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Abstract
Introduction.

The ability to accurately predict whether a woman will develop breast cancer later in her life, should
reduce the number of breast cancer deaths. Different predictive models exist for breast cancer based on
family history, BRCA status, and SNP analysis. The best of these models has an accuracy (area under the
receiver operating characteristic curve, AUC) of about 0.65. We have developed computational methods
to characterize a genome by a small set of numbers that represent the length of segments of the
chromosomes, called chromosomal-scale length variation (CSLV).

Methods.

We built machine learning models to differentiate between women who had breast cancer and women
who did not based on their CSLV characterization. We applied this procedure to two different datasets:
the UK Biobank (1,534 women with breast cancer and 4,391 women who did not) and the Cancer Genome
Atlas (TCGA) 874 with breast cancer and 3,381 without.

Results.

We found a machine learning model that could predict breast cancer with an AUC of 0.836 95%
CI(0.830.0.843) in the UK Biobank data. Using a similar approach with the TCGA data, we obtained a
model with an AUC of 0.704 95%CI(0.702,0.706). Variable importance analysis indicated that no single
chromosomal region was responsible for signi�cant fraction of the model results.

Conclusion.

Chromosomal-scale length variation can be used to effectively predict whether or not a woman will
develop breast cancer.

Introduction
Over 600,000 women die annually from breast cancer around the world [1], but breast cancer is curable
(through mastectomy) in the early stages and could be preventable, through prophylactic mastectomy, if
one could better predict who will develop breast cancer.

Breast cancer predictive models based on genetics already exist. The effectiveness of these predictive
models can be characterized by the area under the receiver operating characteristic curve, known as the
AUC. One commonly used predictive model, the Gail model [2], has an AUC of 0.58 (95% con�dence
interval [CI] = 0.56 to 0.60) [3]. The Gail model incorporates a number of parameters including �rst degree
relatives who were diagnosed with breast cancer. The Tyrer-Cuzick model includes a more detailed picture
of genetics including BRCA1/BRCA2 status and a hypothetical low-penetrance gene that is designed to
encompass all other genetic factors [4]. The Tyrer-Cuzick model is an improvement over the Gail model
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and has an AUC = 0.62, with a 95% CI of (0.60 to 0.64) [5]. The Tyrer-Cuzick model has been extended
using a 313 variant polygenic risk score. This extension improves the AUC to 0.64 with a 955 CI of (0.61 − 
0.68) in women over 50 years of age[6].

Family history is encoded in the germline genetics. In fact, models based on detailed germline genetics
should perform better than models based on family history alone, since family history is often
incomplete; limited to just a generation or two, and genetic factors present in relatives might not be
inherited. The more recent approach to predicting breast cancers is to incorporate polygenic risk scores.

Polygenic risk scores, computed from linear combinations of SNPs, should provide superior predictions
compared to models that rely on family history questionnaires, but they do not show a substantial
improvement. The most complete study to date used a group of 313 SNPs to predict breast cancer with
an AUC of 0.630 (95%CI: 0.628–0.651) [7].

One plausible reason that polygenic risk scores do not substantially increase the AUC for breast cancer
prediction models is that these polygenic risk scores only consider linear combinations of SNPs. Detailed
models of interactions within a cell reveal complex pathways with many redundancies. Hence, genetic
risk for breast cancers might entail non-linear interactions between different genetic factors. Modern
machine learning algorithms allow one to consider the effects of non-linear combinations in a model.
However, these machine learning algorithms require many more samples (patients) than features (SNPs).

We have introduced a new method of computing genetic risk scores based on chromosomal scale length
variation[8–11]. Chromosomal scale length variation characterizes each person with a series of numbers.
Each number represents the “length” of a germline chromosome. The “length” is computed from copy
number variation measurements made at SNP locations. This “length” varies from person to person
because of chromosomal rearrangements: insertions, deletions, translocations, and duplications. These
chromosomal rearrangement values are combined across each chromosome (or fractions of a
chromosome) to provide a measure of “length”.

After characterizing each person with a series of number derived from their chromosomal scale length
variation, we can use the power of modern machine learning algorithms to identify patterns in the
germline genetics. The purpose of this paper is to evaluate how well, measured by the AUC, that
chromosomal scale length variation can predict breast cancer in patients.

Methods
To test how well chromosomal length variation can predict breast cancer we acquired germline genetic
data on breast cancer patients and non-breast cancer patients (for a control group) from two different
data sources, the Cancer Genome Atlas (TCGA)[9, 12, 13] and the UK Biobank[14] project.

The Cancer Genome Atlas (TCGA) characterized molecular differences in 33 different human cancers (8,
9). The project collected samples from about 11,000 different patients. The project collected multiple
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samples from each patient, including tissue samples of the tumor and normal tissue adjacent to the
tumor and normal blood samples.

Each patient’s germline DNA was extracted from the normal blood samples. A single laboratory
processed all germline DNA samples. Each patient’s germline DNA was genotyped by single nucleotide
polymorphisms (SNPs) using an Affymetrix SNP 6.0 array. This SNP data was then processed (by the
TCGA project) through a bioinformatics pipeline (10), which included the packages Birdsuite (11) and
DNAcopy (12). The pipeline produced a listing of a chromosomal regions (characterized by the
chromosome number, a starting location, and an ending location) and an associated value given as the
“segmented mean value” for each patient. The segmented mean value is de�ned as the logarithm, base 2,
of one-half the copy number. A normal diploid region with two copies will have a segmented mean value
of zero.

The Genomic Data Commons contains most of the TCGA data (13). In the Genomic Data Commons, the
copy number variation data is called the masked copy number variation. The masking process removes
“Y chromosome and probe sets that were previously indicated to have frequent germline copy-number
variation.” (10)

We refer to the �nal TCGA dataset we used as the masked copy number variation dataset. This dataset
originates from normal blood samples extracted from 8,826 different patients: 4,692 females and 4,134
males. The patients’ ages ranged from 10 to 90 years old.

This dataset contains about 695,000 different copy number variations that appear in at least one patient.
Copy number variations are genomic regions characterized by the chromosome number, a start position,
an end position, and a copy number value. The copy number value is represented as the log base 2 of the
ratio of copies present to the expected number of copies, two. A “0” would represent the expected number
of copies log2(1), a negative number indicates deletions, and a positive number indicates multiple copies.
In the TCGA dataset, normal regions, those with a log_2 CNV equal to 0 are not recorded.

While most copy number variations output by this TCGA pipeline are relatively short, less than the size of
a gene, we noted that a few are relatively long, consisting of most of the chromosome’s entire length. For
instance, the copy number variation output by the TCGA pipeline that we use to characterize chromosome
1 is 244 megabases long, while the full length of chromosome 1 is 249 megabases. This process
produced a dataset with 8,826 rows (each representing a different patient) and 23 columns (each
representing one of the chromosomes 1–22 and the X chromosome).

We created a case/control study to differentiate between people with breast cancer and those without
breast cancer. For the case/control study, we included all cases in the TCGA dataset that included
“normal blood” samples from women patients with a breast cancer diagnosis. No cases were excluded.
Patients included also have measurements of copy number variation from DNA derived from normal
blood in the database.
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Controls for the TCGA dataset include all women in the dataset who had “normal blood” samples without
a breast cancer diagnosis. We included only women (no men) in the control sample. Due to the nature of
TCGA, each woman in the “control” sample had another type of cancer diagnosis (not breast cancer).

To ensure that the results from the TCGA dataset were not due to systematic effects in producing the
data, we tested the same methods in a second independent dataset, the UK Biobank. Because of
differences in the way in which the data was made available, we could not directly test the predictive
power of a model developed on TCGA data with UK Biobank data and vice versa.

We obtained data from the UK Biobank under Application Number 47850. The UK Biobank project
collected genetic data and medical records from about 500,000 people who were between the ages of 40
and 69 during the 2006–2010 recruitment years. These people volunteered for the study and are healthier
than the general population(16). Most have supplied biological samples and �lled out questionnaires
about their health. Most of the participants’ medical records are linked, through the National Health
Service, to the UK Biobank records. This linkage provides for ongoing follow-up of health conditions [15,
16].

As previously described [10], we �rst downloaded the “l2r” �les from the UK Biobank (version 1). Each
chromosome has a separate “l2r” �le. Each “l2r” �le contained 488,377 columns and a variable number
of rows. Each column represented a unique patient in the dataset, who can be identi�ed with an encoded
ID number. Each row represented a different location in the genome. The values in the �le represent the
log base 2 ratio of intensity relative to the expected two copies measured at the SNP location.

We next computed the mean l2r value for different portions of each chromosome for each patient in the
dataset, which we refer to as the “length”. We compute the length for each person’s chromosome using
the l2r �les by taking the average of all l2r values measured across that chromosome. A value of 0
represents the nominal average length of that portion of the chromosome. We call this dataset the
chromosome-scale length variation (CSLV) dataset.

This CSLV dataset was joined with the UK Biobank Health records dataset. UK Biobank matched the
person in the Public Health England data with UK Biobanks internal records to produce the person’s
encoded participant ID. The dataset we have, provided by UK Biobank, contains the participant ID and
whether the participant had been diagnosed with breast cancer.

The UK Biobank dataset that we used consisted of measurements at 820,967 genetic markers across 23
chromosomes for each of 488,377 different patients. From the UK Biobank population, we constructed a
dataset of positive cases that included all women who both self-reported having been diagnosed with
breast cancer and were identi�ed by cancer registries as having been diagnosed with breast cancer, a
total of 1,534 women. We then constructed a control dataset from a pool of 10,000 UK Biobank
participants. From this pool of 10,000 we excluded all men and any women that had any type of cancer
diagnosis, either self-reported or from a cancer registry. This gave a control group of 4,391 cancer-free.
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We quanti�ed the germ line DNA of each of these women with 88 numbers, each representing the length
variation of one quarter of each of 22 chromosomes. We did not use the X chromosome.

For both the TCGA data and the UK Biobank data, we set up as a binary classi�cation supervised learning
task that was trying to distinguish between patients diagnosed with breast cancer from those not
diagnosed with breast cancer.

We performed the analysis using the statistical language R. The data was reformatted for analysis, and
then was fed into the machine-learning algorithm. The data included whether the subject had breast
cancer, and measurements of copy number variation at distinct locations across the genome derived
from the patient’s peripheral blood sample. The data fed into the machine-learning algorithm did not
include age since germline DNA should not depend upon age. The results are independent of the patient’s
age.

We used the H2O package in R for machine learning. This package implements several common machine
learning algorithms, including gradient boosting machines, deep learning neural networks, distributed
random forests, and generalized linear models. The best performing algorithms for our datasets are
invariably stacked ensembles, which are combinations of other machine learning algorithms. This
combination often provides superior results to any particular algorithm[17, 18]. The H2O package
implements stacked ensembles as super learner algorithms[19].

We used the H2O Automatic Machine Learning (automl) function to identify a good machine learning
model. The automl function is given a speci�c amount of time and then proceeds to train and tune a
series of models, searching for the best model. To obtain con�dence intervals, we repeated the training
multiple times (at least 10) with different initial randomization. This process provides independent
test/train splits to the data.

Statistical tests were performed in R. We computed the 95% con�dence intervals using the R command
t.test. Normality was �rst con�rmed with the Shapiro test.

Results
Using the TCGA dataset, consisting of 4,255 women (874 with breast cancer and 3381 controls), we
found a classi�er with an AUC of 0.704 CI (0.702–0.706) for identifying breast cancer, see Fig. 2. The
best classi�er identi�ed with the H2O automl package was the gradient boosting machine (GBM) for the
TCGA data. We varied the time that automl was allowed to search for better models from one hour to ten
hours, but the AUC of the best classi�ers were essentially the same, for this range of training times.

Using our subset of the UK Biobank dataset, consisting of 5,925 women (1,534 with breast cancer and
4,391 normal) with 88 measurements for each, we found a classi�er with an AUC of 0.836 with a 95%
CI(0.830, 0.843) for identifying breast cancer, see Fig. 1. In this case, the best classi�er was a deep
learning network, which H2O describes as a multi-layer feedforward arti�cial neural network trained with
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stochastic gradient descent. Using the H2O automl function with a time of just one hour, the best
individual model was a GBM model, which had an AUC of 0.69 (and a stacked ensemble model with an
AUC of 0.76). By increasing the time provided to the automl function to 24 hours, it identi�ed a deep
learning model with an AUC of 0.81 (and a stacked ensemble model with an AUC of 0.836).

To simulate a real-world application, we then split the UK Biobank dataset into a training set and a test
set. The test set consisted of 889 women (233 with breast cancer and 656 without). After obtaining a
model from the training set, we applied the model to a test set. The model returns a score for each
woman in the test set. The higher the score, the more likely the woman is to have breast cancer. We
ranked each woman by the assigned score and then evaluated how accurate the model was for each
decile. For instance, about 25% of the women in the test set had breast cancer, but 85% of women who
scored in the highest decile had breast cancer. See Table 1 for the detailed results.

Table 1
We trained a model to predict breast cancer diagnosis on some UK Biobank

data, then tested it on this dataset, which was withheld from the training. This
dataset contained 227 patients diagnosed with breast cancer and 662 who had
not been diagnosed with breast cancer. The model scored each patient on the
likelihood of being classi�ed as breast cancer. The 889 patients were ranked
based on their score and split into ten deciles. This table summarized each

decile. Those patients who scored in the top decile were 16.8 (95% CI 9.3–30.3)
times more likely to have breast cancer than the average woman.

Decile Number of Cancers Number Normal Odds Ratio 95% CI

1 75 13 16.8 9.3–30.3

2 57 32 5.2 3.3–8.2

3 36 53 2.0 1.3–3.1

4 15 74 0.59 0.3-1.0

5 15 74 0.59 0.3-1.0

6 10 79 0.37 0.2–0.7

7 5 84 0.17 0.1–0.4

8 9 80 0.33 0.20–0.60

9 2 87 0.07 0.02–0.20

10 3 86 0.10 0.04–0.3

Total 227 662    

We quanti�ed the importance of the different variables (regions of chromosomes) using the summary
plot of different SHAP (Shapley Additive exPlanations) contributions. This summary plot assigns each
variable an importance for different predictions [20]. The SHAP contribution summary plot for a GBM
model on the UK Biobank data is shown in Fig. 3. The algorithm used to generate the SHAP summary
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plot, TreeSHAP[21], requires a tree based model. Figure 3 is based on the best performing GBM model
generated.

Discussion
Genetic risk scores have been developed for many different ailments [22–25], including cardiovascular
disease[22, 26, 27] and different forms of cancer[7, 9, 28, 29].

Breast cancer was the �rst target of genetic risk scores with the discovery of BRCA1[30]. A 2015 study
that computed a polygenic risk score based on 77 SNPs found that women who scored in the top 1% had
a three-fold increase in risk compared to a woman who scored in the middle quintile [31]. For comparison,
in the breast cancer prediction presented based on UK Biobank data, here 8 of 9 in the top 1% had breast
cancer, while 5 of 27 in the middle 3% had breast cancer, for an approximate tenfold increase in risk

Machine learning techniques have been used to build polygenic risk scores to predict other complex
traits[32, 33]. For instance, diabetes can be predicted from SNP data with an area under the receiver
operator curve (AUC) of 0.602 using a gradient boosted regression tree [32].

We evaluated different machine learning algorithms. We used the h2o platform for machine learning and
selected the best algorithm by weighing computation time and AUC. The h2o platform evaluated four
different algorithms (generalized linear model, distributed random forest, gradient boosting machine, and
deeplearning). For the TCGA data, the gradient boosting machine algorithm and the deep learning
algorithm provided comparable AUCs, but the gradient boosting algorithm was faster. For the UKBiobank
data, the deep learning algorithm provided larger AUCs than all other algorithms evaluated.

The tests have not been optimized. The UKBiobank test could be further improved in two ways. First, the
results might improve with further training. The training was done with a desktop computer (Intel i7-3770
with 4 cores, no GPU). We believe additional training time could slightly improve the AUC. Second, we
used 88 numbers to characterize each genome, splitting the 22 chromosomes into four equal parts. Some
of these regions were highly correlated to others. We might be able to further improve the AUC by splitting
the chromosomes into �ner parts and ignoring those parts that are highly correlated to existing parts of
the dataset.

Understanding the predictions made here is di�cult. Although risk prediction and association studies
share common methods, the end goals differ. Association studies often try to identify alterations in
speci�c genes that can be mechanistically tied to speci�c diseases. Risk prediction, however, is only
concerned with maximizing the predictive power(18). One method of understanding machine learning
models is through examination of variable importance, identifying which regions contribute the most to
the model’s predictions. Figure 3 shows the SHAP plot for a predictive model for breast cancer. The �gure
reveals that no single chromosomal region contributes signi�cantly more than the others to the model’s
predictions. The predictions are based on combinations of changes throughout the genome.
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We considered whether the results were due to two common problems faced by GWAS studies: batch
effects[34] or population strati�cation. To rule out batch effects, we replicated the results in two
independent datasets, the TCGA dataset and the UKBiobank dataset.

Population strati�cation occurs in case/control studies when the cases and controls contain different
proportions of genetically discernable subclasses. Most TCGA samples were collected in the United
States from a racially diverse group. The typical process to correct for population strati�cation in GWAS
is to use principal component analysis, but that process in inherently linear and cannot be used with non-
linear machine learning techniques.

Cancer is the result of a complex interaction between genetics and the environment. In some cases, for
instance, lung cancer and smoking or mesothelioma and asbestos exposure, the required environmental
exposure is signi�cant and well known. In other cases, the required environmental exposure is minor and
not well known. The genetic signature identi�ed here is a necessary, but not su�cient factor in developing
the cancer. Since this is a retrospective study of people who already developed cancer, su�cient
environmental exposure has already occurred. A prospective study would need to be performed to
determine the effect of environmental exposure on how effective these predictions are.

Conclusion
Chromosomal-scale length variation can be used to effectively predict whether or not a woman will
develop breast cancer.
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chromosomal-scale length variation
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SNP
single nucleotide polymorphism
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Figure 1
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The receiver operator characteristic curves for predicting breast cancer using chromosomal scale length
variation with machine learning algorithms. We used a subset of the UK Biobank dataset consisting of
5,925 women (1,534 who had been diagnosed with breast cancer and 4,391 who had never been
diagnosed with any form of cancer). We partitioned this group into a training and test set. We used the
training set to train algorithms to recognize differences in chromosomal scale length variation data
between the women with breast cancer and those without. We then tested this algorithm on the test
set. We repeated this process multiple times with different training/test set partitions and found that the
AUC was 0.836 with a 95% con�dence interval of 0.830 to 0.843.

Figure 2

Using the TCGA dataset, we found a machine learning algorithm that can classify women with breast
cancer compared to other women in the TCGA dataset with an area under the curve of (AUC) of 0.72. This
�gure depicts the receiver operator characteristic curve.
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Figure 3

This Shapley additive explanations plot (known as a SHAP plot) provides interpretability to the machine
learning model. This SHAP plot is from the UK Biobank machine learning model, shown in Figure 1. In
this model, we used the chromosome-scale length variation on four segments from each chromosome,
numbered from 0 to 3. This SHAP plot indicates that the top contribution to the model is from
Chromosome 22, segment 3 (the top label on the left axis). However, the SHAP contribution plot also
indicates that many different chromosomal regions contribute equally to the model. No one segment is
responsible for a majority of the predictive value of the model. Thus, one should not ascribe any
particular signi�cance to the third segment of Chromosome 22.


