1 Fokkens, M., Schrader, T. & Klärner, F. G. A molecular tweezer for lysine and arginine. J. Am. Chem. Soc. 127, 14415-14421 (2005).
2 Attar, A. & Bitan, G. Disrupting self-assembly and toxicity of amyloidogenic protein oligomers by " molecular tweezers" – from the test tube to animal models. Curr. Pharm. Des. 20, 2469-2483 (2014).
3 Schrader, T., Bitan, G. & Klärner, F. G. Molecular tweezers for lysine and arginine - powerful inhibitors of pathologic protein aggregation. Chem Commun (Camb) 52, 11318-11334, doi:10.1039/c6cc04640a (2016).
4 Hadrovic, I., Rebmann, P., Klärner, F. G., Bitan, G. & Schrader, T. Molecular Lysine Tweezers Counteract Aberrant Protein Aggregation. Front Chem 7, 657, doi:10.3389/fchem.2019.00657 (2019).
5 Sinha, S. et al. Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins. J. Am. Chem. Soc. 133, 16958-16969, doi:10.1021/ja206279b (2011).
6 Lump, E. et al. A molecular tweezer antagonizes seminal amyloids and HIV infection. eLife 4, doi:10.7554/eLife.05397 (2015).
7 Röcker, A. E. et al. The molecular tweezer CLR01 inhibits Ebola and Zika virus infection. Antiviral Res 152, 26-35, doi:10.1016/j.antiviral.2018.02.003 (2018).
8 Weil, T. et al. Supramolecular Mechanism of Viral Envelope Disruption by Molecular Tweezers. J. Am. Chem. Soc., doi:10.1021/jacs.0c06400 (2020).
9 Attar, A., Chan, W. T., Klärner, F. G., Schrader, T. & Bitan, G. Safety and pharmacological characterization of the molecular tweezer CLR01 – a broad-spectrum inhibitor of amyloid proteins' toxicity. BMC Pharmacol. Toxicol. 15, 23, doi:10.1186/2050-6511-15-23 (2014).
10 Bier, D. et al. Molecular tweezers modulate 14-3-3 protein-protein interactions. Nat. Chem. 5, 234-239, doi:10.1038/nchem.1570 (2013).
11 Prabhudesai, S. et al. A novel "molecular tweezer" inhibitor of α-synuclein neurotoxicity in vitro and in vivo. Neurotherapeutics 9, 464-476, doi:10.1007/s13311-012-0105-1 (2012).
12 Lopes, D. H. et al. Molecular tweezers inhibit islet amyloid polypeptide assembly and toxicity by a new mechanism. ACS Chem. Biol. 10, 1555-1569, doi:10.1021/acschembio.5b00146 (2015).
13 Ferreira, N. et al. Molecular tweezers targeting transthyretin amyloidosis. Neurotherapeutics 11, 450-461, doi:10.1007/s13311-013-0256-8 (2014).
14 Bengoa-Vergniory, N. et al. CLR01 protects dopaminergic neurons in vitro and in mouse models of Parkinson’s disease. Nat Commun 11, 4885, doi:10.1038/s41467-020-18689-x (2020).
15 Attar, A. et al. Protection of primary neurons and mouse brain from Alzheimer's pathology by molecular tweezers. Brain 135, 3735-3748, doi:10.1093/brain/aws289 (2012).
16 Despres, C. et al. Major differences between the self-assembly and seeding behavior of heparin-induced- and in-vitro-phosphorylated tau and their modulation by potential inhibitors. ACS Chem. Biol., doi:10.1021/acschembio.9b00325 (2019).
17 Malik, R. et al. Using Molecular Tweezers to Remodel Abnormal Protein Self-Assembly and Inhibit the Toxicity of Amyloidogenic Proteins. Methods Mol. Biol. 1777, 369-386, doi:10.1007/978-1-4939-7811-3_24 (2018).
18 Di, J. et al. The molecular tweezer CLR01 improves behavioral deficits and reduces tau pathology in P301S-tau transgenic mice. Alzheimers Res Ther 13, 6, doi:10.1186/s13195-020-00743-x (2021).
19 Lulla, A. et al. Neurotoxicity of the Parkinson Disease-Associated Pesticide Ziram Is Synuclein-Dependent in Zebrafish Embryos. Environ Health Perspect 124, 1766-1775, doi:10.1289/EHP141 (2016).
20 Richter, F. et al. A Molecular Tweezer Ameliorates Motor Deficits in Mice Overexpressing α-Synuclein. Neurotherapeutics 14, 1107-1119, doi:10.1007/s13311-017-0544-9 (2017).
21 Fogerson, S. M. et al. Reducing synuclein accumulation improves neuronal survival after spinal cord injury. Exp Neurol 278, 105-115, doi:10.1016/j.expneurol.2016.02.004 (2016).
22 Xu, N. et al. Inhibition of Mutant αB Crystallin-Induced Protein Aggregation by a Molecular Tweezer. J Am Heart Assoc 6, e006182, doi:10.1161/JAHA.117.006182 (2017).
23 Malik, R. et al. The molecular tweezer CLR01 inhibits aberrant superoxide dismutase 1 (SOD1) self-assembly in vitro and in the G93A-SOD1 mouse model of ALS. J. Biol. Chem. 294, 3501-3513, doi:10.1074/jbc.RA118.005940 (2019).
24 Herrera-Vaquero, M. et al. The molecular tweezer CLR01 reduces aggregated, pathologic, and seeding-competent α-synuclein in experimental multiple system atrophy. Biochim Biophys Acta Mol Basis Dis, doi:10.1016/j.bbadis.2019.07.007 (2019).
25 Monaco, A. et al. The Amyloid Inhibitor CLR01 Relieves Autophagy and Ameliorates Neuropathology in a Severe Lysosomal Storage Disease. Mol. Ther. 28, 1167-1176, doi:10.1016/j.ymthe.2020.02.005 (2020).
26 Dutt, S. et al. Molecular tweezers with varying anions: a comparative study. J. Org. Chem. 78, 6721-6734, doi:10.1021/jo4009673 (2013).
27 Persaud, A., Cormerais, Y., Pouyssegur, J. & Rotin, D. Dynamin inhibitors block activation of mTORC1 by amino acids independently of dynamin. J Cell Sci 131, doi:10.1242/jcs.211755 (2018).
28 Park, R. J. et al. Dynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors. J Cell Sci 126, 5305-5312, doi:10.1242/jcs.138578 (2013).
29 Preta, G., Lotti, V., Cronin, J. G. & Sheldon, I. M. Protective role of the dynamin inhibitor Dynasore against the cholesterol-dependent cytolysin of Trueperella pyogenes. FASEB J 29, 1516-1528, doi:10.1096/fj.14-265207 (2015).
30 Menzies, F. M. et al. Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Neuron 93, 1015-1034, doi:10.1016/j.neuron.2017.01.022 (2017).
31 Holmes, B. B. et al. Proteopathic tau seeding predicts tauopathy in vivo. Proc. Natl. Acad. Sci. USA. 111, E4376-4385, doi:10.1073/pnas.1411649111 (2014).
32 Hu, Y. B., Dammer, E. B., Ren, R. J. & Wang, G. The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl Neurodegener 4, 18, doi:10.1186/s40035-015-0041-1 (2015).
33 Maulucci, G. et al. Quantitative analysis of autophagic flux by confocal pH-imaging of autophagic intermediates. Autophagy 11, 1905-1916, doi:10.1080/15548627.2015.1084455 (2015).
34 de Duve, C. et al. Commentary. Lysosomotropic agents. Biochem Pharmacol 23, 2495-2531, doi:10.1016/0006-2952(74)90174-9 (1974).
35 Münch, C., O'Brien, J. & Bertolotti, A. Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells. Proc. Natl. Acad. Sci. USA. 108, 3548-3553, doi:10.1073/pnas.1017275108 (2011).
36 Jiang, P., Gan, M., Yen, S. H., McLean, P. J. & Dickson, D. W. Impaired endo-lysosomal membrane integrity accelerates the seeding progression of alpha-synuclein aggregates. Sci. Rep. 7, 7690, doi:10.1038/s41598-017-08149-w (2017).
37 Guo, J. L. & Lee, V. M. Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J. Biol. Chem. 286, 15317-15331, doi:10.1074/jbc.M110.209296 (2011).
38 Chen, J. J. et al. Compromised function of the ESCRT pathway promotes endolysosomal escape of tau seeds and propagation of tau aggregation. J. Biol. Chem., doi:10.1074/jbc.RA119.009432 (2019).
39 Ciechanover, A. & Kwon, Y. T. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 47, e147, doi:10.1038/emm.2014.117 (2015).
40 Oddo, S. et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39, 409-421, doi:S0896627303004343 [pii] (2003).
41 Collin, L. et al. Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer's disease. Brain 137, 2834-2846, doi:10.1093/brain/awu213 (2014).
42 Monaco, A. & Fraldi, A. Protein Aggregation and Dysfunction of Autophagy-Lysosomal Pathway: A Vicious Cycle in Lysosomal Storage Diseases. Front Mol Neurosci 13, 37, doi:10.3389/fnmol.2020.00037 (2020).
43 Talbiersky, P., Bastkowski, F., Klärner, F. G. & Schrader, T. Molecular clip and tweezer introduce new mechanisms of enzyme inhibition. J. Am. Chem. Soc. 130, 9824-9828, doi:Doi 10.1021/Ja801441j (2008).
44 Herrera-Vaquero, M. et al. The molecular tweezer CLR01 reduces aggregated, pathologic, and seeding-competent alpha-synuclein in experimental multiple system atrophy. Biochim Biophys Acta Mol Basis Dis 1865, 165513, doi:10.1016/j.bbadis.2019.07.007 (2019).
45 Li, J. et al. Astrocyte-to-astrocyte contact and a positive feedback loop of growth factor signaling regulate astrocyte maturation. Glia 67, 1571-1597, doi:10.1002/glia.23630 (2019).
46 Zhang, Y. et al. Purification and Characterization of Progenitor and Mature Human Astrocytes Reveals Transcriptional and Functional Differences with Mouse. Neuron 89, 37-53, doi:10.1016/j.neuron.2015.11.013 (2016).
47 Foo, L. C. et al. Development of a method for the purification and culture of rodent astrocytes. Neuron 71, 799-811, doi:10.1016/j.neuron.2011.07.022 (2011).
48 Di, J. et al. The molecular tweezer CLR01 improves behavioral deficits and reduces tau pathology in P301S-tau transgenic mice. Alz. Res. Ther., In press (2020).
49 Abramoff, M. D., Magelhaes, P. J. & Ram, S. J. Image Processing with ImageJ. Biophotonics Intl. 11, 36-42 (2004).