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Abstract This paper proposes a cost-effectiveness metric for association rule
mining suitable for software defect prediction where conditions of defective
modules are characterized as association rules. Given a certain amount of
test effort (or the number of test cases), the proposed metric is the expected
number of defects to be discovered in modules that meet an association rule.
Since the amount test effort is limited in general and full testing of all mod-
ules is ineffective, the proposed metric is useful to focus on the most cost
effective set of modules to be tested with limited test effort. The proposed
metric is defined based on the exponential Software Reliability Growth Model
(SRGM) extended with the module size parameter, assuming that a larger
module require more effort to discover defects. To evaluate the effectiveness
of the proposed metric, association rules were extracted and prioritized based
on the proposed metric using data sets of four open source software projects.
The LOC-based cumulative-lift chart, which is often used to evaluate the cost
effectiveness of defect prediction, shows that the proposed metric can focus on
the rules that can discover more defects than the conventional association rule
metrics, confidence and odds ratio.
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1 Introduction

Association rule mining is used in a variety of fields including defect prediction
in software engineering [5] [11] [12] [17] [19]. For example, the association rule
such as ”fan-outs > 5 & max nest level > 3 ⇒ buggy” is extracted to predict
and understand defective modules [19]. This example indicates that a software
module is likely to contain a defect if its fan-out is greater than five and its
maximum nest level is greater than three. By extracting such rules from past
software development data and applying them to ongoing projects, we can
identify modules that need to assign more effort in software testing [5] [11].

One of the challenges of association rule mining is that so many association
rules are generally extracted that it is difficult to know which rules to focus
on [11]. It has been common practice to prioritize extracted rules using rule
interestingness metrics such as support, confidence, and lift to solve this prob-
lem. Moreover, a combined metric of these metrics has also been proposed [19].

However, although conventional interestingness measures can help selecting
rules, practical usefulness of the selected rules is still unclear especially in
defect prediction. In the defect prediction senario, after selecting a rule, a set
of modules that satisfy the rule’s condition is obtained; then, these modules
are tested and defect discovery is expected. Here, in case that the modules did
not contain defects or they are too large to discover defects by testing, then
the rule is not useful or even harmful. From the practical point of view, there
is a need for a rule interestingness metric that takes into account of the ease
of defect discovery with respect to the availabe test effort.

Therefore, we propose a cost-effectiveness metric of association rules. In
this proposal, the ”cost” is the amount of test effort (or the number of test
cases) that can be assgined, and the ”effectiveness” is the expected number of
defects found when testing all modules that match the antecedent (conditional
part) of an association rule. This proposal enables practitioners to select rules
that are expected to find many defects, depending on the available test effort.

To evaluate our proposed metric, we conduct an experiment to extract
and prioritize association rules using four open source software projects. We
employ the LOC (Lines Of Code) -based cumulative lift chart, which is often
used to evaluate the cost effectiveness of defect prediction, to compare the
usefulness of the proposed metric with conventional interestingness metrics.

The rest of this paper is organized as follows: In Section 2, we explain
association rule mining and their application to defect prediction. In Section
3, we propose a cost-effectieness metric of association rules. Section 4 describes
the experimental evaluation of the proposed metric. Section 5 shows the results
of the experiment. Section 6 discusses the threats to validity of the experiment.
Finnaly, Section 7 shows the summary of this paper and future issues.
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2 Related Works

2.1 Association Rule Mining

Association rule mining is a data analysis method proposed by Agrawal et
al. [1]. This method can exhaustively extract co-occurring events from data. In
the defect prediction scenario, let M = {M1,M2, . . . ,Mn} be a set of software
modules, let C = {C1, C2, . . . , Cm} be a set of module metrics, and let the
(categorial) value of Ck of a module mi be vki. Then, an association rule to
find defects is expressed in the form of (A ⇒ B), where A (antecedent) is one
or more concatenation of (Ck = vki), and B (consequent) is “buggy” (i.e. a
module contains a defect). The concatenation in the antecedent is denoted like
(Cx = vxi)&(Cy = vyj) (x ̸= y) using the notation “&”.

The support and the confidence are well-known rule interestingness metrics
for selecting or prioritizing association rules as follows:

support(A, B) =
the number of modules that satisfy both A and B

the number of all modules

confidence(A, B) =
the number of modules that satisfy both A and B

the number of modules that satisfy A

The higher support means that A and B more often co-occur, which means
that the rule is very often satisfied. The confidence indicates the strength of the
association between A and B. Since association rule mining generally extracts
many rules, it is common practice to set lower bounds on both support and
confidence to reduce the obtained rule set.

2.2 Association Rule Mining in Defect Prediction

There have been attempts to use association rules for defect prediction and
characterization in the past. Song et al. [17] applied association rule mining to
bug-related data measured during software development (e.g., causes of bugs,
effort for fixing bugs, etc.) to identify the types of bugs that are likely to co-
occur and the conditions where bug fixing effort increases. Morisaki et al. [12]
extended the association rule to allow a quantitative variable in the consequent
of rules, and identified the conditions where the average (or the standard de-
viation) of bug fixing effort becomes large. Kamei et al. [5] combined logistic
regression analysis and association rule mining to predict defect-prone mod-
ules. In contrast to these studies, this paper does not focus on prediction
accuracy of the rules, but rather on the cost-effectiveness of the rules.

On the other hand, Watanabe et al. [19] proposed a method for prioritizing
rules based on the estimated accuracy of defect prediction by cross-validation.
Monden et al. [11] proposed a rule reduction technique that can eliminate com-
plex (long) and/or similar rules without sacrificing the prediction performance.



4 Kinari Nishiura et al.

Although these studies help eliminate unnecessary rules and obtain rules with
high prediction accuracy, they cannot select rules in terms of cost-effectiveness.

3 Proposed Cost-Effectiveness Metric

In this section, we propose a new metric to prioritize association rules consid-
ering their cost-effectiveness in defect prediction.

We assume that the number of test cases t is given, and an association rule
r is extracted in the form of “A ⇒ buggy”. Then, the proposed metric Cp(r, t)
denotes the expected number of discoverable defects when t is assigned to a
set of modules M that matches the antecedent A of the given rule r.

To compute Cp(r, t), we follow an apporach to assess the cost-effectiveness
of defect prediction proposed in [9], which employs the exponential Software
Reliability Growth Model (SRGM) extended with a module size parameter.
Assuming that test effort ti is assigned to a (single) module mi, the expected
number of defects found Ĥ(ti) is defined as follows:

Ĥ(ti) = a[1− exp(−bti)] (1)

b =
b0
S

b : Probability of finding a defect per test case
a : The number of defects in module mi, before testing
S : Size of a module mi

ti : The number of test cases
b0 : Constant

In this model, the probability of detecting a defect is inversely proportional
to the module size. Given a certain number of test cases ti, the ease of finding
a defect becomes the same if the module size is the same. Similarly, a double
size module requires double test cases to find the same number of defects [9].
Regarding the constant b0, this paper uses b0 = 6.932. This value is obtained

by b0 = −( S
ti
) · log(1 − Ĥ(ti)

a
) from equation (1), assuming unit testing and

assigning 100 test cases per 1,000 lines of code (i.e., S
ti

= 10), which can detect

50% of all bugs (i.e., Ĥ(ti)
a

= 0.5). The reason for assuming that 100 test cases
are assigned per 1,000 lines is based on the following fact; (1) a large japanese
software development company uses ”100 cases per 1,000 lines” as the company
standard for unit testing [14], (2) a medium-sized japanese software company
assigned 99.31 test cases per 1,000 lines on average [10]. Therefore, we believe
“100 test cases per 1,000 lines of code” is not the unrealistic value. In addition,
the assumption that 50% of all bugs can be found under this condition is based
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on the case that an average of 50% of bugs in the unit test cases is detected in
some japanese software company [10]. Although b0 can vary among different
projects, this paper uses b0 = 6.932 as one of the realistic values.

Since the set of modules M can contain two or more modules, we need
to define how to assign test cases t to each modules in M . We assume that
the number of test cases for each of the modules m1, . . . ,mn is assigned in
proportion to the size (lines of code) of the module. That is, let the size of
module mi is si, then the number of test cases ti to be assigned to module mi

is ti = t · si/
∑n

j=1 sj . Then, Cp(r, t) is defined as follows

Cp(r, t) =

n∑

1

Ĥ(ti)

Our metric enables us to prioritize association rules based on their cost-
effectiveness by calculating Cp(r, t) for all extracted rules.

4 Evaluation

4.1 Dataset

As shown in Table 1, this experiment employed defect data sets from the four
open source software projects: (1)Mylyn, (2) NetBeans, (3) Apache Ant and (4)
jEdit. These data sets are also used in past defect prediction/characterization
studies [11] [19]. Details of Mylyn and NetBeans data sets are described in [18].
Details of Apache Ant and jEdit data sets are described in [3] [4]. One module
in this experiment refers to one source file.

In additon, Table 2 and 3 summarizes the metrics used in this experiment.
These are reduced metrics set from original data sets to avoid extracting too
many association rules. We removed one of the metrics that have high cor-
relation coefficient with other metric. Also, metrics with very low correlation
coefficients with the number of defects were removed. The resultant metrics
sets are the same as those used in a previous work on defect prediction using
association rule mining [11].

Table 1 Summary of defect data sets.

Project Version No. of metrics No. of modules % of defective modules

Product Process

Mylyn 3.0 8 2 1,502 40.34
NetBeans 5.0 8 2 9,332 3.41
Apache Ant 1.7 11 0 745 22.28
jEdit 4.1 11 0 312 25.32



6 Kinari Nishiura et al.

Table 2 Used metrics in Mylyn and NetBeans data sets

Name Explaination

SLOC Source lines of code
NBD Nested block depth
PAR The number of parameters
VG Cyclomatic complexity
CBO Coupling between object classes
NOF The number of fields
NOM The number of methods
RFC Response for a class
CHURN Added lines + deleted lines
BFC The number of times a file was involved in a bug-fix transaction

Table 3 Used metrics in Apache Ant and jEdit data sets

Name Explaination

WMC Weighted methods per class
CBO Coupling between classes
RFC Response for a class
LCOM Lack of cohesion in methods
LCOM3 Lack of cohesion in methods
NPM The number of public methods
DAM Data access metric
MOA Measure of aggregation
CAM Cohesion among methods of class
CBM Coupling between methods
MaxCC Maximum value of cyclomatic complexity of methods in a class

4.2 Extraction of Association Rules

Before extracting association rules, all metrics in data sets are discretized into
three categories, high, medium and low, using equal frequency binning. Then,
we extracted a set of association rules of the form ”A ⇒ buggy” from each
dataset using the association rule mining tool NEEDLE [13]. For extracting
rules, the following conditions were used: minimum transactiosn = 5, minimum
confidence = 0.6, and maximum rule length = 3. These conditions follow the
past study that uses association rule mining in defect prediction [19]. Table 4
shows overview of the rules extracted from four data sets. As shown in Table,
more than 800 rules were extracted from each project.

4.3 Rule Prioritization and Its Evaluation

We used three values of t for the number of test cases assuming unit testing;
100, 500, and 1,000. For each t, we calculated the proposed cost-effectiveness
metric Cp(r, t) for each rule based on Section 3. Rules were prioritized in the
decreasing order of Cp(r, t). For comparison with the proposed metric, the
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Table 4 Summary of the extracted association rules.

Project No. of rules Average confidence Average support

Mylyn 1,712 0.795 0.0579
NetBeans 882 0.731 0.0554
Apache Ant 1,534 0.801 0.0575
jEdit 971 0.770 0.0705

prioritization of rules by it confidence and odds ratio is also employed. The
confidence is one of the most commonly used rule interestingness measure,
while Le and Lo [7] showed that the odds ratio outperformed many other rule
interestingness measures.

Based on the prioritization, we use LOC-based cumulative-lift charts for
evaluating the usefulness of the prioritization. The LOC-based cumulative lift
chart is a commonly-used graph to evaluate the cost-effectiveness of defect
prediction results [2] [8] [15]. In this chart, the x-axis considered as the requred
test effort and the y-axis is the maximum number of discoverable defects by
the assigned test effort [9] The x-axis denotes the cumulative lines of code
(LOC) of selected modules, and the y-axis is the cumulative number of defects
in the selected modules. In this experiment, the rules from rank 1st to n-th are
used to select modules. For each selected rule, a set of modules that satisfy the
rule’s antecedent are selected. Here, each module is selected only once, that is,
if a module is already selected by a previously-selected rule, then that module
is not selected anymore. Then, to draw a LOC-based cumulative lift chart, we
calculate total lines of code of the selected modules as well as the maximum
number of bugs that can be found in the selected modules. The prioritization
is considered good if the cumulative LOC of the selected modules is small and
the maximum number of bugs found is large.

5 Result and Discussion

5.1 Rule prioritization result

Figure 5, 10 and 15 shows the LOC-based cumulative lift chart for t = 100,
t = 1, 000 and t = 10, 000 respectively. Each Figure includes prioritization
results using three rule interestingness metrics: proposed metric, confidence
and odds ratio. In Figure 5 (a) Mylyn, the curve of the proposed metric comes
above that of the confidence and odds ratio in low sum of SLOC area. This
indicates that the proposed metric can effectively identify the reduced set
of buggy modules that can be tested in low cost. Similarly, in Figure 5 (b)
NetBeans and (c) Apache Ant, the curve of the proposed metric is above that
of other two metrics in both low and high LOC areas. In Figure 5 (c) jEdit,
the curve of the proposed metric is similar to that of other metrics, but in
middle and high LOC areas, the curve of the proposed metric is above that of
other metrics.
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Fig. 1 (a) Mylyn
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Fig. 2 (b) NetBeans
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Fig. 3 (c) Apache Ant
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Fig. 4 (d) jEdit

Fig. 5 Cummulative lift chart for t=100

For cases of larger test cases (t = 1, 000 and t = 10, 000), as shown in
Figure 10, graphs of t = 1, 000 is very similar to that of t = 100. On the other
hand, as shown in Figure 10, graphs of t = 10, 000 is quite different from that
of t = 100 and t = 1, 000. Especially, for (a) Mylyn, (c) Apache Ant and (d)
jEdit, the proposed metric is not effective to identify buggy modules. These
results indicate that setting the appropriate number of test cases t is important
in using the proposed metric Cp(r, t), as it is dependent of t. For example, if
we wants to test the top 10,000 lines of code that are the most cost-effective
ones to conduct unit testing under the unit testing standard of 100 test cases
per 1 KSLOC, then we can calculate the proposal metric with t = 1, 000.

Overall, the result shows the effectiveness of the proposed metric when an
appropriate t value is given.
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Fig. 6 (a) Mylyn
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Fig. 7 (b) NetBeans
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Fig. 8 (c) Apache Ant

0 50000 100000 150000

0
5

0
1

0
0

1
5

0
2

0
0

0 50000 100000 150000

0
5

0
1

0
0

1
5

0
2

0
0

0 50000 100000 150000

0
5

0
1

0
0

1
5

0
2

0
0

Sum of SLOC

S
u

m
 o

f 
d

e
fe

c
ts

Proposed

Confidence

Odds Ratio

Fig. 9 (d) jEdit

Fig. 10 Cummulative lift chart for t = 1, 000

5.2 Analysis of prioritized rules

In this subsection, we target Mylyn data set, and analyze in detail the top five
prioritized rules for each metric. The top five rules prioritized by the proposed
metric (t = 1000), confidence and odds ratio are summarized in Table 5, Table
6 and Table 7. In the tables, NOM, CHURN, BFC, etc. represent metrics of
modules described in Table 2.

In Table 5 (proposed metric), “NOM=Middle” (which means that the num-
ber of methods is between 3 and 7) appeared in all five rules, and “CHURN=High”
(which means that added lines + deleted lines ≥ 63) appeared in four rules.
It is natural that the rules include the condition CHURN=High because mod-
ules with large changes are buggier than that with small changes in general.
Among such buggy modules, rules target that are easy to test (that is, not too
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Fig. 11 (a) Mylyn
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Fig. 12 (b) NetBeans
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Fig. 13 (c) Apache Ant
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Fig. 14 (d) jEdit

Fig. 15 Cummulative lift chart for t = 10, 000

large) by the condition NOM=Middle. On the other hand, as shown in Table
6, when using confidence to prioritize rules, the rank 1 rule has the condition
“SLOC=large” (which means that lines of code ≥ 74). Since large modules
require more effort to test, it can be said that using the confidence is not al-
ways cost-effective to select modules in software testing. Similarly, in Table 7,
when using odds ratio to prioritize rules, the rank 2 rule also has the condition
SLOC=large. These results suggest that the proposed metric is able to identify
cost-effective modules for detecting bugs in testing, while conventional metrics
often identify not cost-effective modules.
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Table 5 Top 5 Rules of Mylyn (proposed metric)

Rank Rule Confidence Support Cp(r, t)

1 NOM=Middle & CHURN=High ⇒ buggy 0.942 0.118 56.7
2 NOM=Middle & CHURN=High & BFC=High ⇒ buggy 0.942 0.117 56.7
3 NOM=Middle & CHURN=High & SLOC=High ⇒ buggy 0.981 0.043 56.4
4 NOM=Middle & CBO=High & BFC=High ⇒ buggy 0.939 0.100 56.2
5 NOM=Middle & CHURN=High & CBO=High ⇒ buggy 0.989 0.070 15.0

Table 6 Top 5 Rules for Mylyn (confidence)

Rank Rule Confidence Support Cp(r, t)

1 SLOC=High & VG=Middle & CHURN=High ⇒ buggy 1.000 0.033 48.1
2 PAR=High & NOM=Middle & CBO=High ⇒ buggy 1.000 0.033 35.4
3 PAR=High & NOM=Middle & CHURN=High ⇒ buggy 1.000 0.033 39.0
4 NBD=Middle & PAR=High & VG=Middle ⇒ buggy 1.000 0.024 23.6
5 SLOC=Middle & PAR=Low & CHURN=High ⇒ buggy 1.000 0.023 13.0

Table 7 Top 5 Rules for Mylyn (odds ratio)

Rank Rule Confidence Support Cp(r, t)

1 BFC=High ⇒ buggy 0.729 0.689 36.8
2 SLOC=High & VG=Middle & CHURN=High ⇒ buggy 1.000 0.033 48.1
3 PAR=High & NOM=Middle & CBO=High ⇒ buggy 1.000 0.033 35.4
4 PAR=High & NOM=Middle & CHURN=High ⇒ buggy 1.000 0.033 39.0
5 NBD=Middle & PAR=High & VG=Middle ⇒ buggy 1.000 0.024 23.6

6 Threats to Validity

We discuss threats to validity in the experiments in this paper. First, this paper
only includes experiments on four open source projects. In order to improve
the generality of the results, it will be a challenge to conduct experiments with
industry projects in the future.

In addition, in this paper, the bugs found in the open source projects are
assumed to be latent bugs in the experiments, but there are likely to be more
undiscovered latent bugs in the projects. Therefore, even modules that are
determined to be bug-free may contain undiscovered latent bugs, which is a
common issue in bug prediction studies.

In this paper we employ the exponential SRGM to compute the probability
of detecting a defect. Since there are many other SRGMs proposed in literature
[6] [16], it is our future work to consider employing other SRGMs.
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7 Conclusion

This paper proposes a metric to select cost-effective association rules for defect
prediction. In the experiment, we used data sets from four open source projects
to extract rules and prioritize them based on the proposed metric. Futhermore,
we compared the proposed metric with the conventional metrics, confidence
and odds ratio. The results showed that the proposed metric is more effective
in selecting cost-effective rules for bug detection than the conventional metrics.
Based on the experimental result, we believe that the proposed metric is helpful
for selecting rules that are likely to detect more bugs when limited test effort
is available.

Future issues include conducting experiments using more data and con-
ducting evaluations at actual testing situation.
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