Fast, precise, and reliable assessment of sufficient Heparin evoked anticoagulation and its reversal by Protamine are essential for safely conducting surgical procedures requiring cardiopulmonary bypass. Insufficient anticoagulation can result in life-threatening events like clot formation within the bypass circuit or oxygenator and other thrombotic or thromboembolic complications.11 Furthermore, residual heparin following Protamine administration and a Protamine overdose may be associated with increased bleeding.7,8
Although the ACT is considered the clinical standard for intraoperative POC monitoring of heparin-evoked anticoagulation, wide variability exists regarding institutional target values considered safe to conduct CPB, usually ranging from 300-600 seconds.9 This broad range in target ACTs is, at least in part, considered to have resulted from the use of different measurement devices and also of various assays, using either Celite or Kaolin as the contact activator of coagulation.10 In fact, ACT assays have not been standardized yet and probably never will, hampering comparability.
Data on the reproducibility of ACT tests using simultaneous measurements on identical device types and comparison of results between different device types are sparse. Most studies were conducted using older ACT devices 11,12, were limited to older, Celite-activated assays, 13 or compared Celite and Kaolin activated assays. 14 In addition, prior studies included patients undergoing cardiac catheterization 5,15,16 with lower target ACTs or used normal control plasma instead of the patients’ blood. 17 Accordingly, our study was designed to include real-life data only from patients undergoing cardiac surgery where errors in ACT POC measurements can evoke grave sequelae. Furthermore, we decided to use two of the most recent versions of the respective devices and only Kaolin activated assays.
A major issue encountered was that the results obtained when using different analyzers, albeit tending into the same direction following Heparin injection or after Protamine infusion, frequently provided markedly different results. Of note, some of these results obtained from the different devices would have affected in an important way decision making, such as clearance for CPB to commence or to administer or not additional Heparin. This issue has also been addressed in a study 5 comparing single but in parallel measurements using the Kaolin activated i-STAT and the Medtronic ACT plus assays in 121 simultaneously drawn blood samples (59 from the cardiac catheterization laboratory and 62 during surgery, respectively). In this latter study, the authors demonstrated an high correlation (r=0.94) between these two devices and only minor inconsistencies with respect to predefined target values. Specifically, only 2 measurements were considered incongruent but had had no impact on clinical decision making. In contrast, our study by comparing duplicate measurements on both types of analyzers, unmasked marked differences between both identical and different device types. While differences between results of parallel i-STAT-assays were of no clinical importance, a critical deviation of results was often found in parallel Hemochron assays. Specifically, one analyzer had provided an ACT of ≥1,005 s while the other had already stopped at an ACT reading of 384 seconds. Obviously, while the former reading suggests a more than sufficient degree of heparin anticoagulation, the latter clearly is far below our target value of 430 seconds for CPB and, if true, would have put the patient at risk for clot formation within the CPB circuit. In fact, it is not far fetched that some of the reported CPB cases of intracardiac and oxygenator thrombosis 18-21 may be due to wrong ACT measurements.
The worst concordance was found for parallel i-STAT- and Hemochron assays. Here, disconcordant results were found in 28 parallel measurements with a difference between 120 and as much as 630 seconds. While the ACT was ≥ 1,0005s with the Hemochron, the parallel ACT measured with the iSTAT was below 430s in 7 cases and even below 400s in 5 cases. While it is impossible to recognize which assay reflected the true anticoagulant status, the lower results found with the i-STAT, if true, would have put the patient at serious risk for a potentially life threatening event while the Hemochron analysis had suggested adequate anticoagulation on several occassions. In general, it seems that the i-STAT device tends to yield lower ACT values and thus its use might result in higher heparin dosages to keep ACT values above the lower target values. However, this was not investigated in our study.
Observations regarding the comparability of another Hemochron device and the i-STAT have been made in another study conducted during the same time period as ours. This latter study contrasted ACT values obtained with the Hemochron junior in a Kaolin-activated assay with the i-STAT Celite ACT cartridge.14 Although Celite and Kaolin-activated assays are difficult to compare, 17,18 these authors made a similar observation with respect to the discrepancy of values, reading an ACT exceeding the upper measuring range on one device while the other read an ACT less than 1,000 seconds. These discordant were more frequent (n=86) with two parallel Hemochron junior devices than with two parallel i-STAT assays (n=53). In agreement with our observations, differences between two parallel i-STAT ACT ranged between 2 and 438 s and thus can be considered of lesser clinical relevance, since all meassurements were in the safe range for CPB. In contrast, differences in parallel Hemochron Junior assays ranged between 3 and 727 s underlining the safety concerns raised by our study. Unfortunately, these authors do not provide the absolute incidence of results below a safe target value, but from their published data we can identify at least 3 such events. Accordingly, the incidence of events where one Hemochron analyzer suggests an ACT >1,005 s while a parallel assay on another device of the same type suggests inadequate anticoagulation (i.e., below 400 s), found both with the Hemochron Junior in the latter study and with the Hemochron Signature Elite in our study is alarming and questions the practice of commencing cardiopulmonary-bypass as soon as an ACT value has exceeded 400s and the reading is ‘still running’. Rather, ACT values greater than 1,005 s with any Hemochron analyzer should trigger prompt re-testing and caution in commencing CPB instead of feeling safe. The relatively great number of ACT values ≥ 1,000 seconds on the i-STAT device in the latter study, 14 as compared to our observations, might be explained since in Celite activated assays the coefficient of variation increases with higher heparin concentrations potentially resulting in more ACT values exceeding the upper measurement range.17 However, since parallel testing on another i-STAT device provided adequate less divergent results, and always within the safe range for CPB, available data suggest that ACT values ≥1,000 s obtained with an i-STAT device can be considered safe.
Although with both devices there were discrepancies in the ACT values performed prior to heparin injection and post protamine infusion, these differences are of lesser clinical importance. Nevertheless, clinicians should take into account these potential differences prior to deciding on giving additional Protamine since Protamine is an antagonist against of unfractionated heparins but possesses various anticoagulatory and anti-platelet properties.13,14 Despite these well known effects of protamine, several institutions still use a heparin-to-protamine antagonization scheme of 1:1, although current guidelines 9 and studies 7,19 suggest a ratio of less than 1:1 to minimize bleeding.
One potential reason for the better overall performance of the i-STAT device might be its measurement technique. The i-STAT cartridge contains a defined amount of a thrombin-specific substrate which is cleaved by the thrombin generated following activation of coagulation by kaolin. One of the cleavage products is positively charged and can be detected amperometrically. Accordingly, the ACT value from this assay likely depends mainly on thrombin generation and reflects the bloods overall thrombin generation capacity and thus also the presence or absence of anticoagulants directly or indirectly impacting on thrombin generation. In contrast, ACT measurements by Hemochron assays are based on optical detection of movement of a defined amount of coagulating blood. Accordingly, in addition to thrombin generation, measurements may also depend on the mechanical properties of the forming clot, which might be affected by various factors such as fibrinogen concentration, platelet count, hematocrit, and the presence or absence of colloids in the patients` blood.
One might speculate whether difficulties or peculiarities during sample handling might have impacted on ACT measurement depending on the device type. However, both the Hemochron and the i-STAT device are very easy to use, were handled by well trained staff only, with no handling problems encountered. Furthermore, both devices have build-in mechanisms to detect over and underfilling. Accordingly, effects on measurements by sample volume or handling can be excluded.