1. Tononi, G., Boly, M., Massimini, M. & Koch, C. Integrated information theory: From consciousness to its physical substrate. Nat. Rev. Neurosci. 17, 450–461 (2016).
2. Koch, C., Massimini, M., Boly, M. & Tononi, G. Neural correlates of consciousness: progress and problems. Nat. Rev. Neurosci. 17, 307–321 (2016).
3. Mashour, G. A., Roelfsema, P., Changeux, J. P. & Dehaene, S. Conscious Processing and the Global Neuronal Workspace Hypothesis. Neuron 105, 776–798 (2020).
4. Dehaene, S. & Changeux, J. P. Experimental and Theoretical Approaches to Conscious Processing. Neuron 70, 200–227 (2011).
5. Dehaene, S. & Naccache, L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79, 1–37 (2001).
6. Tononi, G. Integrated information theory of consciousness: an updated account. Arch. Ital. Biol. 150, 293–329 (2012).
7. Dehaene, S., Kerszberg, M. & Changeux, J. P. A neuronal model of a global workspace in effortful cognitive tasks. Proc. Natl. Acad. Sci. U. S. A. 95, 14529–14534 (1998).
8. Pal, D. et al. Differential Role of Prefrontal and Parietal Cortices in Controlling Level of Consciousness. Curr. Biol. 28, 2145-2152.e5 (2018).
9. Bastos, A. M. et al. Neural effects of propofol-induced unconsciousness and its reversal using thalamic stimulation. Elife 10, (2021).
10. Pitkänen, A., Ekolle Ndode-Ekane, X., Lapinlampi, N. & Puhakka, N. Epilepsy biomarkers – Toward etiology and pathology specificity. Neurobiology of Disease 123, 42–58 (2019).
11. Boly, M. et al. Are the neural correlates of consciousness in the front or in the back of the cerebral cortex? Clinical and neuroimaging evidence. J. Neurosci. 37, 9603–9613 (2017).
12. Odegaard, B., Knight, R. T. & Lau, H. Should a few null findings falsify prefrontal theories of conscious perception? J. Neurosci. 37, 9593–9602 (2017).
13. Tononi, G. Information measures for conscious experience. Arch. Ital. Biol. 139, 367–371 (2001).
14. Oizumi, M., Albantakis, L. & Tononi, G. From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0. PLoS Comput. Biol. 10, (2014).
15. Brown, E. N., Lydic, R. & Schiff, N. D. General anesthesia, sleep, and coma. New England Journal of Medicine 363, 2638–2650 (2010).
16. Bonhomme, V. et al. Linking sleep and general anesthesia mechanisms: This is no walkover. Acta Anaesthesiol. Belg. 62, 161–171 (2011).
17. Mashour, G. A. & Pal, D. Interfaces of Sleep and Anesthesia. Anesthesiol. Clin. 30, 385–398 (2012).
18. Lozano, A. M. et al. Deep brain stimulation: current challenges and future directions. 15, 148–160 (2019).
19. Bronstein, J. M. et al. Deep Brain Stimulation for Parkinson Disease: An Expert Consensus and Review of Key Issues. Arch. Neurol. 68, 165–165 (2011).
20. Herrington, T. M., Cheng, J. J. & Eskandar, E. N. Mechanisms of deep brain stimulation. J. Neurophysiol. 115, 19–38 (2016).
21. Kokkinos, V., Sisterson, N. D., Wozny, T. A. & Richardson, R. M. Association of Closed-Loop Brain Stimulation Neurophysiological Features With Seizure Control Among Patients With Focal Epilepsy. JAMA Neurol. 76, 800 (2019).
22. Jarosiewicz, B. & Morrell, M. The RNS System: brain-responsive neurostimulation for the treatment of epilepsy. Expert Rev. Med. Devices 18, 129–138 (2021).
23. Ryvlin, P., Rheims, S., Hirsch, L. J., Sokolov, A. & Jehi, L. Neuromodulation in epilepsy: state-of-the-art approved therapies. Lancet. Neurol. 20, 1038–1047 (2021).
24. Salanova, V. et al. The SANTÉ study at 10 years of follow-up: Effectiveness, safety, and sudden unexpected death in epilepsy. Epilepsia 62, 1306–1317 (2021).
25. Holtzheimer, P. E. & Mayberg, H. S. Deep brain stimulation for psychiatric disorders. Annu. Rev. Neurosci. 34, 289–307 (2011).
26. Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).
27. Widge, A. S., Malone, D. A. & Dougherty, D. D. Closing the Loop on Deep Brain Stimulation for Treatment-Resistant Depression. Front. Neurosci. 12, 175 (2018).
28. Basu, I. et al. Closed-loop enhancement and neural decoding of cognitive control in humans. Nat. Biomed. Eng. (2021). doi:10.1038/s41551-021-00804-y
29. Penfield , Jasper, Herbert H., Penfield, Wilder,, W. Epilepsy and the functional anatomy of the human brain. (Little, Brown, 1954).
30. Valentín, A. et al. Responses to single pulse electrical stimulation identify epileptogenesis in the human brain in vivo. Brain 125, 1709–18 (2002).
31. Matsumoto, R. et al. Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain 127, 2316–30 (2004).
32. Matsumoto, R. et al. Functional connectivity in human cortical motor system: a cortico-cortical evoked potential study. Brain 130, 181–197 (2006).
33. Keller, C. J. et al. Corticocortical evoked potentials reveal projectors and integrators in human brain networks. J. Neurosci. 34, 9152–63 (2014).
34. Crocker, B. et al. Local and distant responses to single pulse electrical stimulation reflect different forms of connectivity. Neuroimage 237, (2021).
35. David, O. et al. Probabilistic functional tractography of the human cortex. Neuroimage 80, 307–317 (2013).
36. Trebaul, L. et al. Probabilistic functional tractography of the human cortex revisited. Neuroimage (2018). doi:10.1016/j.neuroimage.2018.07.039
37. Matsumoto, R., Kunieda, T. & Nair, D. Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy. Seizure 44, 27–36 (2017).
38. Kokkinos, V., Alarcón, G., Selway, R. P. & Valentín, A. Role of single pulse electrical stimulation (SPES) to guide electrode implantation under general anaesthesia in presurgical assessment of epilepsy. Seizure 22, 198–204 (2013).
39. Valentín, A. et al. Single-pulse electrical stimulation identifies epileptogenic frontal cortex in the human brain. Neurology 65, 426–435 (2005).
40. Flanagan, D., Valentín, A., García Seoane, J. J., Alarcón, G. & Boyd, S. G. Single-pulse electrical stimulation helps to identify epileptogenic cortex in children. Epilepsia 50, 1793–1803 (2009).
41. Yamao, Y. et al. Intraoperative Brain Mapping by Cortico-Cortical Evoked Potential. Front. Hum. Neurosci. 15, 635453 (2021).
42. Bourdillon, P. et al. Brain-scale cortico-cortical functional connectivity in the delta-theta band is a robust signature of conscious states: an intracranial and scalp EEG study. Sci. Rep. 10, (2020).
43. Casali, A. G. et al. A theoretically based index of consciousness independent of sensory processing and behavior. 5, 198ra105-198ra105 (2013).
44. Sarasso, S. et al. Quantifying cortical EEG responses to TMS in (un)consciousness. Clin. EEG Neurosci. 45, 40–49 (2014).
45. Massimini, M., Boly, M., Casali, A., Rosanova, M. & Tononi, G. A perturbational approach for evaluating the brain’s capacity for consciousness. Prog. Brain Res. 177, 201–214 (2009).
46. Pigorini, A. et al. Bistability breaks-off deterministic responses to intracortical stimulation during non-REM sleep. Neuroimage 112, 105–113 (2015).
47. Sarasso, S. et al. Consciousness and complexity during unresponsiveness induced by propofol, xenon, and ketamine. Curr. Biol. 25, 3099–3105 (2015).
48. Rosanova, M. et al. Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients. Brain 135, 1308–20 (2012).
49. Pal, D., Silverstein, B. H., Lee, H. & Mashour, G. A. Neural Correlates of Wakefulness, Sleep, and General Anesthesia: An Experimental Study in Rat. Anesthesiology 125, 929–942 (2016).
50. Redinbaugh, M. J. et al. Thalamus Modulates Consciousness via Layer-Specific Control of Cortex. Neuron 106, 66-75.e12 (2020).
51. Comolatti, R. et al. A fast and general method to empirically estimate the complexity of brain responses to transcranial and intracranial stimulations. Brain Stimul. (2019). doi:10.1016/j.brs.2019.05.013
52. Sarasso, S. et al. Consciousness and complexity: a consilience of evidence. Neurosci. Conscious. 2021, 1–24 (2021).
53. Matsumoto, R., Kunieda, T. & Nair, D. Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy. Seizure 44, 27–36 (2017).
54. Matsumoto, R., Kunieda, T. & Nair, D. Single pulse electrical stimulation to probe functional and pathological connectivity in epilepsy. Seizure 44, 27–36 (2017).
55. Sergent, C. et al. Bifurcation in brain dynamics reveals a signature of conscious processing independent of report. Nat. Commun. 12, (2021).
56. Arieli, A., Sterkin, A., Grinvald, A. & Aertsen, A. Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273, 1868–1871 (1996).
57. Fox, M. D., Snyder, A. Z., Vincent, J. L. & Raichle, M. E. Intrinsic Fluctuations within Cortical Systems Account for Intertrial Variability in Human Behavior. Neuron 56, 171–184 (2007).
58. Casarotto, S. et al. Stratification of unresponsive patients by an independently validated index of brain complexity. Ann. Neurol. 80, 718–729 (2016).
59. Holmes, C. J. et al. Enhancement of MR images using registration for signal averaging. J. Comput. Assist. Tomogr. 22, 324–333 (1998).
60. Aubert-Broche, B., Evans, A. C. & Collins, L. A new improved version of the realistic digital brain phantom. Neuroimage 32, 138–145 (2006).
61. Siclari, F. et al. The neural correlates of dreaming. Nat. Neurosci. 20, 872–878 (2017).
62. Brown, E. N., Purdon, P. L. & Van Dort, C. J. General anesthesia and altered states of arousal: a systems neuroscience analysis. Annu. Rev. Neurosci. 34, 601–628 (2011).
63. Goodchild, C. S. & Serrao, J. M. Cardiovascular effects of propofol in the anaesthetized dog. Br. J. Anaesth. 63, 87–92 (1989).
64. Song, C., Boly, M., Tagliazucchi, E., Laufs, H. & Tononi, G. fMRI spectral signatures of sleep. Proc. Natl. Acad. Sci. U. S. A. 119, (2022).
65. von Ellenrieder, N. et al. How the Human Brain Sleeps: Direct Cortical Recordings of Normal Brain Activity. Ann. Neurol. 87, 289–301 (2020).
66. Frauscher, B. & Gotman, J. Sleep, oscillations, interictal discharges, and seizures in human focal epilepsy. Neurobiology of Disease 127, 545–553 (2019).
67. Siclari, F. & Tononi, G. Local aspects of sleep and wakefulness. Curr. Opin. Neurobiol. 44, 222–227 (2017).
68. Steriade, M., McCormick, D. A. & Sejnowski, T. J. Thalamocortical oscillations in the sleeping and aroused brain. 262, 679–685 (1993).
69. Steriade, M. & Timofeev, I. Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron 37, 563–576 (2003).
70. Piantoni, G., Halgren, E. & Cash, S. S. The Contribution of Thalamocortical Core and Matrix Pathways to Sleep Spindles. Neural Plast. 2016, (2016).
71. Lewis, L. D. et al. Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc. Natl. Acad. Sci. U. S. A. 109, (2012).
72. Flores, F. J. et al. Thalamocortical synchronization during induction and emergence from propofol-induced unconsciousness. Proc. Natl. Acad. Sci. U. S. A. 114, E6660–E6668 (2017).
73. Schwartz, R. S., Brown, E. N., Lydic, R. & Schiff, N. D. Mechanisms of Disease General Anesthesia, Sleep, and Coma. N Engl J Med 363, (2010).
74. Ma, L., Liu, W. & Hudson, A. E. Propofol Anesthesia Increases Long-range Frontoparietal Corticocortical Interaction in the Oculomotor Circuit in Macaque Monkeys. Anesthesiology 130, 560–571 (2019).
75. Liu, X., Lauer, K. K., Ward, B. D., Li, S. J. & Hudetz, A. G. Differential effects of deep sedation with propofol on the specific and nonspecific thalamocortical systems: a functional magnetic resonance imaging study. Anesthesiology 118, 59–69 (2013).
76. Mashour, G. A. & Alkire, M. T. Consciousness, Anesthesia, and the thalamocortical system. Anesthesiology 118, 13–15 (2013).
77. Purdon, P. L., Sampson, A., Pavone, K. J. & Brown, E. N. Clinical Electroencephalography for Anesthesiologists: Part I: Background and Basic Signatures. Anesthesiology 123, 937–960 (2015).
78. Purdon, P. L. et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc. Natl. Acad. Sci. U. S. A. 110, (2013).
79. Ching, S. N. & Brown, E. N. Modeling the dynamical effects of anesthesia on brain circuits. Curr. Opin. Neurobiol. 25, 116–122 (2014).
80. Bastos, A. M. & Schoffelen, J. M. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Frontiers in Systems Neuroscience 9, (2016).
81. Tasserie, J. et al. Deep brain stimulation of the thalamus restores signatures of consciousness in a nonhuman primate model. 8, 5547 (2022).
82. Xu, J. et al. Thalamic stimulation improves postictal cortical arousal and behavior. J. Neurosci. 40, 7343–7354 (2020).
83. Gummadavelli, A. et al. Thalamic stimulation to improve level of consciousness after seizures: evaluation of electrophysiology and behavior. Epilepsia 56, 114–124 (2015).
84. Schiff, N. D. Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann. N. Y. Acad. Sci. 1129, 105–118 (2008).
85. Schiff, N. D. et al. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448, 600–603 (2007).
86. Bourdillon, P., Hermann, B., Sitt, J. D. & Naccache, L. Electromagnetic Brain Stimulation in Patients With Disorders of Consciousness. Front. Neurosci. 13, (2019).
87. Corazzol, M. et al. Restoring consciousness with vagus nerve stimulation. 27, R994–R996 (2017).
88. Thibaut, A., Bruno, M. A., Ledoux, D., Demertzi, A. & Laureys, S. tDCS in patients with disorders of consciousness: sham-controlled randomized double-blind study. Neurology 82, 1112–1118 (2014).
89. Arthuis, M. et al. Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization. 132, 2091–2101 (2009).
90. Chaitanya, G., Sinha, S., Narayanan, M. & Satishchandra, P. Scalp high frequency oscillations (HFOs) in absence epilepsy: An independent component analysis (ICA) based approach. Epilepsy Res. 115, 133–140 (2015).
91. Blumenfeld, H. Arousal and Consciousness in Focal Seizures. Epilepsy Curr. 21, 353–359 (2021).
92. Nayak, D., Valentín, A., Selway, R. P. & Alarcón, G. Can single pulse electrical stimulation provoke responses similar to spontaneous interictal epileptiform discharges? Clin. Neurophysiol. 125, 1306–1311 (2014).
93. Lozano, A. M., Hutchison, W. D. & Kalia, S. K. What Have We Learned About Movement Disorders from Functional Neurosurgery? Annu. Rev. Neurosci. 40, 453–477 (2017).
94. Eisinger, R. S., Cernera, S., Gittis, A., Gunduz, A. & Okun, M. S. A review of basal ganglia circuits and physiology: Application to deep brain stimulation. Parkinsonism Relat. Disord. 59, 9–20 (2019).
95. Krack, P., Volkmann, J., Tinkhauser, G. & Deuschl, G. Deep Brain Stimulation in Movement Disorders: From Experimental Surgery to Evidence-Based Therapy. Mov. Disord. 34, 1795–1810 (2019).
96. Benabid, A. L. et al. Functional neurosurgery for movement disorders: a historical perspective. Prog. Brain Res. 175, 379–391 (2009).
97. Widge, A. S. et al. Treating refractory mental illness with closed-loop brain stimulation: Progress towards a patient-specific transdiagnostic approach. Exp. Neurol. 287, 461–472 (2017).
98. Lee, M. B. et al. Clinical neuroprosthetics: Today and tomorrow. J. Clin. Neurosci. (2019). doi:10.1016/j.jocn.2019.07.056
99. Dafsari, H. S. et al. Beneficial effect of 24-month bilateral subthalamic stimulation on quality of sleep in Parkinson’s disease. J. Neurol. 267, 1830–1841 (2020).
100. Jost, S. T. et al. Subthalamic stimulation improves quality of sleep in Parkinson disease: A 36-month controlled study. J. Parkinsons. Dis. 11, 323–335 (2021).
101. Zuzuárregui, J. R. P. & Ostrem, J. L. The Impact of Deep Brain Stimulation on Sleep in Parkinson’s Disease: An update. J. Parkinsons. Dis. 10, 393–404 (2020).
102. Brown, R., Lau, H. & LeDoux, J. E. Understanding the Higher-Order Approach to Consciousness. Trends Cogn. Sci. 23, 754–768 (2019).
103. Schif, N. D. Making waves in consciousness research. Science Translational Medicine 5, 198fs32-198fs32 (2013).
104. Stephen, E. P. et al. Broadband slow-wave modulation in posterior and anterior cortex tracks distinct states of propofol-induced unconsciousness. (2020). doi:10.1038/s41598-020-68756-y
105. Northoff, G. & Lamme, V. Neural signs and mechanisms of consciousness: Is there a potential convergence of theories of consciousness in sight? Neurosci. Biobehav. Rev. 118, 568–587 (2020).
106. Brown, E. N., Pavone, K. J. & Naranjo, M. Multimodal General Anesthesia: Theory and Practice. Anesth. Analg. 127, 1246–1258 (2018).
107. Vesuna, S. et al. Deep posteromedial cortical rhythm in dissociation. Nature 586, 87–94 (2020).
108. Liaquat, Z., Xu, X., Zilundu, P. L. M., Fu, R. & Zhou, L. The Current Role of Dexmedetomidine as Neuroprotective Agent: An Updated Review. Brain Sci. 11, (2021).
109. Guldenmund, P. et al. Brain functional connectivity differentiates dexmedetomidine from propofol and natural sleep. Br. J. Anaesth. 119, 674–684 (2017).
110. Scheinin, A. et al. Foundations of Human Consciousness: Imaging the Twilight Zone. J. Neurosci. 41, 1769–1778 (2021).