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Abstract

With advances in machine learning and artificial intelligence, learning

models have been used in many decision-making and classification appli-

cations. The nature of critical applications, which require a high level of

trust in the prediction results, has motivated researchers to study classi-

fication algorithms that would minimize misclassification errors. In our

study, we have developed the trustable machine learning methodology

that allows the classification model to learn its limitations by rejecting

the decision on cases likely yield to misclassifications and hence pro-

duce highly confident outputs. This paper presents our trustable decision

tree model through the development of the Else-Tree classifier algo-

rithm. In contrast to the traditional decision tree models, which use

a measurement of impurity to build the tree and decide class labels

based on the majority of data samples at the leaf nodes, Else-Tree

analyzes homogeneous regions of training data with similar attribute

values and the same class label. After identifying the longest or most

populated contiguous range per class, a decision node is created for

that class, and the rest of the ranges are fed into the else branch

to continue building the tree model. The Else-Tree model does not

necessarily assign a class for conflicting or doubtful samples. Instead,

it has an else-leaf node, led by the last else branch, to determine
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rejected or undecided data. The Else-Tree classifier has been evalu-

ated and compared with other models through multiple datasets. The

results show that Else-Tree can minimize the rate of misclassification.

Keywords: Trustable Machine Learning, Decision Tree, Classification,
Minimizing Misclassification

1 Introduction

Because incorrect prediction result or misclassification error is costly in many
critical classification applications, improving the performance of learning algo-
rithms has paramount importance. For example, cancer detection, tornado
prediction, fraud identification, etc., are some examples where misclassifica-
tions could not be accepted. Evaluation metrics, such as accuracy, are helping
researchers to evaluate and develop better classifiers. Even when an classifier
is optimized, the error still exists due to factors like the random cause of the
irreducible error and some trade-off between underfitting and overfitting.

To reduce the prediction error, Alpaydin [1] has described an approach that
when a data instance cannot be classified accurately, the classification model
may reject to make a prediction or postpone the decision to an expert. For
example, an incorrect decision made by a predictive model in medical diag-
nosis can lead to mistaken treatment and may cost a patient’s life. In such
situations, the predictive model rejecting to make a decision and delegating
the burden decision to an expert could be a better option. In our study on
protein crystallization analysis, the crystallographer recommended having a
third class called “likely-leads” in addition to crystal and non-crystal cate-
gories [2–4]. The rationale is the fact that the missed crystals are likely to be
classified as “likely-leads” rather than “non-crystals,” and human experts can
review them and classify them manually. This technique could reduce the error
of classifying crystals as non-crystals. However, there are limitations to both
approaches. The method proposed by Alpaydin [1] does not provide a specific
implementation for classification algorithms, and it is not simple to determine
the reject cases for different classification models. On the other hand, adding
an additional class label (to reject decisions) to the training data creates a
multi-class classification problem, which still has misclassification issues among
these classes.

To overcome those problems, we have developed the trustable machine
learning methodology, which allows the classifier to learn to identify difficult-
to-classify data samples and flags them as ‘rejects.’ Other data are classified as
usual. It is important to note that none of the data samples are labeled
as difficult-to-classify in the training data, but the machine learning
model will be trained to identify them. After training, the classifier can
flag difficult-to-classify samples, indicating that it rejects to make a decision on
these items and defer them to a human expert with necessary precautions. The
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probability of correct classification by an expert is expected to be much higher
than that of the classifier in all reject cases. The technique helps the model
to yield only the accurate output, thus avoiding misclassifications. We have
presented WisdomNet [5] as the neural networks model of trustable machine
learning method. For the decision tree (DT) model, we introduced the Else-
Tree classifier briefly in our previous work [6] for bioinformatics. In this paper,
we present more details of the development and evaluation of the Else-Tree
classifier with interpretability.

We propose Else-tree classifier that can minimize the prediction error by
not assigning a class label to the sample that could be misclassified. The doubt-
ful samples are passed through the ‘else’ branch of the tree and marked as
’reject’. To build the else-tree, the algorithm first splits the training data into
homogeneous regions of elements with similar attribute value and the same
class label. The class label of the data sample is assigned as the value of that
region or range. Then the boundaries of those pure regions are used to cre-
ate decision nodes and children nodes. During testing, if data goes into pure
regions, then its class is predicted to be the same as the region. Otherwise, else
branch is followed. If the decision tree cannot benefit from splitting, data that
goes into the last else node is marked as ‘reject’ or ‘?’. Rather than using impu-
rity, our method focuses on the purity of the range of values. Each attribute is
analyzed to determine the largest range of regions belonging purely to a spe-
cific class. The rest of the ranges are fed into the else branch of the tree for
further analysis. In other words, this would mean that the currently selected
attribute is not capable of classifying data samples in the ‘else’ node.

The rest of the paper is organized as follows. Section 2 presents an overview
of the DT model and its inherent misclassification problem. The descriptions of
Else-Tree and the training algorithm are given in Section 3. The experimental
results for testing Else-Tree are given in Sections 4. The discussions about the
Else-Tree algorithm and its current limitations are presented in Section 5. The
last section concludes the paper.

2 Related Work And Inherent Misclassification
Problem of Tree-based Classifiers

The DT classifier is a supervised learning model with a combination of classifi-
cation rules for classifying data. A tree-based structure is used to organize the
rules in the DT model. The model contains decision nodes, branches, and leaf
nodes. The first decision node is the root node of the tree. For each decision
node in the model, a test is performed on one or more data attributes. The
result of the test determines a branch to a subtree. The leaf node represents
a class label. For classification, the input data is first fed to the root node.
Then, the classification procedure follows a unique path determined by the
attribute values of the data to a leaf node, which decides the class member-
ship. The DT algorithm learns the classification rules from the training data.
Iterative Dichotomiser 3 (ID3) [7] is the most well-known DT algorithm, which
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recursively partitions the training set into disjoint subsets based on the data
attributes. At each recursive iteration, the selection of the attribute value to
partition the training dataset is decided by some statistical tests. The selected
attribute becomes the attribute of a decision node, and the partitioning condi-
tions become the classification rules of that node. Each training subset is used
in the next recursive call. If there is no improvement in the statistical tests or
no more subsets being split, a leaf node is created, and the current recursive
call is terminated. The class label of a leaf node is determined by the majority
class of the training data samples in that leaf node.

One factor that has a critical influence on the accuracy of classifications
made by a DT is the statistical measures that is used to select the attribute to
partition the data at the decision nodes. Many popular decision tree algorithms
use an impurity measure to determine the optimal split. For example, ID3
algorithm [7] uses entropy, whereas CART, SLIQ, and SPRINT use Gini index
[8–10], and C4.5 algorithm uses gain ratio [11]. However, there is one inherent
misclassification problem in these DT algorithms. When all attributes are used
and the remaining training data samples cannot be partitioned further, the
label of a leaf node is assigned to the majority class. In this situation, the
samples belong to the other classes are misclassified.

Let us define the ‘pure’ and ‘impure’ sets of data as follows. Let, R be the
given set of data samples. We consider D as a subset of set R. There are two
possible cases for D:

• Pure set: D contains samples that belong to a single class. The class label
of data samples in a pure set is homogeneous.

• Impure set: D contains data samples that belong to a mixture of classes.
For the binary classification, the impure set contains data samples of both
classes.

An example of the misclassification error is shown in Fig. 1. In this example,
consider that a DT algorithm has partitioned a set of data samples into three
disjoint subsets in two-dimensional feature space. The class labels of the given
data samples are ‘+’ and ‘-.’ As shown in the figure, R1 and R2 are two pure
subsets of R. All data samples in R1 belong to the ‘+’ class, and all data
samples in R2 belong to the ‘- class. Subset R3 is impure because it has data
samples belonging to both ‘+’ and ‘-’ classes. As shown in Fig. 1, R3 has the
majority of samples in ‘+’. Hence, the DT algorithm may determine the class
label for data samples in R3 as ‘+’. Any sample that falls into R3 is predicted
as ‘+’. If an actual ‘-’ data falls into R3, it shall be incorrectly classified as
‘+’ by the DT classifier. Generally, the classification accuracy correlated with
the class label decided based on impure leaf nodes is lower than the accuracy
correlated with the label decided by the pure leaf nodes.

The goal of DT algorithms is to find the best attribute at each node for
splitting to generate a compact and simple DT. Each decision attribute is
determined based on an impurity measure, and DT growth algorithms do not
have the purpose of identifying samples that are difficult to classify. Hence



Springer Nature 2022 LATEX template

Trustable Decision Tree Model Using Else-Tree Classifier 5

Fig. 1 A simple rectangular decision regions with pure and impure subsets of ‘+’ and ‘-’
samples.

earlier decisions (close to the root node) based on the impurity measure may
lead to false class labels at the lower levels of the tree. On the other hand, Else-
Tree classifier intrinsically assumes that there are samples hard to classify and
start focusing on samples that are easy to classify and sending other samples
down the tree to be evaluated using other attributes.

3 Methodology

This section first describes the structure of Else-Tree as an approach of
trustable machine learning for the DT classifier. After providing two impor-
tant functions for Else-Tree growth (finding pure subsets and partitioning),
we provide Else-Tree training algorithm.The training algorithm for Else-
Tree developed in this study considers the binary classification problem with
numeric data attributes.

3.1 Structure of Else-Tree

Else-Tree classifier has a tree structure composed of decision nodes, branches,
and leaf nodes. Similar to other DT model, the first decision node in Else-Tree
is the root node. Else-Tree has two types of leaf nodes: class-leaf node and else-
leaf node. The class-leaf node provides a predictive class label for the input
data. The else-leaf node is the flag to indicate that the data item is is a ’reject’,
which cannot be classified into any predefined class labels. The branches at
a decision node in Else-Tree belong to two groups, class-leaf branch and else-
branch. The class-leaf branch leads to a class-leaf node having the decision for
the input. The else-branch leads to another decision node in the tree, and the
last else branch leads to the else-leaf node.

Else-Tree is trained recursively to choose the appropriate attribute and
partition the training dataset into disjoint pure subsets. At each recursive call,
the attribute selection is determined by the number of samples in the pure
subsets. We favor the pure subset containing the most training samples. When
an attribute is selected, it is used to create a decision node and partition
the training dataset into the largest pure subset for each class label. Then,
each class-leaf node is created according to each selected pure subset of the
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Fig. 2 A sample decision Else-Tree structure for binary classification problem.

training dataset. The remaining samples are fed to the next recursive call
using the else-branch. Note that, to avoid overfitting, we require the selected
pure subset to contain at least a minimum number of training samples. The
training process stops when it cannot generate any pure subset containing an
acceptable number of training data samples.

For classifying a new data item, the process starts from the root node
and follows a unique route based on the attribute values of the item to a
leaf node in Else-Tree. If the classification process leads to a class-leaf node,
the data item is classified to a class label identified by the class-leaf node. If
the process ends up at the else-leaf, the data item is not classified into any
class label and is determined as a reject. The Else-Tree classifier can reduce
rate of incorrect predictions by learning the classification rules from the pure
subsets of the training data samples and rejecting to make a prediction when
the classification process reaches the else-leaf node.

Fig. 2 illustrates the structure of a simple Else-Tree classifier having two
decision nodes. The first decision node, also is the root node, caries out a test
on the value of attribute A, and the second decision node caries out a test on
the value of attribute B. Each decision node has two class-leaves for predicting
Class0 and Class1 labels. The else-branch of the first decision node leads
to the second decision node, and the else branch of the second decision node
leads to the else-leaf node. When classifying a data sample, the classification
starts at the root node and takes a particular path according to the tests on
the values of attributes A and B of the data sample. The input data sample
will reach the else-leaf node if it does not satisfy any class-leaf conditions. In
this case, the data sample is marked as a reject and is not classified to either
Class0 or Class1.
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3.2 Finding Pure Subsets for an Attribute

This section describes a helper function that are used in the Else-Tree training
procedure. We consider a training dataset R of numerical attributes for a
binary classification problem. Let A be the considered attribute to analyze the
best pure partition. Note that A is one of the attributes of data samples in R.
Algorithm 1 covers the procedures of the Get-Max-Pure-Subset-by-Attribute
function.

Algorithm 1 Get-Max-Pure-Subset-by-Attribute(R,A)

Input:
R = {x1, x2, · · · , xn}: training dataset of n samples x for binary classifi-
cation of Class0 and Class1
A: attribute with m distinct values ai

Output:
R0: the largest pure subset of Class0.
R1: the largest pure subset of Class1.

1: Sort(R) with respect to A

▷ Create kernel sets k1, k2, · · · , km
2: ki = {x|x ∈ R, xA = ai} for 1 ≤ i ≤ m

3: for each ki do
4: if ∀x(x ∈ ki → x ∈ Class0) then
5: ℓ(ki) = Class0 ▷ set class label of ki to Class0
6: else if ∀x(x ∈ ki → x ∈ Class1) then
7: ℓ(ki) = Class1 ▷ set class label of ki to Class1
8: else
9: ℓ(ki) = impure ▷ set class label of ki as ‘impure’

10: end if
11: end for
12: Combine adjacent kernel sets of the same class into larger sets
13: Return (R0, R1), the largest pure subset of each class

The step-by-step description of Algorithm 1 is as follows.
Line 1: Sort R with respect to attribute A.

All data samples in R are sorted based on the ascending order of the values
of attribute A. Let us denote the sorted values of attribute A as {a1, a2, · · · am},
where ai < ai+1, 1 ≤ i ≤| (m− 1) |.
Lines 2-11: Create kernel sets.

First, create m subsets k1, k2, · · · , km of the input dataset R, where ki
contains data samples whose value of the attribute A equals ai. We refer to
each set ki as a kernel set of the input dataset. Then, each kernel set ki is
labeled according to the class of its data samples. If all samples in ki belong
to a single class, ki is a pure set. Otherwise, the set is impure. The pure set is
marked with the same class label of its data samples. The impure set is marked
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as ‘impure.’ Note that the class labels of the data samples are unchanged
during this process.
Line 12: Combine adjacent kernel sets.

Based on the values of the attribute A in order as {a1, a2, · · · , am}, the
adjacent kernel sets with the same class label are combined into a single set
to create a larger subset of the input data. For instance, if c consecutive sets
ki, ki+1, · · · , ki+c−1 have the same class label, they are combined into a single
set Di(i+c−1) with the values of the attribute A in [ai, ai+c−1].
Line 13: Select and return the largest pure subset of each class.

From the combined subsets created in the previous step, the pure subset
that contains the most data sample of each class is selected and returned. The
selection of a pure subset is guided by the number of data members. For each
class, only the pure subset containing the highest number of data samples
is selected and returned. If there is no pure subset, the function returns two
empty sets.
Example 1: Fig. 3 illustrates two function calls for Get-Max-Pure-Subset-by-
Attribute on a sample dataset R having ten samples and two attributes, A and
B. The data samples in R belong to Class0 and Class1. The result of Get-
Max-Pure-Subset by-Attribute(R, A) when considering attribute A is shown
in Fig. 3a. In this case, the largest pure subset of Class0 has five data samples,
and the largest subset for Class1 has three samples. Fig. 3b shows the results
of Get-Max-Pure Subset-by-Attribute(R, B) for attribute B. In this case, both
the largest pure subsets of Class0 and Class1 contain two data samples.
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a) Pure subset partition considering attribute A.

b) Pure subset partition considering attribute B

Fig. 3 An example of the Get-Max-Pure-Subset-by-Attribute function.
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3.3 Finding Best Pure Partition for Else-Tree

This part presents Find-Best-Pure-Partition function that exhaustively
searches for the appropriate attribute to partition the training data. As shown
in Algorithm 2, the function processes a training set of binary classification
data and returns the best-selected attribute and two corresponding pure max-
imal sub-datasets. If there is no attribute that can be used to generate a pure
subset of the input data samples, the function returns a NULL attribute and
two empty sets. First, the function loops to process all attributes of the input
data. In each iteration, the function considers one attribute at a time and calls
the Get-Max-Pure-Subset-by-Attribute function to get the max pure subset of
each data class with respect to the attribute. The final selected attribute is the
one that yields the pure subset with the highest number of data samples. After
the exhaustive search selects the appropriate attribute, the Get-Max-Pure-
Subset-by-Attribute is called again with the selected attribute to determine
the largest pure subset for each class.

Algorithm 2 Find-Best-Pure-Partition(R))

Input:
R: Binary classification training dataset of Class0 and Class1 with d

numerical attributes A1, A2, · · · , Ad

Output:
best Attribute: The best attribute selected
R0: The largest pure subset of Class0.
R1: The largest pure subset of Class1.

1: R0 = ∅, R1 = ∅
2: max Size = 0
3: best Attribute = NULL

4: for each attribute Aj do
5: (R0, R1) = Get-Max-Pure-Subset-by-Attribute(R, Aj)
6: if max Size < |R0| then
7: max Size = |R0|
8: best Attribute = Aj

9: end if
10: if max Size < |R1| then
11: max Size = |R1|
12: best Attribute = Aj

13: end if
14: end for
15: if best Attribute is NOT NULL then
16: (R0, R1) = Get-Max-Pure-Subset-by-Attribute(R, best Attribute)
17: end if
18: Return (best Attribute, R0, R1)
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Example 2: Fig. 4 illustrates an example of Find-Best-Pure-Partition func-
tion. The input dataset R is the same as in Example 1, having ten data samples
with two attributes, A and B, and the class labels are Class0 and Class1.
Find-Best-Pure-Partition function repeatedly calls the Get-Max-Pure-Subset-
by-Attribute function to consider each attribute of the data samples in R. As
shown in Fig. 4, when considering attribute A, the largest subset of Class0
has five data samples, and the largest pure subset of Class1 has three data
samples. For attribute B, the largest pure subsets of Class0 and Class1 have
two data samples each. Hence, attribute A is selected and returned as the best
attribute because it can be used to create the larger pure subset of data sam-
ples. As shown in Fig. 4, the two largest pure subsets separated by the values
of the selected attribute A are returned by the function.

6
Fig. 4 An example of the Find-Best-Pure-Partition function

3.4 Else-Tree Training Algorithm

This section describes the algorithm to generate an Else-Tree classifier from a
training dataset. The recursive training procedure, Else Tree-Growth, is pre-
sented in Algorithm 3. The algorithm takes a binary classification dataset R

and a pruning threshold minNum as inputs and returns an Else-Tree classifi-
cation model. A step-by-step description of the Else-Tree-Growth algorithm is
given below.
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Algorithm 3 Else-Tree-Growth(R,minNum)

Input:
R: A binary classification dataset with samples belonging to Class0 and
Class1
minNum: Pruning threshold as the minimum number of training samples
per class-leaf

Output:
Else-Tree classifier model
▷ Step 1: General case when set R ̸= empty

1: if R ̸= ∅ then
2: Create a Node which has a NULL decision attribute
3: nodeUpdated = false ▷ boolean flag indicating Node’s status
4: Rtemp = ∅ ▷ a temporary set to support data split

▷ Step 2: Get the best Attribute and the pure subsets R0 and R1

5: (best Attribute,R0, R1) = Find-Best-Pure-Partition(R)
▷ Step 3: Update the tree Node

6: for each pure subset Ri in {R0, R1} do
7: if |Ri| ≥ minNum then
8: if Node’s decision attribute is NULL then
9: Set the decision attribute for Node = best Attribute

10: end if
11: Create a class-leaf with label = (class label of Ri)
12: Add a new class branch to Node, the branch’s condition is

decided by testing the decision attribute’s values and Ri’s boundary
13: Add the class-leaf to this new class branch

14: Rtemp = Rtemp +Ri

15: nodeUpdated = true

16: end if
▷ Step 4: Recursive call

17: if nodeUpdated then
18: Rsub = R−Rtemp ▷ Split data
19: Add a new else branch to Node

20: Add subtree Else-Tree-Growth(Rsub,minNum) to this new
else branch

21: Return Node

22: else
23: Return Else-Tree-Growth(∅,minNum)
24: end if
25: end for
26: else

▷ Step 5: Base case when the input set is empty, R = ∅
27: Create an Else-Leaf node
28: Return Else-Leaf

29: end if
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Step 1 (Lines 1-4) General case: If the input dataset R is not empty, a node
with a NULL decision attribute is created followed by Step 2. Otherwise, the
algorithm continues with Step 5.
Step 2 (Line 5): The largest pure subsets R0 of Class0 and R1 of Class1,
and the best attribute (best Attribute) is obtained by calling Find-Best-Pure-
Partition(R) function followed by Step 3.
Step 3 (Lines 6-16): The current node is updated based on the result of
best Attribute and the pure subsets R0 and R1 obtained in Step 2.

Note that when R0 and R1 contain just a few training data samples, they
may increase the size of Else-Tree and cause overfitting. Else-Tree algorithm
applies the pre-pruning technique to avoid this problem. Only the subset
containing at least minNum data samples is used to create a class-leaf. For
example, if minNum is set to two, only the pure subsets with two or more
data samples will be used to create a class-leaf.

In this step, the pure subset of each class returned by the Find-Best-Pure-
Partition function is compared with minNum threshold. If the number of
samples in Ri is greater than or equal to minNum, the algorithm will update
the current node of Else-Tree. First, the decision attribute of the current node
is set to the best attribute selected in Step 2. Next, a new class branch is added
to the current node. The condition of this class branch is determined based on
the values of the decision attribute corresponding to the boundary of the pure
subset Ri. Then, a class-leaf with the class label of the data samples in Ri is
added to this new class branch. Note that all data samples in pure subset Ri

belong to the same class.
When both pure subsets R0 and R1 have less than minNum training sam-

ples, the current node is not updated. Note that Find-Best-Pure-Partition(R)
may return R0 and R1 as two empty sets when it fails to generate pure sub-
sets of the input data samples. Threshold minNum still covers this situation
because an empty set has no data samples.

There are two possible cases of the current node status at the end of this
step:

• Case 1: The current node is updated. In this case, at least one of the two
pure subsets R0 and R1 has the number of training samples more than or
equal to minNum. Hence, at least one class-leaf is added to the node.

• Case 2: The current node is not updated. In this case, both pure subsets
R0 and R1 have less than minNum training samples. There is no decision
attribute assigned to the current node, and no class-leaf is created.

These two cases determine the procedures of Step 4.
Step 4 (Lines 17-25) Recursive Call: If the current node is updated in Step 3,
then an else branch is added to the current node, and a subtree is added to this
else branch by recursively calling Else-Tree-Growth on the remaining training
samples. Finally, this step returns the current node. In this case, the training
samples that do not belong to a class-leaf are allocated into the sub-dataset
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Rsub. The recursive function call, Else-Tree-Growth(Rsub), repeats Step 1 with
Rsub as the input dataset to create a subtree added to the current node.

On the other hand, if the current node is not updated, then Else-Tree-
Growth(∅) is returned. In this case, Step 1 is repeated with an empty input
dataset.
Step 5 (Lines 26-29) Base Case: If the input dataset R is empty, an else-leaf
is created and returned, then the process is terminated.
Example 3: This part describes an example to illustrate the Else-Tree-Growth
algorithm. Consider the training set R with two attributes A and B as shown
in Table 1 to train an Else-Tree classifier. R contains 16 data samples of Class0
and Class1. In this example, the pruning threshold, minNum is set as 2.

The first recursive call of the Else-Tree-Growth algorithm is illustrated
in Fig. 5. In Step 1, since the training dataset is not empty, the algorithm
continues to build the tree by creating a root node. In Step 2, Find-Best-
Pure-Partition(R) function is called as illustrated in Fig. 6. When considering
attribute A, we can obtain the largest pure subset of four data samples. For
attribute B, the largest pure subset contains three data samples. Hence, A
is selected as the best attribute that can be used to partition the training
samples. When separated by the values of the selected attribute A, both largest
pure subsets R0 and R1 contain four training samples. Both R0 and R1 have
a greater number of data samples than minNum threshold. In Step 3, A is set
as the decision attribute of the root node, the boundary conditions of R0 and
R1 with respect to the values of attribute A are used to create two class leaves,
and the remaining training data samples are allocated into the subset Rsub for
the next recursive call. As shown in Fig. 5, Rsub has eight data samples.

In Fig. 5, the data samples in pure subset R0 have attribute A values in
the range of [1, 2]. For pure subset R1, attribute A values are in [5, 6]. Hence,
the classification rules at the root node can be stated as follows.

• If 1 ≤ A ≤ 2 Then class = Class0
• If 5 ≤ A ≤ 6 Then class = Class1
• Otherwise, continue with the next node.

The second recursive call of Else-Tree-Growth algorithm is illustrated in
Fig. 7. In this iteration, attribute B is selected as the best attribute. The
largest pure subset of Class0 has three samples with attribute B values in the
range of [1, 3]. There are two samples in the largest pure subset of Class1 with
attribute B values in [13, 20]. Hence, both pure subsets are not pruned. The
classification rules at this node can be stated as follows.

• If 1 ≤ B ≤ 3 Then class = Class0
• If 13 ≤ B ≤ 20 Then class = Class1
• Otherwise, continue with the next node.

The remaining input dataset for the next recursive call contains three training
data samples as shown in Fig. 7.



Springer Nature 2022 LATEX template

Trustable Decision Tree Model Using Else-Tree Classifier 15
Table 1 The training data used in Example 3.

Index A B Class Index A B Class

1 2 1 0 9 3 3 0

2 4 15 1 10 1 15 0

3 1 10 0 11 6 18 1

4 5 15 1 12 5 21 1

5 6 15 1 13 4 11 0

6 4 1 0 14 3 13 1

7 2 9 0 15 4 20 1

8 3 9 1 16 3 9 0

The third recursive call of Else-Tree-Growth is illustrated in Fig. 8. Accord-
ing to the remaining training data samples, only one pure subset is obtained,
and this pure subset contains just one data sample. Hence, it is pruned by the
pruning threshold of minNum = 2, and the current node is not updated. The
decision attribute of the current node remains empty. Therefore, this recur-
sive call does not return a decision node. Instead, it returns the result of the
recursive call Else-Tree-Growth(∅, 2), which takes in an empty dataset.

In the fourth recursive call shown in Fig. 9, an else-leaf is created and
returned because the input dataset is empty. This iteration is the last recursive
call of Else-Tree-Growth. After all recursive calls returning their results, Else
Tree classifier is formed. The classification rules for this Else-Tree model can
be summarized as follows.
Classification rules of the Else-Tree classifier in Example 3:

i. If 1 ≤ A ≤ 2 Then class = Class0
ii. If 5 ≤ A ≤ 6 Then class = Class1
iii. Otherwise, continue with the next node.

iv. If 1 ≤ B ≤ 3 Then class = Class0
v. If 13 ≤ B ≤ 20 Then class = Class1
vi. Otherwise, Reject.

An example of testing these classification rules is shown in Fig. 11. For
example, the input item with A = 2 and B = 2 satisfies rule (i), 1 ≤ A ≤ 2,
hence the predicted label for this data item is Class0. On the other hand, when
feeding an input sample with A = 4 and B = 12, none of the classification
rules leading to a class-leaf are satisfied. Hence, this data sample falls to the
else-leaf and is classified as ‘reject.’
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Fig. 5 An illustration of recursive iteration 1 of the Else-Tree-Growth algorithm

Fig. 6 An illustration of Find-Best-Pure-Partition procedure in recursive iteration 1 of the
Else-Tree-Growth algorithm
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Fig. 7 An illustration of recursive iteration 2 in the Else-Tree-Growth algorithm

Fig. 8 An illustration of the recursive iteration 3 in the Else-Tree-Growth algorithm

Fig. 9 An illustration of recursive iteration 4 in the Else-Tree-Growth algorithm
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Fig. 10 An illustration of the Else-Tree model after training

Fig. 11 An example of Else-Tree classification results on a testing dataset
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Fig. 12 The new confusion matrix consider number of ‘reject’ decisions

4 Experiments and Results

This section presents the evaluation of Else-Tree. There are several metrics
that have been created to evaluate the performance of classification models.
The widely used metrics are accuracy, recall, precision, F1 score, and cross-
entropy. These measurements, other than cross-entropy, are calculated based
on the number of correct and incorrect predictions of each class. Besides, false
negative and false positive rates are commonly used in classification problems.
A confusion matrix (error matrix) is a specific table representing the predic-
tion results of a model. Our new method introduces ‘reject’ as an outcome of
the predicted results. Hence, we present a ‘new’ confusion matrix and eval-
uation metrics to cover this outcome option. Figure 12 shows an illustration
of our new confusion matrix. True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) values are the same as in the typical
confusion matrix. The sum of TP, TN, FP, and FN is the number of decided
data instances, which are classified by the new model into a predefined class.
The new confusion matrix has a column to list the number of reject cases.
Some evaluation measures for the new confusion matrix are described below.

• Number of Rejects (R): This measure indicates the number of data items
that were rejected by the classifier. The classifier has flagged those items as
reject and not decided class labels for them. In the new confusion matrix,
R (the number of rejects) is a part of the total number of the data, N =
TP + TN + FP + FN +R.

• Reject Rate: The reject rate indicates the ratio of data samples that are
flagged as reject by the classification model.

Reject Rate =
R

TP + TN + FN + FP +R
=

R

N
(1)

In addition, other the measures such as correct rate, error rate, and decided
rate can be used when evaluating the model as follows.

• Correct Rate: The correct rate indicates the fraction of data that are
correctly classified by our method.

Correct Rate =
TP + TN

TP + TN + FN + FP +R
(2)

• Error Rate: The error rate is the fraction of misclassified results.
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Error Rate =
FP + FN

TP + TN + FN + FP +R
(3)

• Decided Rate: The decided rate is the ratio of data samples that are
decided or predicted into predefined class labels. The sum of error rate and
correct rate values equals the decided rate. The reject rate and decided rate
are complements of each other.

Decided Rate =
TP + TN + FN + FP

TP + TN + FN + FP +R

= Error Rate+ Correct Rate

= 1−Reject Rate

(4)

Our goal is to reduce the error rate while having a small reject rate. In our
experiments, we also consider the measurement of accuracy. It is reasonable to
consider modifying the calculation of accuracy according to the new confusion
matrix. However, in our method, none of the input data was originally marked
or labeled as reject. The actual or true number of rejects is unknown. Hence,
we do not define the “True Reject” and “False Reject” numbers in the new
confusion matrix. The new method does not intend to modify a binary classi-
fication into a three-class classification problem. In the new confusion matrix,
as illustrated in Figure 12, the sum of TP, TN, FN, and FP is the total num-
ber of decided data items, not the number of input data. We suggest keeping
the calculation of accuracy as it is, but its interpretation is slightly different.
For Else-Tree model, the accuracy, as provided in Equation 5, is the fraction
of items among the decided items that are correctly classified.

Accuracy =
TP + TN

TP + TN + FN + FP
(5)

4.1 Testing Else-Tree Classifier on Classifying Protein

Crystallization Trial Images

This section describes our testing of Else-Tree classifier on classifying protein
crystallization trial images. These trial images are obtained from our research
on protein crystallization analysis.

Protein crystallization is the process of developing protein crystals. This
process is influenced by many factors of the crystallization conditions. The
crystal of a protein can be used to study the protein structure for medical pur-
poses or drug discoveries. Many screening trials of crystallization conditions
are tested to determine the right conditions to crystalize the protein. One tech-
nique to evaluate the screening trials is to capture and analyze their images. In
literature, there are different methods to capture and utilize the trial images.
For example, some researchers analyze the trial images taken in white light,
while others use the trace fluorescent labeling (TFL) technique to capture the
trial images under fluorescent light [12, 13]. Moreover, different researchers use



Springer Nature 2022 LATEX template

Trustable Decision Tree Model Using Else-Tree Classifier 21

various feature extraction techniques and classification models to classify the
trial images into different categories of the crystallization observations, such
as non-crystal, crystal or tiny crystal, larger crystal, etc. [4]. It is not easy to
compare the performance of these studies due to their diversity. However, they
all have a certain rate of incorrectly classifying a crystallization condition.

When training an Else-Tree classifier to classify the protein crystallization
trial images, the goal is to reduce the error rate to as low as zero. In addition,
the reject rate should not be very high either.

4.1.1 Protein Crystallization Trial Image Dataset

We use a feature dataset, named TFL2756, extracted from 2756 images of pro-
tein crystallization trials. The images are captured using the TFL technique.
Each data sample in TFL2756 contains 52 attributes. The samples belong to
two classes, non-crystal (1600 samples) and leading crystal (1156 samples).
The non-crystal class is the category of trial images that do not contain pro-
tein crystals. The non-crystal class indicates that the screening conditions fail
to crystallize the protein. The leading crystal class is the group of images that
contain either the clear or likely appearance of protein crystals. The leading
crystal class indicates that the screening solution can lead to successful protein
crystallization.

4.1.2 Effect of Pruning on Else-Tree Classification
Performance

This part evaluates how Else-Tree pruning affects the classification perfor-
mance of Else-Tree classifier. The classification performance of the C4.5
decision tree (C4.5 DT) is also included for reference purposes. Note that C4.5
DT is an extension of the ID3 algorithm [11].

Else-Tree training algorithm uses the pre-pruning method, which requires
the pure subset to have a minimum number of training samples (minNum),
as described in Section 3.4. This requirement avoids creating the classification
rule for a class-leaf based on a small pure subset of training data samples. To
examine the effect of the pre-pruning condition, we evaluate Else-Tree with
different values of minNum.

The C4.5 algorithm requires that any test on the attribute at a tree node
must at least split the training data samples into two subsets with a minimum
number of data samples in the pure set minNum [11]. According to the study
in [11], the default value of minNum for C4.5 is set to two. Even though pre-
pruning can be used, C4.5 prefers post pruning with a given confidence level
(CF) to reduce the error rate. The default value of CF is 25% [11]. In this
experiment, we train C4.5 with the default value of CF and different values of
minNum.

Table 2 summarizes the testing results. In this test, 90% of the data samples
in TFL2756 are used for training, and the remaining 10% are used for testing.
The parameter minNum is initially set to 2, then it is increased to higher
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Table 2 Testing results of Else-Tree and C4.5 classifiers for the tree pruning effect

C4.5 Else-Tree

Error Tree Total Error Reject Tree Total

minNum Rate Accuracy Size Leaves Rate Accuracy Rate Size Leaves

2 2.54% 97.46% 39 20 3.62% 96.38% 0 56 37

13 (0.5%) 2.54% 97.46% 23 12 2.17% 97.75% 3.26% 41 25

25(1%) 2.17% 97.83% 17 9 0% 100% 15.58% 23 13

50(2%) 3.99% 96.01% 11 6 0% 100% 20.65 16 9

75(3%) 4.35% 95.65% 7 4 0% 100% 26.09% 10 6

values. As listed in Table2, minNum values of 13, 25, 50, and 75 equivalent to
0.5%, 1%, 2%, and 3% of the number of training data samples, respectively.
For each classification model, the following testing results are collected:

• Classification performance: The classification results on the test dataset.
• Tree size: The total number of nodes on the decision tree, including decision
nodes and leaf nodes.

• Total number of leaves: The number of leaves on the decision tree.

In Table 2, when training with higher values of minNum, both Else-Tree
and C4.5 decision trees reduce their sizes. C4.5 has the testing accuracy in
between 95% and 98% and the classification error is about 2% to 5%. When
minNum equals 25, C4.5 has the highest accuracy of 97.83% and the lowest
error rate of about 2.17%. When minNum increases to values higher than
25, the classification error of C4.5 increases. On the other hand, as minNum

increases, the error rate of Else-Tree decreases. However, the reject rate of Else-
Tree increases as minNum increases, as shown in Table 2. Else-Tree has about
3.62% incorrect classification when minNum equals two. The error rate of Else-
Tree reduces to zero when minNum is set to 25 or higher values. Therefore,
pruning is an important process for Else-Tree to reduce incorrect predictions.
Hence the pruning threshold should be tested at a low value, then increase until
obtaining a good balance between the error rate and reject rate of Else-Tree
classifier.

4.1.3 Validation of Classification Results

This section describes the validation of Else-Tree performance on classifying
the protein crystallization trial images. To validate the Else-Tree performance,
we use the hold-out method to create four different pairs of training and testing
sets. Information about these training and testing sets is summarized in Table
3.

• T100: The entire dataset is used for training and testing.
• T90: 90% of the data samples are used for training, and the remaining 10%
are used for testing.
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Table 3 Summary of the protein crystallization trial feature datasets

Training Testing

Leading Leading

Hold-out Crystal Non-Crystal Total Crystal Non-Crystal Total

T100 1156 1600 2756 1156 1600 2756

T90 1035 1445 2480 121 155 276

T80 930 1275 2205 226 325 551

T70 823 1106 1929 333 494 827

• T80: 80% of the data samples are used for training, and the remaining 20%
are used for testing.

• T70: 70% of the data samples are used for training, and the remaining 30%
are used for testing.

Table 4 presents the False Negative (FN) rate and False Positive (FP) rate
of each experiment. The reject rate of Else-Tree is also included. The FN rate
is the fraction of the ‘leading crystal’ images misclassified as ‘non-crystal’. The
FP rate is the fraction of the ‘non-crystal’ images predicted as ‘leading crystal.’
For reference, the FN and FP rates of the C4.5 decision tree and random
forest (RF) classifiers are also provided. In this test, Else-Tree is pruned with
minNum set to be 1.5% of the training size. For example, when using T80
with 2205 training data samples, the pruning threshold of Else-Tree is set to
33 (about 1.5% of 2205). The C4.5 DT is trained with the default confidence
level, CF = 25%, and the default minimum number of samples, minNum = 2.
The RF classifier is trained using 100 trees, and each tree is allowed to try with
⌊log2(n+ 1)⌋ attributes for each decision tree, where n = 52 is the number of
attributes in TFL2756.

As listed in Table 4, , the RF classifier is able to avoid FN and FP on T100,
where the whole set of TFL2756 is used for training and testing. For other
tests, RF has about 0.3% to 0.8% FN and about 1.5% to 1.9% FP. The C4.5
classifier makes FN and FP predictions for all four testing sets. The highest
FN rate of C4.5 is about 5% on T90. The lowest FN rate of C4.5 is about 0.2%
on T100.

As shown in Table 4, Else-Tree has zero FN on all testing cases. The only
case it had FP was around 0.4% on T70. It did not have any FP on T80,
T90, and T100. The reject rate of Else-Tree is between 12.1% and 16.7%.
These results indicate that Else-Tree can reduce the incorrect prediction when
classifying the trial images of protein crystallization.

4.2 Testing Else-Tree on Public Datasets

This part describes the evaluation of Else-Tree on three datasets published
in the UCI [14] data repository: Banknote (BANKNOTE), Breast cancer
(BREASTCANCER), and Wireless Indoor Localization (WIL). Each data in



Springer Nature 2022 LATEX template

24 Trustable Decision Tree Model Using Else-Tree Classifier

Table 4 Testing results with False Positive and False Negative rates for C4.5, RF, and
Else-Tree classifiers when classifying protein crystallization trial feature datasets

FP Rate FN Rate Reject Rate

Dataset C4.5 RF Else-Tree C4.5 RF Else-Tree Else-Tree

T100 0.7% 0% 0% 0.2% 0% 0% 14.55%

T90 0.6% 1.9% 0% 5.0% 0.8% 0% 16.67%

T80 1.8% 1.5% 0% 2.2% 0.4% 0% 14.51%

T70 1.8% 1.8% 0.4% 0.3% 0.3% 0% 12.09%

∗: Last column presents the Reject Rate of Else-Tree

the WIL dataset has seven numeric attributes representing the Wi-Fi signal
strengths to determine one of the four indoor locations. We chose the second
location as the target class to create a binary classification problem for the
WIL dataset.

In this experiment, each dataset is split into the training set (90%) and
testing set (10%) using the hold-out method. For reference, we include the
testing results of three traditional classification algorithms, Naive Bayes, Sup-
port Vector Machine (SVM), and C4.5 decision tree, as shown in Table 5. The
parameters of C4.5 are the same as in Section 4.1.3. The SVM uses a lin-
ear kernel and a complexity parameter value of one. Overall, SVM works well
for all three datasets and obtains test accuracy between 98.25% and 99.50%.
C4.5 has about 93% accuracy on the BREASTCANCER data and above 98%
accuracy on the WIL and BANKNOTE data. The Naive Bayes has the lowest
testing accuracy of about 85.5% on the BANKNOTE data. Note that all of
these three traditional classifiers make some incorrect predictions in this test.

Table 6 summarizes the test results of Else-Tree. For each dataset, Else-Tree
is tested with different values of the pruning threshold minNum. In summary,
Else-Tree can reduce the error rate to as low as zero while rejecting to make a
prediction on some data samples. For the WIL dataset, Else-Tree has zero error
rate and 5% reject rate with minNum = 7. With higher values of minNum,
Else-Tree rejects more WIL data samples. For instance, with minNum = 11,
the Reject Rate is about 9.5%. For the BANKNOTE dataset, the Else-Tree
model with minNum = 45 can achieve zero error rate with about 8.7% reject
rate. For the BREASTCANCER dataset, Else-Tree has about 1.75% incorrect
predictions, and about 5.26% reject rate when pruning with minNum = 5.
Else-Tree can reach zero incorrect prediction on this data with minNum =
35. However, in this case, the reject rate is above 31%. Note that in this
experiment, the C4.5 decision tree has about 93% accuracy and 7% incorrect
prediction of the BREASTCANCER dataset. The Else-Tree classifier pruned
with minNum = 5 still makes fewer incorrect predictions than the C4.5 model.
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Table 5 Testing accuracy of Naive Bayes, SVM, and C4.5 DT on WIL, BANKNOTE,
and BREASTCANCER datasets

Data Naive Bayes SVM C4.5 DT

WIL 97.5% 99.50% 98.00%

BANKNOTE 85.5% 98.55% 98.55%

BREASTCANCER 94.74% 98.25% 92.98%

Table 6 The testing results of Else-Tree on WIL, BANKNOTE, and BREASTCANCER
datasets

Data minNum Accuracy Error Rate Reject Rate

WIL 2 98.0% 2.0% 0%

WIL 5 99.48% 0.50% 4.0%

WIL 7 100% 0 5.0%

WIL 9 100% 0 8.5%

WIL 11 100% 0 9.5%

BANKNOTE 2 98.54% 1.45% 0.72%

BANKNOTE 5 98.54% 1.45% 0.72%

BANKNOTE 25 98.54% 1.45% 0.72%

BANKNOTE 35 99.24% 0.72% 5.07%

BANKNOTE 45 100% 0 8.69%

BANKNOTE 55 100% 0 8.69%

BREASTCANCER 2 94.64% 5.26% 1.75%

BREASTCANCER 5 98.15% 1.75% 5.26%

BREASTCANCER 25 97.77% 1.75% 21.05%

BREASTCANCER 35 100% 0% 31.57%

BREASTCANCER 45 100% 0% 38.59%

5 Discussion

The Else-Tree algorithm splits the training dataset into disjoint pure subsets
to create classification rules, which rely on the quality of the training data
samples. As a type of a decision tree, Else-Tree is sensitive to noise. Moderate
changes in the data may yield large changes in the structure of the Else-Tree
model. In addition, when the training dataset is not a good representation of
the testing dataset, misclassifications may occur when classifying the testing
data.

The current version of Else-Tree places the else-leaf under the last decision
node of the tree to indicate the reject cases. This is a reasonable structure
because it allows testing all decision nodes on the upper levels before rejecting
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a data item. The pruning threshold is a critical parameter that affects the clas-
sification performance of an Else-Tree model. This threshold is a pre-specified
minimum number of training data samples in the selected pure subset. When
the pruning threshold is set to a very low value, it can lead to a very deep tree
structure with little predictive performance and possible overfitting. On the
other hand, if the pruning threshold is set to a high value, only the large pure
subsets are selected to create the prediction rules leading to the rejection of
many data samples. Else-Tree should be tested with different pruning thresh-
old values to create a classifier with a low error rate and low reject rate. In the
future, we plan to develop an ensemble method for Else-Tree classifiers to make
it more robust to noise and possibly to reduce both error rate and reject rate.

6 Conclusions

This study contributes to the area of classification problems in machine
learning by developing a trustable decision tree model. The Else-Tree clas-
sifier and training algorithm demonstrates that it is possible to reduce
incorrect prediction on a tree-based classification model. The Else-Tree algo-
rithm has been justified through the classification experiments on the dataset
obtained from the study of protein crystallization and three other public
datasets. All experiment results show that Else-Tree can minimize the rate of
misclassifications.

The novelty of Else-Tree model is the creation of else branch and else-

leaf node. Else-Tree is trained to reduce error by not assigning a predefined
class label to difficult-to-classify data. Instead, Else-Tree sends doubtful data
samples to the else branch to find a better attribute for classification. The
else-leaf node acts like a flag to indicate the case when the model does not
decide a class label for the prediction data. When classifying input data, if
the classification rules end up a the else-leaf node, the model determines the
data sample as a reject to avoid a possible misprediction. Even though it is
hard to claim that misclassifications can be avoided for all applications, this
method presents a notable step in minimizing the misclassification problem.
In the future, we plan to study more applications of Else-Tree and reduce the
faction of rejected cases while minimizing incorrect classifications.
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