buds at the top of shoots) during the flowering stage; (4) Jn_p: inflorescence bud formation
stage (buds at the top of the branches of sex differentiation forming protrusions at the inflorescence axis,
diameter < 0.3 cm); (5) Jn_fd: floret differentiation stage (apical flower bud differentiation forming the
third main inflorescence); (6) Jn_m: unopened male flowers (bracts and petals of male flowers had not
unfolded, yellow anthers were slightly visible to the naked eye after a longitudinal cut); (7) Jn_f: unopened
female flowers (bracts and petals of female flowers had not unfolded, white ovules were slightly visible to
the naked eye after slitting); (8) Jn_pp: female flower ovary developmental stage (female flower apex
differentiates from stigma 2–4 and the top splits); and (9) Jn_pf: male flower pollen formation period
(male flower bracts and petals bend outward, confluent filament formed a hollow channel, anther was
separated).

Each sample had 3 biological replicates. Samples were wrapped in foil and quickly placed in liquid
nitrogen, then kept in an ultra-low temperature freezer at -80 °C for future analyses. Subcellular functional
localization experimental materials were obtained from Arabidopsis protoplasts. Nicotiana benthamiana
was used as transgenic material.

Experimental methods

Correlation analysis of transcript expression
Focusing on the differential gene set in the plant hormone signaling pathway of the buds of 2 varieties,
expression correlations and trends in different parts of the plant were analyzed [8]. A correlation circle
map was created using the R circlize package [32]. The clustering of expression trends was performed
using Python DP_GP [33].

RNA extraction and cDNA synthesis
Extraction of total RNA from the samples was conducted using an EASYSPIN plus plant RNA extraction
kit following the manufacturer’s instructions. After RNA extraction, the quality was verified. First-strand
synthesis of the cDNA was conducted using an EasyScript First-Strand cDNA Synthesis SuperMix kit
following the manufacturer’s instructions.

Cloning the gene of interest
Specific primers were designed using the J. curcas genome (Table 1). The PCR reaction system consisted
of 10.5 µL ddH2O, 12.5 µL PCR mix, 1.0 µL cDNA template, and 1.0 µL of upstream and downstream
primers each (25.0 µL total). The PCR product was observed by gel electrophoresis. The product was
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recovered, ligated into the PGEM-T vector, transformed into E. coli competent cells, and subjected to blue-
white screening and colony PCR verification. Positive clones were sent for sequencing.

RT-qPCR verification
Real-time (RT)-quantitative (q) PCR amplification was conducted using an SYBR Premix Ex TaqTM II kit.
The reaction system consisted of 10.0 µL 2 × SYBR Premix Ex TaqTM II kit mix, 0.8 µL qRT-F and qRT-R
each, 1.0 µL cDNA, and 7.4 µL ddH2O (20.0 µL total). The amplification procedure was as follows: pre-
denaturation at 95 °C for 30 s; 40 cycles at 95 °C for 15 s, 58 °C for 15 s, and 72 °C for 15 s. Each sample
was repeated 3 times. The actin gene was used as the reference gene [34].

Subcellular functional localization and BIFC experiments
According to JnCYCD3;1, due to JnMYC2’s gene sequence and vector characteristics, the pBWA(V)HS-
ccdb-GLosgfp vector was selected. The vector was constructed by the golden gate technique [35]. The
vector was ligated, and 5–10 µL of the ligation product was transformed into Escherichia coli. The plate
was transformed with a transformant (carnamycin) resistant plate and cultured at 37 °C for 12 h for
plaque PCR identification. The correct plasmid was preserved by sequencing. The constructed vector
plasmid was transferred into Agrobacterium, and the cells were suspended, collected, resuspended, and
transformed into Arabidopsis protoplasts. According to the preliminary positioning result, Mark was
selected for co-localization.

GM functional verification
Mature tobacco embryos were used to induce sterile tobacco seedlings, and the Agrobacterium
suspension was subsequently prepared. Tobacco leaves were cut into ~ 5 × 5 mm pieces and placed in
Agrobacterium suspension (0D600 = ~ 0.4–0.6) for full contact and infection. After gently shaking for
8 min, surface bacterial liquid was washed with sterilized water. Leaves were placed face up on tobacco
differentiation medium and cultured in a dark incubator at 28 °C for 2 d. Co-cultured leaves were
transferred to pre-screening medium for subsequent screening. After ~ 7 d of recovery, leaves on the pre-
screen were transferred to differentiation medium supplemented with antibiotics. After seedlings had
grown, they were cut and inoculated into new rooting medium for ~ 10 d for subsequent molecular
identification. Plant DNA was extracted, and the JnCYCD3;1 gene-specific primer was used to amplify and
detect whether tobacco seedling contained the gene by conventional PCR.

Abbreviations
aa
amino acid
BIFC
bimolecular fluorescence complementation
cDNA
Complementary DNA
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DEGs
differentially expressed genes
KNAT6
knotted1-like homeobox gene 6
J. nigroviensrugosus
K. Jatropha nigroviensrugosus
J. curcas
Jatropha curcas
ORF
open reading frame
RT-qPCR
Real-time (RT)-quantitative (q) PCR
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Figures

Figure 1

Correlation and trend expression of differentially expressed genes.
A: Gene expression correlation
diagram; B: Gene expression trend diagram.
Note: A: red represents positive correlation, green represents
negative correlation, the deeper the color, the greater the correlation coefficient; B:Trends of expression of
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hormone-related differentially expressed genes in inflorescence bud (sex differentiation term) between of
J. curcas and J. nigroviensrugosus; JCw_f: unopened female flower; JCw_l: new born young leaves;
JCw_m: unopened male flower; JCw_p: Inflorescence bud

Figure 2

Schematic diagram of JnCYCD3;1.

Figure 3
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Expression level of JnCYCD3 in different tissue sites of J. nigroviensrugosus.
Jn_m: unopened male
flower; Jn_f: unopened female flower; Jn_fd: florescence differentiation period; Jn_p: inflorescence bud;
Jn_l: new born young leaves; Jn_pf: male flower pollen formation period; Jn_pp: female flower ovary
developmental stage; Jn_r: main root; Jn_s: stem formation layer.
Error bars represent the standard
deviation (SD).

Figure 4

Expression level of JnMYC2 in different tissue sites of J. nigroviensrugosus.
Jn_m: unopened male
flower; Jn_f: unopened female flower; Jn_fd: florescence differentiation period; Jn_p: inflorescence bud;
Jn_l: new born young leaves; Jn_pf: male flower pollen formation period; Jn_pp: female flower ovary
developmental stage; Jn_r: main root; Jn_s: stem formation layer.
Error bars represent the SD.
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Figure 5

Subcellular localization results of JnCYCD3;1 in Arabidopsis protoplasts.
A: The target protein
fluorescence channel, chloroplast channel, bright field, and superimposed map (from left to right); B:
Empty vector control of the fluorescence channel, chloroplast channel, bright field, and superimposed
map (from left to right); C The target protein fluorescence channel, marker fluorescence channel,
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chloroplast channel, bright field, and superimposed map (from left to right); D: The empty vector control
of the fluorescence channel, chloroplast channel, bright field, and superimposed map (from left to right).

Figure 6

Subcellular localization results of JnMYC2 in Arabidopsis protoplasts.
A–C: The target protein
fluorescence channel, chloroplast channel, bright field, and superimposed map (from left to right); D:
Empty vector control of the fluorescence channel, chloroplast channel, bright field, and superimposed
map (from left to right)
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Figure 7

JnMYC2 and JnCYCD3;1 BIFC experiments.
A–D: the target protein fluorescence channel, bright field, and
overlay (from left to right).
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Figure 8

Identification of genetically modified tobacco.
A: Transgenic JnCYCD3;1 tobacco differentiation stage; B:
transgenic JnCYCD3;1 tobacco rooting stage; C: Identification of transgenic molecules (note: lane1 is the
negative control; lane2 is the positive plasmid control; lanes 3 and 4 are transgenic vaccine samples).
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Figure 9

Phenotype of genetically modified tobacco.
A–C: JnCYCD3;1 transgenic tobacco seedling phenotype (red
arrow indicates the location of the flower organ); D–F: floral organ structure; G: 30 d JnCYCD3;1
transgenic tobacco seedlings and wild-type tobacco (control); H: main of view of 60 d JnCYCD3;1
transgenic tobacco; I: top view of 60 d JnCYCD3;1 transgenic (note: stamen, stigma (sti), anther (an),
petal (pe)).
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