1. Klein, H. L. Genome instabilities arising from ribonucleotides in DNA. DNA Repair 56, 26-32 (2017).
2. Potenski, C. J. & Klein, H. L. How the misincorporation of ribonucleotides into genomic DNA can be both harmful and helpful to cells. Nucleic Acids Res. 42, 10226-10234 (2014).
3. Cerritelli, S. M. & Crouch, R. J. The balancing act of ribonucleotides in DNA. Trends Biochem. Sci. 41, 434-445 (2016).
4. Caldecott, K. W. Ribose-an internal threat to DNA. Science 343, 260-261 (2014).
5. Yao, N. Y., Schroeder, J. W., Yurieva, O., Simmons, L. A. & O’Donnell, M. E. Cost of rNTP/dNTP pool imbalance at the replication fork. Proc. Natl. Acad. Sci. 110, 12942-12947 (2013).
6. Williams, J. S., Lujan, S. A. & Kunkel, T. A. Processing ribonucleotides incorporated during eukaryotic DNA replication. Nat. Rev. Mol. Cell Biol. 17, 350-363 (2016).
7. Clausen, A. R., Murray, M. S., Passer, A. R., Pedersen, L. C., Kunkel, T. A., Clausen, A. R., Murray, M. S., Passer, A. R., Pedersen, L. C. & Kunkel, T. A. Structure-function analysis of ribonucleotide bypass by B family DNA replicases. Proc. Natl. Acad. Sci. U.S.A., 110, 16802-16807 (2013).
8. Clausen, A. R., Zhang, S., Burgers, P. N., Lee, M. Y. & Kunkel, T. A. Ribonucleotide incorporation, proofreading and bypass by human DNA polymerase delta. DNA Repair 12, 121-127 (2013).
9. Nick McElhinny, S. A., Watts, B. E., Kumar, D., Watt, D. L., Lundstrom, E. B.,
Burgers, P. M., Johansson, E., Chabes, A. & Kunkel, T. A. Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc. Natl. Acad. Sci. U. S. A. 107, 4949-4954 (2010).
10. Gosavi, R. A., Moon, A. F., Kunkel, T. A., Pedersen, L. C. & Bebenek, K. The catalytic cycle for ribonucleotide incorporation by human DNA pol lambda. Nucleic Acids Res. 40, 7518-7527 (2012).
11. Goksenin, A. Y. et al. Human DNA polymerase epsilon is able to efficiently extend from multiple consecutive ribonucleotides. J. Biol. Chem. 287, 42675-42684 (2012).
12. Watt, D. L., Johansson, E., Burgers, P. M., Kunkel, T. A., Watt, D. L., Johansson, E., Burgers, P. M. & Kunkel, T. A. Replication of ribonucleotide-containing DNA templates by yeast replicative polymerases. DNA Repair, 10, 897-902 (2011).
13. Lujan, S. A., Williams, J. S., Clausen, A. R., Clark, A. B. & Kunkel, T. A. Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol. Cell 50, 437-443 (2013).
14. Nick McElhinny, S. A., Kumar, D., Clark, A. B., Watt, D. L., Watts, B. E., Lundstrom, E. B., Johansson, E., Chabes, A. & Kunkel, T. A. Genome instability due to ribonucleotide incorporation into DNA. Nat. Chem. Biol. 6, 774-781 (2010).
15. Sassa, A., Yasui, M. & Honma, M. Current perspectives on mechanisms of ribonucleotide incorporation and processing in mammalian DNA. Genes Environ. 41, 3 (2019).
16. DeRose, E. F., Perera, L., Murray, M. S., Kunkel, T. A. & London, R. E. Solution structure of the Dickerson DNA dodecamer containing a single ribonucleotide. Biochemistry 51, 2407-2416 (2012).
17. Jaishree, T. N., van der Marel, G. A., van Boom, J. H. & Wang, A. H Structural influence of RNA incorporation in DNA: quantitative nuclear magnetic resonance refinement of d(CG)r(CG)d(CG) and d(CG)r(C)d(TAGCG). Biochemistry 32, 4903-4911 (1993).
18. Hovatter, K. R. & Martinson, H. G. Ribonucleotide-induced helical alteration in DNA prevents nucleosome formation. Proc. Natl. Acad. Sci. U. S. A. 84, 1162-1166 (1987).
19. Conover, H. N., Lujan, S. A., Chapman, M. J., Cornelio, D. A., Sharif, R., Williams, J. S., Clark, A. B., Camilo, F., Kunkel, T. A. & Argueso, J. L. Stimulation of chromosomal re- arrangements by ribonucleotides. Genetics 201, 951-961 (2015).
20. Huang, S. N., Williams, J. S., Arana, M. E., Kunkel, T. A. & Pommier, Y. Topoisomerase I-mediated cleavage at unrepaired ribonucleotides generates DNA double-strand breaks. EMBO J. 36, 361-373 (2016).
21. Joyce, C. M. Choosing the right sugar: how polymerases select a nucleotide substrate. Proc. Natl. Acad. Sci. U. S. A. 94, 1619-1622 (1997).
22. Brown, J. A., Fiala, K. A., Fowler, J. D., Sherrer, S. M., Newmister, S. A., Duym, W. W. & Suo, Z. A novel mechanism of sugar selection utilized by a human X-family DNA polymerase. J. Mol. Biol. 395, 282-290 (2010).
23. Cavanaugh, N. A., Beard, W. A. & Wilson, S. H. DNA polymerase β ribonucleotide discrimination. J. Biol. Chem. 285, 24457-24465 (2010).
24. Donigan, K. A., McLenigan, M. P., Yang, W., Goodman, M. F. & Woodgate, R. The steric gate of DNA polymerase iota regulates ribonucleotide incorporation and deoxyribonucleotide fidelity. J. Biol. Chem. 289, 9136-9145 (2014).
25. Moon, A. F., Pryor, J. M., Ramsden, D. A., Kunkel, T. A., Bebenek, K. & Pedersen, L. C. Structural accommodation of ribonucleotide incorporation by the DNA repair enzyme polymerase μ. Nucleic Acids Res. 45, 9138-9148 (2017).
26. Kasiviswanathan, R. & Copeland, W. C. Ribonucleotide discrimination and reverse transcription by the human mitochondrial DNA polymerase. J. Biol. Chem. 286, 31490-31500 (2011).
27. Williams, J. S. & Kunkel, T. A. Ribonucleotides in DNA: Origins, repair and consequences. DNA Repair 19, 27-37 (2014).
28. Brown, J. A. & Suo, Z. Unlocking the sugar steric gate of DNA polymerases. Biochemistry 50, 1135-1142 (2011).
29. DeLucia, A. M., Grindley, N. D. & Joyce, C. M. An error-prone family Y DNA polymerase (DinB homolog from Sulfolobus solfataricus) uses a ‘steric gate' residue for dis- crimination against ribonucleotides. Nucleic Acids Res. 31, 4129-4137 (2003).
30. Brown, J. A. & Suo, Z. Unlocking the sugar ‘steric gate’ of DNA polymerases. Biochemistry 50, 1135-1142 (2011).
31. Ruiz, J. F., Juarez, R., Garcia-Diaz, M., Terrados, G., Picher, A. J., Gonzalez-Barrera, S., Fernandez de Hanestrosa, A. R. & Blanco, L. Lack of sugar discrimination by human pol μ requires a single glycine residue. Nucleic Acids Res. 31, 4441-4449 (2014).
32. Reijns, M. A. M. et al. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 149, 23 (2012).
33. Vaisman, A. & Woodgate, R. Ribonucleotide discrimination by translesion synthesis DNA polymerases. Crit. Rev. Biochem. Mol. Biol. 53, 382-402 (2018).
34. Bonnin, A., Lazaro, J. M.M., Blanco, L. & Salas, M. A single tyrosine prevents insertion of ribonucleotides in the eukaryotic-type φ29 DNA polymerase. J. Mol. Biol. 290, 241-251 (1999).
35. Çağlayan, M. Interplay between DNA polymerases and DNA ligases: Influence on substrate channeling and the fidelity of DNA ligation. J. Mol. Biol. 431, 2068-2081 (2019).
36. Çağlayan, M. & Wilson, S. H. Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair. DNA Repair 35, 85-89 (2015).
37. Çağlayan, M., Batra, V. K., Sassa, A., Prasad, R. & Wilson, S. H. Role of polymerase β in complementing aprataxin deficiency during abasic-site base excision repair. Nat. Struct. Mol. Biol. 21, 497-499 (2014).
38. Çağlayan, M. et al. Oxidized nucleotide insertion by pol β confounds ligation during base excision repair. Nat. Commun. 8, 14045 (2017).
39. Çağlayan, M. et al. Complementation of aprataxin deficiency by base excision repair enzymes. Nucleic Acids Res. 43, 2271-2281 (2015).
40. Çağlayan, M. et al. Complementation of aprataxin deficiency by base excision repair enzymes in mitochondrial extracts. Nucleic Acids Res. 45, 10079-10088 (2017).
41. Çağlayan, M. & Wilson, S. H. Role of DNA polymerase β oxidized nucleotide insertion in DNA ligation failure. J. Radiat. Res. 58, 603-607 (2017).
42. Çağlayan, M. The ligation of pol β mismatch insertion products governs the formation of promutagenic base excision DNA repair intermediates. Nucleic Acids Res. 48, 3708-3721 (2020).
43. Çağlayan, M. Pol β gap filling, DNA ligation and substrate-product channeling during base excision repair opposite oxidized 5-methylcytosine modifications. DNA Repair 95,102945 (2020).
44. Tang, Q., Kamble, P. & Çağlayan, M. DNA ligase I variants fail in the ligation of mutagenic repair intermediates with mismatches and oxidative DNA damage. Mutagenesis 35, 391-404 (2020).
45. Kamble, P., Hall, K., Chandak, M., Tang, Q. & Çağlayan, M. DNA ligase I fidelity the mutagenic ligation of pol β oxidized and mismatch nucleotide insertion products in base excision repair. J. Biol. Chem. 296, 100427 (2021).
46. Tang, Q. & Çağlayan, M. The scaffold protein XRCC1 stabilizes the formation of polβ/gap DNA and ligase IIIα/nick DNA complexes in base excision repair. J. Biol. Chem. 297, 101025 (2021).
47. Horton, J. K., Stefanick, D. F., Çağlayan, M., Zhao, M. L., Gassman, N. R. & Wilson, S.H. XRCC1 phosphorylation affects aprataxin recruitment and DNA deadenylation activity. DNA Repair 64, 26-33 (2018).
48. Prasad, R., Çağlayan, M., Da-Peng, D., Nadalutti, C. A., Gassman, N. R., Zhao, M., Stefanick, D. F., Horton, J. K., Krasich, R., Longley, M. J., Copeland, W. C., Griffith, J. D. & Wilson, S. H. DNA polymerase β: The missing link of the base excision repair machinery in mammalian mitochondria. DNA Repair 60, 77-88 (2017).
49. Sassa, A., Çağlayan, M., Rodriguez, Y., Beard, W. A., Wilson, S. H., Nohmi, T., Honma, M. & Yasui, M. Impact of ribonucleotide backbone on translesion synthesis and repair of 7,8-Dihydro-8-oxoguanine. J. Biol. Chem. 291, 24314-24323 (2016).
50. Sassa, A., Çağlayan, M., Dyrkheeva, N. S., Beard, W. A. & Wilson, S. H. Base excision repair of tandem modifications in a methylated CpG dinucleotide. J. Biol. Chem. 289, 13996-4008 (2014).
51. Çağlayan, M. & Wilson, S. H. Pol μ dGTP mismatch insertion opposite T coupled with ligation reveals a promutagenic DNA intermediate during double strand break repair. Nat. Commun. 9, 4213 (2018).
52. Çağlayan, M. Pol μ ribonucleotide insertion opposite 8-oxodG facilitates the ligation of premutagenic DNA repair intermediate. Sci. Rep. 10, 940 (2020).
53. Tang Q., Gulkis, M., McKenna R. & Çağlayan, M. Structures of LIG1 that engage with mutagenic mismatches inserted by polβ in base excision repair. Nat. Commun. 13, 3860 (2022).
54. Pascal, J. M. et al. Human DNA ligase I completely encircles and partially unwinds nicked DNA. Nature 432, 473-478 (2004).
55. Tumbale, P. P. et al. Two-tiered enforcement of high-fidelity DNA ligation. Nat. Commun. 10, 5431 (2019).
56. Sparks, J. L. et al. RNase H2-initiated ribonucleotide excision repair. Mol. Cell 47, 980-986 (2012).
57. Cerritelli, S. M. & Crouch, R. J. Ribonuclease H: the enzymes in eukaryotes. FEBS J. 276, 1494-1505 (2009).
58. Hiller, B., Achleitner, M., Glage, S., Naumann, R., Behrendt, R. & Roers, A. Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity. J. Exp. Med. 209, 1419-1426 (2012).
59. Timson, D. J., Singleton, M. R. & Wigley, D. B. DNA ligases in the repair and replication of DNA. Mutat. Res. 460, 301-318 (2000).
60. Shuman, S. DNA ligases: progress and prospects. J. Biol. Chem. 284, 17365-17369 (2009).
61. Tomkinson, A. E., Vijayakumar, S., Pascal, J. M. & Ellenberger, T. DNA ligases: structure, reaction mechanism, and function. Chem. Rev. 106, 687-699 (2006).
62. Doherty, A. J. & Suh, S. W. Structural and mechanistic conservation in DNA ligases. Nuc. Acids Res. 28, 4051-4058 (2000).
63. Ellenberger, T. & Tomkinson, A. E. Eukaryotic DNA ligases: Structural and functional insights. Annu. Rev. Biochem. 77, 313-338 (2008).
64. Unciuleac, M., Goldgur, Y. & Shuman, S. Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAR+-dependent polynucleotide ligases. Proc. Natl. Acad Sci. U S A 114, 2592-2597 (2017).
65. Tomkinson, A. E., Tappe, N. J. & Friedberg, E. C. DNA Ligase I from Saccharomyces cerevisiae: Physical and biochemical characterization of the CDC9 gene product. Biochemistry 31, 11762-11771(1992).
66. Nishida, H., Kiyonari, S., Ishino, Y. & Morikawa, K. The closed structure of an archaeal DNA ligase from Pyrococcus furiosus. J. Mol. Biol. 360, 956-967 (2006).
67. Chen, Y. et al. Structure of the error-prone DNA ligase of African swine fever virus identifies critical active site residues. Nat. Commun. 10, 387 (2019).
68. Unciuleac, M., Goldgur, Y. & Shuman, S. Structures of ATP-bound DNA ligase D in a closed domain conformation reveal a network of amino acid and metal contacts to the ATP phosphates. J. Biol. Chem. 294, 5094-5104 (2019).
69. Odell, M., Sriskanda, V., Shuman, S. & Nikolov, D. Crystalstructure of eukaryotic DNA ligase–adenylate illuminates the mechanism of nick sensing and strand joining. Mol. Cell 6, 1183-1193 (2000).
70. Williams, J. S. et al. High-fidelity DNA ligation enforces accurate Okazaki fragment maturation during DNA replication. Nat. Commun. 12, 482 (2021).
71. Jurkiw, T. J. et al. LIG1 syndrome mutations remodel a cooperative network of ligand binding interactions to compromise ligation efficiency. Nucleic Acids Res. 49, 1619-1630 (2021).
72. Williamson, A. & Leiros, H. K. S. Structural intermediates of a DNA-ligase complex illuminate the role of the catalytic metal ion and mechanism of phosphodiester bond formation. Nucleic Acids Res. 47, 7147-7162 (2019).
73. Unciuleac, M., Goldgur, Y. & Shuman, S. Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAR+-dependent polynucleotide ligases. Proc. Natl. Acad Sci. U S A 114, 2592-2597 (2017).
74. Dejaegere, A. P. & Case, D. A. Density functional study of ribose and deoxyribose chemical shifts. J. Phys. Chem. 102, 5280-5289 (1998).
75. Cotner-Gohara, E., Kim, I., Hammel, M., Tainer, J. A., Tomkinson, A. E. & Ellenberger, T. Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states. Biochemistry 49, 6165-6176 (2010) .
76. Kukshal, V., Kim, I., Hura, G. L., Tomkinson, A. E., Trainer, J. A. & Ellenberger, T. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining. Nucleic Acids Res. 43, 7021-7031 (2015) .
77. Cuneo, M. J., Gabel, S. A., Krahn, J. A., Ricker, M. A. & London, R. E. The structural basis for partitioning of the XRCC1/DNA ligase IIIα BRCT-mediated dimer complexes. Nucleic Acids Res. 39, 7816-7827 (2011).
78. Conlin, M. P., Reid, D. A., Small, G. W., Chang, H. H., Watanabe, G., Lieber, M. R., Ramsden, D. A. & Rothenberg, E. DNA Ligase IV guides end-processing choice during nonhomologous end joining. Cell Rep., 20, 2810-2819 (2017).
79. Ochi, T., Gu, X. & Blundell, T. L. Structure of the catalytic region of DNA ligase IV in complex with an Artemis fragment sheds light on double-strand break repair. Structure, 21, 672-679 (2013).
80. Ochi, T., Wu, Q., Chirgadze, D. Y., Grossmann, J. G., Bolanos-Garcia, V. M. & Blundell, T. L. Structural insights into the role of domain flexibility in human DNA ligase IV. Structure, 20, 1212-1222 (2012).
81. Kaminski, A., Tumbale, P. P., Schellenberg, M. J., Williams, R. S., Williams, J. G., Kunkel, T. A., Pedersen, L. C. & Bebenek, K. Structures of DNA-bound human ligase IV catalytic core reveal insights into substrate binding and catalysis. Nat. Commun., 9, 2642 (2018).
82. Tomkinson, A. E., Howes, T. R. & Wiest, N. E. DNA ligases as therapeutic targets. Transl. Cancer Res. 2, 31 (2013).
83. Zhong, S. et al. Identification and validation of human DNA ligase inhibitors using computer-aided drug design. J. Med. Chem. 51, 4553-4562 (2008).
84. Chen, X. et al. Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair. Cancer Res. 68, 3169-3177 (2008).
85. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326 (1997).
86. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658-674 (2007).
87. Emsley, P. et al. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486-501 (2010).
88. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213-221 (2010).
89. Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D. Biol. Crystallogr. 67, 355-367 (2011).
90. Li, S., Olson, W. K. & Lu, X. J. Web 3DNA 2.0 for the analysis, visualization, and modeling of 3D nucleic acid structures. Nucleic Acids Res. 47, W26-W34 (2019).