
Scalable Image Compression Algorithms with Small
and Fixed- Size Memory
Ali Kadhim Al-Janabi ( alik.aljanabi@uokufa.edu.iq)

University of Kufa
Yahya J. Harbi

University of Kufa
Mohammed Falih Hassan

University of Kufa

Research Article

Keywords: DWT, Image Compression, Quality Scalable Image Compression, Resolution Scalable Image
Compression, Highly Scalable Image Compression, SLS, SPIHT

Posted Date: September 9th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2012580/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-2012580/v1
mailto:alik.aljanabi@uokufa.edu.iq
https://doi.org/10.21203/rs.3.rs-2012580/v1
https://creativecommons.org/licenses/by/4.0/

Scalable Image Compression Algorithms with Small and Fixed-
Size Memory

Ali Kadhim Al-Janabi*1, Yahya J. Harbi2, Mohammed Falih Hassan1

1University of Kufa, Faculty of Engineering, Department of Electronics and Communication Engineering, Najaf, Iraq
2University of Kufa, Faculty of Engineering, Department of Electrical Engineering, Najaf, Iraq

Corresponding author: Ali Kadhim Al-Janabi, alik.aljanabi@uokufa.edu.iq ORCID: 0000-0002-3824-3791

2nd Author: Yahya J. Harbi, yahyaj.harbi@uokufa.edu.iq ORCID: 0000-0001-9497-4612

3rd Author: Mohammed Falih Hassan, mohammedf.aljanabi@uokufa.edu.iq ORCID: 0000-0002-2995-7442

Abstract

The SPIHT algorithm is characterized by low computational complexity, good
performance, and the production of an embedded bitstream that can be decoded at
several bit-rates with image quality enhancement as more bits are received.
However, it suffers from the enormous computer memory consumption due to
utilizing linked lists of size of about 2-3 times the image size to save the coordinates
of the image pixels and the generated sets. In additions, it does not exploit the multi-
resolution feature of the wavelet transform to produce a resolution scalable bitstream
by which the image can be decoded at numerous resolutions (sizes). The Single List
SPIHT (SLS) algorithm resolved the high memory problem of SPIHT by using only
one list of fixed size equals to just 1/4 the image size, and an average of 2.25
bits/pixel. This paper introduces two new algorithms that are based on SLS. The first
algorithm modifies SLS to reduce its complexity and improve its performance. The
second algorithm, which is the major contribution of the work, upgrades the
modified SLS to produce a bitstream that is both quality and resolution scalable
(highly scalable). As such, the algorithm is very suitable for the modern

heterogeneous nature of the Internet users to satisfy their different capabilities and

desires in terms of image quality and resolution.

Keywords: DWT, Image Compression, Quality Scalable Image Compression,

Resolution Scalable Image Compression, Highly Scalable Image Compression, SLS,

SPIHT.

I. Introduction

The main target of lossy image compression is to reduce the average number of bits

per pixel of the compressed image as much as possible, and at the same time to

mailto:alik.aljanabi@uokufa.edu.iq
mailto:yahyaj.harbi@uokufa.edu.iq
mailto:mohammedf.aljanabi@uokufa.edu.iq

attempt to reduce the difference between the original and the recovered images as

much as possible. The difference is usually measured by the mean squared error

(MSE) between these images. Other important factors for an image compression

algorithm are its computational complexity, and its memory consumption. So, the

true judgment of any algorithm must consider all these factors [1, 2].

A conventional image compression system permits to recover the image at just one

bit-rate (quality) and resolution (size). As the current users have diverse capabilities

in terms of bandwidths, display resolutions, processing power, and memory, this

compression paradigm will not fit all users. Additionally, for browsing the images

over the web, the users prefer to make a quick scan for all the searched images and

then select the desired one(s). Evidently, there will be time, bandwidth, memory, and

processing power losses when using this type of image compression. On the other

hand, with a scalable image compression system, the quality or/and the resolution

(size) of the recovered image can be controlled in such a way that permits to the end

user to decode the image at the desired quality or/and resolution. In a quality scalable

image compression (QSIC), only the quality of the recovered image can be

controlled. A QSIC can be attained by encoding the image pixels utilizing some form

of bit-plane coding, where each pixel is encoded from its most significant bit (MSB)

to its least significant bit (LSB). On the other hand, in a resolution scalable image

compression (RSIC), only the resolution of the recovered image can be controlled.

Lastly, in a highly (or full) scalable image compression (HSIC), both the quality and

the resolution of the recovered image can be controlled [3, 4]. Therefore, the HSIC

is very appealing for the needs of modern users due to its versatility to decode the

image at various qualities and resolutions.

The dyadic 2Dimensional-Discrete Wavelet Transform (2D-DWT) is a basic tool for

scalable image compression because it possesses high energy compaction,

localization across space and frequency, and multiresolution properties. An M

decomposition levels of the dyadic 2D-DWT partitions the image into 3M+1

subbands. The first level decomposes the image into four subbands labeled LL1, HL1, LH1, and HH1. Each one of the next levels m, 2 ≤ m ≤ M, decomposes

the LLm−1 subband into LLm, HLm, LHm, and HHm subbands. The LLm subband at

any level represents a good approximation of the original image at lower resolution.

Every stage of the inverse dyadic 2D-DWT combines the LLm, HLm, LHm, and HHm

subbands to reproduce the LLm−1, m = M, M − 1…1. The subbands are organized

into M+1 resolution levels R0, R1 … RM. Each resolution level Rm, 0 ≤ m ≤ M, is

responsible to recover the image at a specific size which is equal to 1/22(M−m) the

original image. The lowest resolution level R0 contains the LLM subband only. Each

one of the next levels contains the three HLM−m+1, LHM−m+1, and HHM−m+1

subbands that are compulsory to rebuilt the LLM−m subband during the inverse 2D-

DWT process [5, 6]. Figure 1 illustrates the forward and inverse 2D-DWT using two

decomposition levels (M = 2). The first level decomposes the image into LL1, HL1, LH1, and HH1 subbands. The second level decomposes the LL1 subband into LL2, HL2, LH2, and HH2 subbands. For M = 2, there are three resolution levels (R0, R1,

and R2). At the decoder side, an image at the lowestmost resolution with a size equal

to 1/22(M−m) = 1/22(2−0) = 1/16 the image size can be gotten directly from the LL2 subband. The image may be reconstructed at a higher resolution by combining

the LL2 subband with the three subbands of R1 (HL2, LH2, and HH2), and performing

one stage of inverse 2D-DWT to obtain the LL1 with size equal to 1/22(2−1) = 1/4

the image size. Finally, the image may be reconstructed at the entire size (full-

resolution) by combining the LL1 subband with the three subbands of R2 (HL1, LH1,

and HH1), and carrying out the last stage of the inverse 2D-DWT to obtain a replica

of the original image. Thus, a resolution scalable bitstream can be attained easily if

the resolution levels are encoded successively and they are identifiable within the

compressed bitstream [3].

The set partitioning in hierarchical trees (SPIHT) [7] is one of the benchmarks QSIC

algorithms [8, 9]. It has relatively low computational complexity, and has a good

MSE vs. bit per pixel performance. In brief, SPIHT first applies the dyadic 2D-DWT

to the image. Then, it computes a maximum threshold T based on the maximum

wavelet coefficient in the image. In what follows, the wavelet coefficients are called

pixels for simplicity. Next, it encodes the image by multiple bit-plane coding passes

with halving T (T = T/2) in each pass until T = 1. A pixel 𝑐(𝑖, 𝑗) is considered

Figure 1: The forward and inverse 2D-DWT with two decomposition levels (from [15])

LL1 HL1

LH1 HH1

LL2

LH2

HL2

HH2

HL1

HH1 LH1

Forward 2D-DWT

Inverse 2D-DWT

R0

R1

R2

insignificant (ISG) if |𝑐(𝑖, 𝑗)| < 𝑇, and it becomes significant (SG) when |𝑐(𝑖, 𝑗)| ≥𝑇. Similarly, a set of pixels is considered ISG if all of its pixels are ISG, and it

becomes SG when one or more of its pixels become SG. SPIHT builds trees denoted

as the spatial orientation trees (SOTs) by exploiting the correlation between the

pixels across the different resolution levels of the dyadic 2D-DWT as follows: the

pixels in LLM subband (level R0) are grouped into (2×2) pixels. The top-left pixel in

each group is excluded (i.e., it does not belong to any SOT). Each one of the other

three pixels that is located at (i, j) is considered as a root to four pixels located in

LHM, HLM, and HHM subbands respectively (level R1) according to its orientation.

More precisely, the top-right pixel is linked to four pixels in LHM, the down-left

pixel is linked to four pixels in HLM, and the down-right pixel is linked to four pixels

in HHM. These four pixels are referred to as the offspring O(i, j) of the root located

at (i, j). Then, each one of O(i, j) is also in turn considered as a root to four offspring

in LHM−1, HLM−1, and HHM−1 subbands (level R2). This recursive linking of the

roots continues till the LH2, HL2, and HH2 subbands (level RM1) is reached. That is,

the pixels in LH1, HL1, and HH1 (level RM) cannot be roots as they are the leaves of

tree. Any root at coordinates (i, j) located in levels R1 to RM1, the coordinates of its

four offspring O(i, j) = {(2i, 2j), (2i+1, 2j), (2i, 2j+1), (2i+1, 2j+1)}, which are

located at levels R2 to RM respectively. The SPIHT assumes that for a given SOT, if

its parent root is ISG, then it is expected that all pixels in the SOT are also ISG.

Hence, the complete SOT can be encoded in a single bit.

Unfortunately, SPIHT needs an enormous computer memory to save the coordinates

of the pixels, and the roots of the SOTs. More specifically, it employs three linked

lists labelled the list of insignificant pixels (LIP), the list of significant pixels (LSP),

and the list of insignificant sets (LIS). These lists need a computer memory around

2-3 times the DWT image [10]. In addition, the memory management of the linked

lists is complex and time consuming because they must be accessed randomly due

to adding/removing elements to/from them continually. Furthermore, the length of

each list cannot pre-fixed as the number of ISG and SG pixels, and the ISG SOTs is

not known. Therefore, we either use the dynamic memory approach or initialize each

list to the maximum size. Regrettably, the first solution is very complex, while the

second one increases the memory requirements further [11]. Lastly, the spanning of

the SOTs across the different resolution levels together with the random access of

the lists, inhibit to exploit the multi-resolution features of the dyadic 2D-DWT for

producing a resolution scalable bitstream [3].

Most reduced memory SPIHT algorithms that exist in the literature adopt the linear

indexing technique to map the DWT image into a 1D array of the same image size

[12-14]. However, this technique demands either storing the DWT image into the

main memory and then writing it into a 1D array or both DWT image and the 1D

array must be available in the RAM at the same time [15]. Unfortunately, the former

solution is time-consuming while the latter one demands extra memory equals to the

DWT image [11]. These constrains prohibit to use this approach for low memory

and/or low power processing units such as wireless sensors [16].

A. K. Al-Janabi proposed a reduced memory SPIHT called the Single List SPIHT

(SLS) without using the linear indexing technique [17]. It employs one list of fixed

size equal to ¼ the DWT image, and an average of 2.25 bits/pixel markers. It was

demonstrated that the SLS algorithm kept nearly the same complexity and had better

performance than the original SPIHT algorithm, with memory saving of about 75%.

Monauwer et al. [18] mitigated the high memory requirements and the lack of

resolution scalability in the SPIHT is his Listless Highly Scalable-SPIHT (LHS-

SPIHT) algorithm. It replaced the lists by state marker bits with average memory of

4 bits/pixel. Unfortunately, LHS-SPIHT must test all the pixels and the all roots of

the SOTs (which are lied in resolution levels R0 RM-1) two times in each bit-plane

coding pass. Thus, the complexity of LHS-SPIHT rises significantly compared with

the original SPIHT. Equally important, the algorithm also adopts the linear indexing

technique. Hence, it has the same cons mentioned above.

In [15], A. K. Al-Janabi et. al., proposed the Highly Scalable Listless SPIHT (HSLS)

algorithm. HSLS has the following advantages over LHS-SPIHT:

 It does not rely on the linear indexing technique. Hence, it avoids the

complexity or memory increment as clarified above.

 It needs to examine at most 1/4 the image pixels only in each bit-plane coding

pass. In contrast, the LHS-SPIHT algorithm must examine all the image pixels

twice in each coding pass.

 The total memory of the state marker bits is 2.5 bits per pixel instead of 4.

 HSLS has better performance especially when the image is reconstructed at

low resolution.

However, the HSLS algorithm also suffers from some complexity increment and

performance decrement due to removing all lists. In this paper, we first introduce the

Modified SLS algorithm (MSLS). The modifications reduce the complexity of the

SLS algorithm and enhance algorithm’s performance slightly. Then, we present the

Highly Scalable-MSLS (HS-MSLS) which is the major contribution of the work.

The HS-MSLS upgrades the MSLS to produce a highly scalable bitstream by adding

resolution scalability to it. The main feature of the proposed HS-MSLS algorithm is

that the resolution scalability is added without any noticeable complexity increment

nor performance decrement as compared to MSLS. In contrast, most of the existing

highly scalable algorithms may involve complexity increment and/or performance

deterioration in comparison to the rate scalable counterpart algorithms [18, 19].

The rest of the paper is ordered as follows: section II summarizes the SLS algorithm.

Section III introduces the proposed MSLS and HS-MSLS algorithms. Section IV

provides the simulation results of our work, and other related works for the purpose

of comparison. Finally, section V concludes the paper.

II. Overview of the SLS Algorithm

Like other wavelet-based algorithms, the image is first transformed using an M-

levels (M = 3  6) of the 2D-DWT. The (9, 7) 2D-DWT [6] is usually employed for

lossy image compression, while the (5, 3) 2D-DWT [20] is employed for lossless

image compression. The (9, 7) transform is more efficient than the (5, 3) transform

in terms of energy compaction. However, the (9, 7) transform produces floating-

point numbers, while the (5, 3) transform produces integer numbers. So, if the (9, 7)

transform is selected, the floating-point coefficients must be quantized to the nearest

integers before coding. This is the main source of information loss.

The central idea of SLS is that the pixels stored in LSP and LIP are the four offspring

of a root that has a SG SOT. These offspring can therefore be inferred from the SG

root itself rather than being kept in these lists. Eliminating these lists will reduce the

memory greatly as LIP and LSP occupy about 75% of the total memory. At the first

glance, it seems that the need to deduce the four offspring from the parent root leads

to complexity increment. However, eliminating these lists reduces the complexity of

the algorithm due to reducing the memory management overhead.

The SLS algorithm employs a single list only labelled the List of Root Sets (LRS)

that stores the (i, j) coordinates of the roots of the SOTs. As shown, these roots lie

in the subbands that belong to R0RM-1, i.e., except the subbands that belong to RM

(HL1, LH1, and HH1subbands). So, the maximum size of LRS is ¼ the image size.

Additionally, when a root is added to LRS, it won’t be removed. This coding

paradigm enables to implement LRS as an ordered simple 1D array that is

sequentially accessed using the first in first out (FIFO) method which is widely

known to be the fastest access method [11]. Clearly, by making memory

management simpler, the algorithm's complexity will be reduced further.

The function of the LIP and LSP is performed by providing each pixel 𝑐(𝑖, 𝑗) by 2

bits state marker referred to as 𝜎(𝑖, 𝑗) to specify the pixel’s type as follows:

 𝜎(𝑖, 𝑗) = 0: 𝑐(𝑖, 𝑗) is an ISG or untested pixel.

 𝜎(𝑖, 𝑗) = 1: 𝑐(𝑖, 𝑗) becomes SG.

 𝜎(𝑖, 𝑗) = 2: 𝑐(𝑖, 𝑗) is a visited SG (VSG) pixel that is found SG in one of the

previous coding passes.

Each entry in LRS has a one-bit marker termed 𝛿(𝑖, 𝑗) that is initialized to 0 to

indicate that the root 𝑟(𝑖, 𝑗) is ISG and updated to 1 when 𝑟(𝑖, 𝑗) becomes SG. Since

the maximum size LRS is ¼ the image size, so the average memory of the overall

marker bits ( and ) is 2.25 bits/pixel.

At initialization, SLS first computes the maximum bit-plane (𝑏𝑚𝑎𝑥) based on the

maximum pixel value in the quantized DWT image (W) as follows:

 𝑏𝑚𝑎𝑥 = ⌊𝑙𝑜𝑔2 {𝑚𝑎𝑥∀(𝑖,𝑗)∈𝑊|𝑐(𝑖, 𝑗)|}⌋ (1)

 𝑏𝑚𝑎𝑥 is then sent to the decoder within the bitstream. Next, it sets the threshold T to:

 𝑇 = 2𝑏𝑚𝑎𝑥 (2)

Finally, it saves the (𝑖, 𝑗) coordinates of every pixel in LLM that has offspring in LRS

as ISG roots, i.e., 𝛿(𝑖, 𝑗) = 0.

After initialization, SLS performs several coding passes. Each coding pass

corresponds to a given threshold T, and consists of the sorting and the refinement

sub-passes. The sorting sub-pass starts by coding all the pixels in LLM subband as

follows: if 𝑐(𝑖, 𝑗) is untested or yet ISG (𝜎(𝑖, 𝑗) = 0)), it is tested for significance.

If it becomes SG, then 1, and its sign bit are sent to the bitstream, its marker bit 𝜎(𝑖, 𝑗) is updated to 1 to indicate that 𝑐(𝑖, 𝑗) becomes SG. If 𝑐(𝑖, 𝑗) is still ISG, a 0

is sent to the bitstream. On the other hand, if 𝑐(𝑖, 𝑗) is found to be SG (𝑖. 𝑒. , 𝜎(𝑖, 𝑗) =1)), it is marked as VSG by setting 𝜎(𝑖, 𝑗) = 2, in order to be refined latter on in the

current coding pass. This step is necessary to differentiate between these pixels and

the pixels that will become SG during the current pass. Next, every root 𝑟(𝑖, 𝑗) in

LRS is tested and coded accordingly. If 𝑟(𝑖, 𝑗) is yet ISG (𝛿(𝑖, 𝑗) = 0)), its SOT is

constructed and its significance is checked with respect to T. If the SOT stills ISG,

a 0 is sent to the bitstream. If it becomes SG, a 1 is sent to the bitstream, 𝛿(𝑖, 𝑗) is

updated to 1 to indicate that 𝑟(𝑖, 𝑗) is now SG. Then, each one of its four offspring

O(i, j) is coded as a pixel as given above. Finally, if O(i, j) don’t lie in the LH1, HL1,

and HH1 subbands, i.e., in the highest resolution level (RM), O(i, j) are added to LRS

as ISG roots be coded in the same manner at the current coding pass. On the other

hand, if the 𝑟(𝑖, 𝑗) is found to be SG in one of the previous passes (𝛿(𝑖, 𝑗) = 1), then

its O(i, j) are recomputed, and only the ISG and SG offspring (i.e., except the VSG

ones) are coded as pixels as given above.

In the refinement sub-pass, all the pixels in LLM subband that are marked as VSG

pixels are refined. Then, the LRS scanned for the SG roots only. For each SG root,

its O(i, j) are also recomputed, and only the VSG ones are refined. A VSG pixel 𝑐(𝑖, 𝑗) is refined to a more bit precision by sending its bth bit to the bitstream. The

coding pass terminates by updating T to T/2 to begin a new coding pass. To give

users the option to recover the image at the desired quality and/or resolution, a

scalable image compression system should encode the DWT image at the full bit

rate and resolution. As a result, the encoder must keep going until all bits of all image

pixels have been encoded (i.e., until T = 1). On the other hand, the decoder stops

when the target bit-rate is attained.

III. The Proposed Algorithms

This section first introduces the modified SLS (MSLS). The MSLS algorithm has

lower complexity, and slightly better performance than the SLS algorithm. Then, we

present the proposed HS-MSLS, which is the main contribution of the paper. HS-

MSLS adds resolution scalability to the MSLS to produce a highly scalable bitstream

that is both quality and resolution scalable.

a) The MSLS Algorithm

The MSLS algorithm introduces the following two modifications to the SLS that

lower its computational complexity and improve its performance especially at low

bit-rates. The first modification is based on the observation that the maximum pixel

value in the LLM subband is 4-8 times the maximum pixel value in all the other

subbands. This is because LLM represents the average (DC) value of all the image

pixels. So, the maximum bit-plane of LLM (𝑏𝑚𝑎𝑥𝐿𝐿𝑀) is greater than the maximum bit-

plane of all the other subbands (𝑏𝑚𝑎𝑥𝑂𝑡ℎ𝑒𝑟) by 2-3 or more bits. For instance, for the test

images Lena, Goldhill, Mandrill, and Barbara, the value of 𝑏𝑚𝑎𝑥𝐿𝐿𝑀 and 𝑏𝑚𝑎𝑥𝑂𝑡ℎ𝑒𝑟 are {12,

10}, {9, 6}, {12, 9}, and {12,10} respectively. Hence, as the threshold T depends on 𝑏𝑚𝑎𝑥𝐿𝐿𝑀 , then in the first 2 or 3 (or more) bit-plane coding passes, only the pixels in LLM may be SG, and the pixels in all other subbands are ISG. Consequently, all the

SOTs are also ISG. Therefore, there will be a waste in the processing power,

processing time, and the transmitted bits in attempting to test and code these ISG

SOTs. The proposed solution is to employ two thresholds T1 and T2, such that 𝑇1 =2𝑏𝑚𝑎𝑥𝐿𝐿𝑀
, and 𝑇2 = 2𝑏𝑚𝑎𝑥𝑜𝑡ℎ𝑒𝑟

. The initial threshold T is set to T1. Then, the algorithm

performs several mini coding passes that encodes the pixels in LLM subband only

until T = T2. At T = T2, the algorithm performs the usual complete coding passes.

The second and the most important modification is the elimination of the need to

recompute the four offspring that belong to every SG root during the sorting sub-

pass and during the refinement sub-pass. The idea is based on that when a root 𝑟(𝑖, 𝑗)

that is lied in levels R0 to RM2 (i.e., except RM1) becomes SG, its four offspring

O(i, j) will be added to LRS. So, at the next coding passes, there is no need to

recompute them again as they are already stored in LRS. That is, we need to

recompute the offspring of the SG roots that are lied in the level RM1 only instead

of recomputing the offspring of the SG roots that are lied in levels R0 to RM1 as done

in SLS. Evidently, this will reduce the algorithm’s complexity. It worth noting that,

according to this idea, every entry of LRS now plays the role of a root and a pixel.

Algorithm 1 gives the pseudo-code of the MSLS encoder, where W is the DWT

image, LLMX represents the LLM subband minus the excluded top-left pixel in each

group of 22 pixels, and LLMP represents the excluded pixels in LLM. The MSLS is

initialized by adding the (i, j) coordinates of the pixels in LLMX to LRS, and setting

all state marker bits to 0. The encoder then performs the mini passes until T = T2. In

each one of these mini passes, every ISG or SG pixel in LLM (i.e., with 𝜎(𝑖, 𝑗) =0 𝑜𝑟 1) is encoded in the same manner done in SLS. The 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗) procedure

given in algorithm 2 illustrates this step in details. Next, every pixel in LLM that is

marked as a VSP (i.e., with 𝜎(𝑖, 𝑗) = 2) in the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗) during current or any

one of the previous coding passes, is refined by the 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗) procedure given

in algorithm 3.

Starting from T = T2, the algorithm implements the complete coding passes. Every

pass begins by coding every pixel in LLMP as given above. Then, the LRS is encoded

by three sub-passes. The first and the third sub-passes deal with the entries of LRS

as pixels, while the second one deals with them as roots of the SOTs. In the first sub-

pass, every ISG or SG entry (𝑖, 𝑗) is encoded by the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗). At the same

time, if the corresponding root 𝑟(𝑖, 𝑗) is found SG in a previous pass, i.e., 𝛿(𝑖, 𝑗) =1, and it is lied in level RM1, then its O(i, j) are recomputed, and each ISG or SG

one of them is encoded by the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗). In the second sub-pass, every root 𝑟(𝑖, 𝑗) that is still ISG (i.e., with 𝛿(𝑖, 𝑗) = 0), it is encoded in a manner similar to

that of the SLS algorithm. In the third pixel sub-pass, every (𝑖, 𝑗) entry marked VSP

during the current or a previous pass, is refined by the 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗). At the same

time if the root 𝑟(𝑖, 𝑗) is found SG in a previous pass, and lied in level RM1, then its

O(i, j) are also recomputed, and each one of them marked as a VSP, is refined by the 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗).

The MSLS algorithm is clarified using figure 2 which depicts a (1616) pixels DWT

image with M = 3 decomposition levels. The figure also shows the SOTs originated

from the top-right pixel (marked by *), where every SOT is represented by a different

color. LRS is initialized by the LL3X, which are three pixels (0,1), (1,0), and (1,1). In

the mini passes, which are devoted to LL3, the algorithm first sends the ISG and SG

pixels in to the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗) for encoding. Then, it sends the VSG pixels to the 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗) for refining until T = T2. At this instant, the encoder does the complete

coding passes. Then, it sends pixels stored in LRS (which are lied in R0) to the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗). Next, it tests the roots in LRS to see if there are SG SOTs. Figure 3

depicts the content of the LRS during the 1st complete coding pass. Suppose that the

root (0,1) has SG SOT (the yellow one). So, O(0,1) = {(0,2), (0,3), (1,2), (1,3)} are

sent to the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑐𝑖,𝑗), and added to LRS because the parent root (0,1), is lied

in R0 (LL3). The added offspring are considered as roots to processed exactly as their

parent roots. Suppose again that the roots (0,2), and (1,3) have SG SOTs. So, O(0,2)

= {(0,2), (0,3), (1,2), (1,3)}, and O(1,3) = {(2,6), (2, 7), (3,6), (3,7)}, are also sent to

the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗), and added to LRS because roots (1,2), and (1,3) are lied in R1

(HL3). Suppose finally that the root (1,4) has a SG SOT, so O(1,4) = {(2, 8), (2, 9),

(3,8), (3,9)} are sent to the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗), but they will not be added to LRS because

the root (1,4) is lied in R2 (i.e., its offspring are the leaves of the SOT that are lied in

R3). During the refinement sub-pass, only the pixels (0,1), (1,0), and (1,1) may be

VSG pixels to be passed to 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗) because they are previously encoded

during the mini passes. All other pixels are either ISG or just become SG. It is worth

noting that during the next coding pass, all the current pixels in LRS are sent to the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗). In addition, the root (1,4) is lied in R2, and found SG at the 1st pass.

So, its four offspring are recomputed because they were not added to LRS in the last

pass. Notice that, for this case, the size of LRS is equal to (1616)/4 = 64 entry.

In comparison to SLS, it was necessary to recompute the offspring of every SG root

in LRS two times in every coding pass. For this example, there are four SG roots

with total offspring recomputing equal to 8 times. On the other hand, MSLS needs

to recompute the offspring two times of the SG roots that are located in RM-1 only

which is one root with total offspring recomputing equal to 2 times. The reduction

in the algorithm’s complexity is obvious.

1. Initialization

 2𝑏𝑚𝑎𝑥𝐿𝐿𝑀 = ⌊𝑙𝑜𝑔2 {𝑚𝑎𝑥∀(𝑖,𝑗)∈𝐿𝐿𝑀|𝑐(𝑖, 𝑗)|}⌋;

 2𝑏𝑚𝑎𝑥𝑜𝑡ℎ𝑒𝑟 = ⌊𝑙𝑜𝑔2 {𝑚𝑎𝑥∀(𝑖,𝑗)∈ 𝑊−𝐿𝐿𝑀|𝑐(𝑖, 𝑗)|}⌋ ;
 𝑠𝑒𝑛𝑑 2𝑏𝑚𝑎𝑥𝐿𝐿𝑀 𝑎𝑛𝑑 2𝑏𝑚𝑎𝑥𝑜𝑡ℎ𝑒𝑟 𝑡𝑜 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚;
 𝑇1 = 2𝑏𝑚𝑎𝑥𝐿𝐿𝑀 ; 𝑇2 = 2𝑏𝑚𝑎𝑥𝑜𝑡ℎ𝑒𝑟 ; 𝑇 = 𝑇1;
 𝑎𝑑𝑑 𝑎𝑙𝑙 (𝑖, 𝑗) ∈ 𝐿𝐿𝑀𝑋 𝑡𝑜 𝐿𝑅𝑆;

2. Coding the mini passes 𝑤ℎ𝑖𝑙𝑒 𝑇 ≥ 𝑇2 𝑑𝑜:
2.1 ∀ (𝑖, 𝑗) ∈ 𝐿𝐿𝑀 𝑑𝑜: 𝑖𝑓 𝜎(𝑖, 𝑗) = 0 𝑜𝑟 1 𝑑𝑜: 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗);
2.2 ∀ (𝑖, 𝑗) ∈ 𝐿𝐿𝑀 𝑑𝑜: 𝑖𝑓 𝜎(𝑖, 𝑗) = 2 𝑑𝑜: 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗);
2.3 𝑇 = 𝑇/2;

3. The Coding passes

3.1 𝑇 = 𝑇2;
3.2 ∀ (𝑖, 𝑗) ∈ 𝐿𝐿𝑀𝑃 𝑑𝑜: 𝑑𝑜 𝑠𝑡𝑒𝑝 2.1 & 2.2;
3.3 ∀ (𝑖, 𝑗) ∈ 𝐿𝑅𝑆 𝑑𝑜:
 𝑖𝑓 𝜎(𝑖, 𝑗) = 0 𝑜𝑟 1 𝑑𝑜: 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗);
 𝑖𝑓 𝛿(𝑖, 𝑗) = 1 & (𝑖, 𝑗) ∈ 𝑅𝑀−1 𝑑𝑜:
 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑂(𝑖, 𝑗);
 ∀ 𝑂(𝑖, 𝑗) ∈ (𝑖, 𝑗) 𝑑𝑜:
- 𝑖𝑓 𝜎(𝑂(𝑖, 𝑗)) = 0 𝑜𝑟 1 𝑑𝑜: 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗);

3.4 ∀ (𝑖, 𝑗) ∈ 𝐿𝑅𝑆 𝑑𝑜:
 𝑖𝑓 𝜎(𝑖, 𝑗) = 2 𝑑𝑜: 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗);
 𝑖𝑓 𝛿(𝑖, 𝑗) = 1 & (𝑖, 𝑗) ∈ 𝑅𝑀−1 𝑑𝑜:
 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑂(𝑖, 𝑗);
 ∀ 𝑂(𝑖, 𝑗) ∈ (𝑖, 𝑗) 𝑑𝑜:
- 𝑖𝑓 𝜎(𝑂(𝑖, 𝑗)) = 2 𝑑𝑜: 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗);

3.5 ∀ (𝑖, 𝑗) ∈ 𝐿𝑅𝑆 𝑑𝑜:
 𝑖𝑓 𝛿(𝑖, 𝑗) = 0 𝑑𝑜:
 𝑖𝑓 𝑆𝑂𝑇(𝑖, 𝑗) 𝑖𝑠 𝑆𝐺 𝑑𝑜:
- 𝑠𝑒𝑛𝑑 1 𝑡𝑜 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚;
- 𝛿(𝑖, 𝑗) = 1;
- 𝑎𝑑𝑑 𝑂(𝑖, 𝑗) 𝑡𝑜 𝐿𝑅𝑆;
- ∀ 𝑂(𝑖, 𝑗) 𝑑𝑜: 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥𝑒𝑙(𝑂(𝑖, 𝑗));
 𝑒𝑙𝑠𝑒 𝑑𝑜: 𝑠𝑒𝑛𝑑 0 𝑡𝑜 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚;

3.6 𝑇 = 𝑇/2; 𝑎𝑛𝑑 𝑔𝑜𝑡𝑜 𝑠𝑡𝑒𝑝 3.2 𝑖𝑓 𝑛𝑒𝑒𝑑𝑒𝑑;
Algorithm 1: The MSLS encoder

𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗){

 𝑖𝑓 𝜎(𝑖, 𝑗) = 0 𝑑𝑜:
 𝑖𝑓 |𝑐(𝑖, 𝑗)| ≥ 𝑇 𝑑𝑜:

- 𝑠𝑒𝑛𝑑 1 & 𝑠𝑖𝑔𝑛 𝑏𝑖𝑡 𝑜𝑓 𝑐(𝑖, 𝑗)
 𝑡𝑜 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚;
- 𝜎(𝑖, 𝑗) = 1;
- 𝑖𝑓𝑐(𝑖, 𝑗) > 0 𝑑𝑜:
 𝑐(𝑖, 𝑗) = 𝑐(𝑖, 𝑗) − 𝑇;
- 𝑒𝑙𝑠𝑒𝑖𝑓 𝑐(𝑖, 𝑗) < 0 𝑑𝑜:
 𝑐(𝑖, 𝑗) = 𝑐(𝑖, 𝑗) + 𝑇;

 𝑒𝑙𝑠𝑒𝑖𝑓 |𝑐(𝑖, 𝑗)| < 𝑇 𝑑𝑜: 𝑠𝑒𝑛𝑑 0 𝑡𝑜 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚;
 𝑒𝑙𝑠𝑒𝑖𝑓 𝜎(𝑖, 𝑗) = 1 𝑑𝑜: 𝜎(𝑖, 𝑗) = 2; }

Algorithm 2: The 𝑪𝒐𝒅𝒆_𝑷𝒊𝒙(𝒊, 𝒋)

procedure

𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗){

 𝑖𝑓 |𝑐(𝑖, 𝑗)| ≥ 𝑇 𝑑𝑜:
- 𝑠𝑒𝑛𝑑 1 𝑡𝑜 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚;
- 𝑖𝑓𝑐(𝑖, 𝑗) > 0 𝑑𝑜: 𝑐(𝑖, 𝑗) = 𝑐(𝑖, 𝑗) − 𝑇;
- 𝑒𝑙𝑠𝑒𝑖𝑓 𝑐(𝑖, 𝑗) < 0 𝑑𝑜:
 𝑐(𝑖, 𝑗) = 𝑐(𝑖, 𝑗) + 𝑇;

 𝑒𝑙𝑠𝑒𝑖𝑓 |𝑐(𝑖, 𝑗)| < 𝑇 𝑑𝑜:
 𝑠𝑒𝑛𝑑 0 𝑡𝑜 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚; }

Algorithm 3: The 𝑹𝒆𝒇_𝑷𝒊𝒙(𝒊, 𝒋)

procedure

 0

1

2

3

4

5

5

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

0  *              
1              
2            
3            
4        
5        
6        
7        
8
9
10
11
12
13
14
15

Figure 2. Part of the SOTs for a (1616) pixels 2D-DWT image with three decomposition levels

Figure 3: The content of the LRS. a) at the 1st complete pass; b) at the 2nd complete pass

Resolution

level

LRS

index

LRS content during the 1st

complete coding pass

R0

0 (0,1)

1 (1, 0)

2 (1,1)

R1

3 (0,2)

O
(0

,1
)

4 (0, 3)

5 (1,2)

6 (1,3)

R2

7 (0,4)

O
(0

,2
)

8 (0,5)

9 (1,4)

10 (1,5)

11 (2,6)

O
(1

,3
)

12 (2,7)

13 (3,6)

14 (3,7)

 19

…

 63

 (a)

Resolution

level

LRS

index

LRS content during the

2nd complete coding pass

R0

0 (0,1)

1 (1, 0)

2 (1,1)

R1

3 (0,2)

4 (0, 3)

5 (1,2)

6 (1,3)

R2

7 (0,4)

8 (0,5)

9 (1,4)

10 (1,5)

11 (2,6)

12 (2,7)

13 (3,6)

14 (3,7)

R1

15 (2,0)

O
(1

,0
)

16 (2,1)

17 (3,0)

18 (3,1)

R2

19 (2,4)

O
(1

,2
)

20 (2,5)

21 (3,4)

22 (3,5)

 23

…

 63

(b)

The decompression algorithm undoes the same steps of the encoder. However, it

doesn’t need to do the significance test for the pixels and the SOTs. That is, when

the decoder receives 0/1, this means that the corresponding pixel or SOT is ISG/SG

respectively. So, the decoder doesn’t need to build the SOTs and check their
significance as the corresponding received bit determines this. This leads to make

the decompression algorithm runs faster than the compression one. This feature is

very valuable for scalable image compression schemes since images are compressed

once but may be decompressed several times [3, 21]. Algorithms 4, 5, and 6 gives

1. Initialization

 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 2𝑏𝑚𝑎𝑥𝐿𝐿𝑀 𝑎𝑛𝑑 2𝑏𝑚𝑎𝑥𝑜𝑡ℎ𝑒𝑟 𝑓𝑟𝑜𝑚 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚;
 𝑇1 = 2𝑏𝑚𝑎𝑥𝐿𝐿𝑀 ; 𝑇2 = 2𝑏𝑚𝑎𝑥𝑜𝑡ℎ𝑒𝑟 ; 𝑇 = 𝑇1;
 𝑎𝑑𝑑 𝑎𝑙𝑙 (𝑖, 𝑗) ∈ 𝐿𝐿𝑀𝑋 𝑡𝑜 𝐿𝑅𝑆;

2. Decoding the mini passes 𝑤ℎ𝑖𝑙𝑒 𝑇 ≥ 𝑇2 𝑑𝑜:
2.1 ∀ (𝑖, 𝑗) ∈ 𝐿𝐿𝑀 𝑑𝑜: 𝑖𝑓 𝜎(𝑖, 𝑗) = 0 𝑜𝑟 1 𝑑𝑜: 𝐷𝑒𝑐𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗);
2.2 ∀ (𝑖, 𝑗) ∈ 𝐿𝐿𝑀 𝑑𝑜: 𝑖𝑓 𝜎(𝑖, 𝑗) = 2 𝑑𝑜: 𝐷𝑒𝑟𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗);
2.3 𝑇 = 𝑇/2;

3. The Coding passes

3.1 𝑇 = 𝑇2;
3.2 ∀ (𝑖, 𝑗) ∈ 𝐿𝐿𝑀𝑃 𝑑𝑜: 𝑑𝑜 𝑠𝑡𝑒𝑝 2.1 & 2.2;
3.3 ∀ (𝑖, 𝑗) ∈ 𝐿𝑅𝑆 𝑑𝑜:
 𝑖𝑓 𝜎(𝑖, 𝑗) = 0 𝑜𝑟 1 𝑑𝑜: 𝐷𝑒𝑐𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗);
 𝑖𝑓 𝛿(𝑖, 𝑗) = 1 & (𝑖, 𝑗) ∈ 𝑅𝑀−1 𝑑𝑜:
 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑂(𝑖, 𝑗);
 ∀ 𝑂(𝑖, 𝑗) ∈ (𝑖, 𝑗) 𝑑𝑜:
- 𝑖𝑓 𝜎(𝑂(𝑖, 𝑗)) = 0 𝑜𝑟 1 𝑑𝑜: 𝐷𝑒𝑐𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗);

3.4 ∀ (𝑖, 𝑗) ∈ 𝐿𝑅𝑆 𝑑𝑜:
 𝑖𝑓 𝜎(𝑖, 𝑗) = 2 𝑑𝑜: 𝐷𝑒𝑟𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗);
 𝑖𝑓 𝛿(𝑖, 𝑗) = 1 & (𝑖, 𝑗) ∈ 𝑅𝑀−1 𝑑𝑜:
 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑂(𝑖, 𝑗);
 ∀ 𝑂(𝑖, 𝑗) ∈ (𝑖, 𝑗) 𝑑𝑜:
- 𝑖𝑓 𝜎(𝑂(𝑖, 𝑗)) = 2 𝑑𝑜: 𝐷𝑒𝑟𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗);

3.5 ∀ (𝑖, 𝑗) ∈ 𝐿𝑅𝑆 𝑑𝑜:
 𝑖𝑓 𝛿(𝑖, 𝑗) = 0 𝑑𝑜:
 𝑖𝑓 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚 = 1 𝑑𝑜:
- 𝛿(𝑖, 𝑗) = 1;
- 𝑎𝑑𝑑 𝑂(𝑖, 𝑗) 𝑡𝑜 𝐿𝑅𝑆;
- ∀ 𝑂(𝑖, 𝑗) 𝑑𝑜: 𝐷𝑒𝑐𝑜𝑑𝑒_𝑃𝑖𝑥𝑒𝑙(𝑂(𝑖, 𝑗));

3.6 𝑇 = 𝑇/2; 𝑎𝑛𝑑 𝑔𝑜𝑡𝑜 𝑠𝑡𝑒𝑝 3.2 𝑖𝑓 𝑛𝑒𝑒𝑑𝑒𝑑;
Algorithm 4: The MSLS decoder

 𝐷𝑒𝑐𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗){

 𝑖𝑓 𝜎(𝑖, 𝑗) = 0 𝑑𝑜:
 𝑖𝑓 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚 = 1

- 𝜎(𝑖, 𝑗) = 1;
- 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑠𝑖𝑔𝑛 𝑏𝑖𝑡 𝑓𝑟𝑜𝑚 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚;
- 𝑖𝑓𝑠𝑖𝑔𝑛 𝑏𝑖𝑡 = 0 𝑑𝑜: 𝑐(𝑖, 𝑗) = 1.5𝑇;
- 𝑒𝑙𝑠𝑒 𝑑𝑜: 𝑐(𝑖, 𝑗) = −1.5𝑇;

 𝑒𝑙𝑠𝑒𝑖𝑓 𝜎(𝑖, 𝑗) = 1 𝑑𝑜: 𝜎(𝑖, 𝑗) = 2; }

Algorithm 5: The 𝑫𝒆𝒄𝒐𝒅𝒆_𝑷𝒊𝒙(𝒊, 𝒋)

procedure

 𝐷𝑒𝑟𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗){

 𝑖𝑓 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚 = 1

- 𝑖𝑓𝑐(𝑖, 𝑗) > 0 𝑑𝑜:
 𝑐(𝑖, 𝑗) = 𝑐(𝑖, 𝑗) + ⌊𝑇/2⌋;
- 𝑒𝑙𝑠𝑒𝑖𝑓 𝑐(𝑖, 𝑗) < 0 𝑑𝑜:
 𝑐(𝑖, 𝑗) = 𝑐(𝑖, 𝑗) − ⌊𝑇/2⌋;
 𝑒𝑙𝑠𝑒 𝑑𝑜:
- 𝑖𝑓𝑐(𝑖, 𝑗) > 0 𝑑𝑜:
 𝑐(𝑖, 𝑗) = 𝑐(𝑖, 𝑗) − ⌊𝑇/2⌋;
- 𝑒𝑙𝑠𝑒𝑖𝑓 𝑐(𝑖, 𝑗) < 0 𝑑𝑜:
 𝑐(𝑖, 𝑗) = 𝑐(𝑖, 𝑗) + ⌊𝑇/2⌋; }

Algorithm 6: The 𝑫𝒆𝒓𝒆𝒇_𝑷𝒊𝒙(𝒊, 𝒋)

procedure

the pseudo-codes of the MSLS decoder, the 𝐷𝑒𝑐𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗) procedure, and the 𝐷𝑒𝑟𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗) procedure respectively. A part from the above note, the steps of the

MSLS encoder and decoder are identical. However, the 𝐷𝑒𝑐𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗) and the 𝐷𝑒𝑟𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗) differ from the 𝐸𝑛𝑐𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗) and 𝑟𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗) by the pixel

reconstruction process. At the decoder, the initial value of all image pixels is 0.

During the 𝐷𝑒𝑐𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗), if 𝑐(𝑖, 𝑗) is yet ISG (𝜎(𝑖, 𝑗) = 0), and the received bit

= 1, then 𝑐(𝑖, 𝑗) becomes SG. So 𝜎(𝑖, 𝑗) is set to 1, and 𝑐(𝑖, 𝑗) is updated to ±1.5T

depending on the received sign bit (0 for positive, and 1 for negative). On the other

hand, if 𝑐(𝑖, 𝑗) is found SG in one of the previous coding passes (𝜎(𝑖, 𝑗) = 1), it is

updated to VSG (𝜎(𝑖, 𝑗) = 2) to be refined. During the 𝐷𝑒𝑟𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗), 𝑐(𝑖, 𝑗) is

refined by updating its value to 𝑐(𝑖, 𝑗) ∓ ⌊𝑇/2⌋ depending on the received bit and its

sign as given in the procedure. Table 1 describes the encoding and decoding

processes for 𝑐(𝑖, 𝑗) = 45 and with initial T = 32. In the first coding pass, the pixel 𝑐(𝑖, 𝑗) is processed by 𝐸𝑛𝑐𝑜𝑑𝑒𝑃𝑖𝑥(𝑖,𝑗)/𝐷𝑒𝑐𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗), while in the other coding

passes, it is processed by 𝑟𝑒𝑓𝑃𝑖𝑥(𝑖,𝑗)/𝐷𝑒𝑟𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗) respectively.

Table 1: The encoding and decoding processes for 𝑐(𝑖, 𝑗) = 45 and T = 32

Coding pass T 𝑐(𝑖, 𝑗) New 𝑐(𝑖, 𝑗) Reason Bitstream Recovered 𝑐̂(𝑖, 𝑗)

1 32 45 45-32 = 13 45  32 1, 0 1.532 = 48

2 16 13 13 13 < 16 0 48  16/2 = 40

3 8 13 13-8 = 5 13  8 1 40 + 8/2 = 44

4 4 5 5-4 = 1 5  4 1 44 + 4/2 = 46

5 2 1 1 1 < 2 0 46  2/2 = 45

6 1 1 1-1 = 0 1  1 1 45 + 1/2 = 45

b) The HS-MSLS Algorithm

As stated before, a highly scalable bitstream must be both quality and resolution

scalable. So, a QSIC algorithm like MSLS can be upgraded to be HSIC by encoding

the resolution levels (R0  RM) in each coding pass successively. That is, each coding

pass must encode all the data that belongs to Rm before proceeding to the next level

Rm+1. In addition, sufficient resolution tag markers Gm, 0 ≤ m ≤ M, must be added

to the bitstream to identify the different resolution levels. Gm represents the length

(in bytes) of the bitstream devoted to the resolution level Rm.

It can be easily shown that the coding paradigm of the MSLS algorithm permits to

attain this object partially. Let Km be the number of pixels stored in LRS that belongs

to the resolution level Rm, 0 ≤ 𝑚 ≤ 𝑀 − 1. Clearly K0 is fixed and equal to the

number of pixels in the LLMX subband which is equal to K0 = 34 |LLM| =

34 |N × N/22M| for an (NN) pixels DWT image with M decomposition levels. For

our example, 𝐾0 = 34 |16 × 16/26| = 3 pixels. So, we can see that each coding pass

already encodes the data that belong to 𝑅0 level first. Referring back to figure 3a,

we can see that during the first coding pass, the data of LRS is also stored in

increasing order of resolution levels. However, 𝐾𝑚, of each level is not fixed as it

depends on the number of the roots that have SG SOTs. This problem can be solved

simply by counting and storing 𝐾𝑚, m = 1, 2 …M1. For our example, 𝐾1 = 4, and 𝐾2 = 8.

The problem becomes more complicated apart from the second pass. Continuing

with the same example, and assume that at this pass, the roots (1,0), and (1,2) have

SG SOTs (the green ones shown in Figure 3b). So, O(1,0) = {(2,0), (2,1), (3,0),

(3,1)} that are lied in 𝑅1, and O(1,2) = {(2,4), (2,5), (3,4), (3,5)}, that are lied in 𝑅2,

are added to the end of LRS. As shown, LRS is not more arranged according to the

resolution levels. The previous solution is not sufficient as we must know the

(separated) portions where the data of the different levels are located in addition to

their sizes. For instance, to encode the data of 𝑅1, we must encode the portion of

data at indices (3-6), and the portion of data at indices (15-18). The same must be

done for 𝑅2. It is worth noting that during each one of the next passes, the number

of separated portions for every resolution level increases. Thus, it will be difficult to

track them.

The proposed solution to this problem is to preserve contiguous fixed-size portions

within the LRS for the data of the different resolution levels referred to as resolution-

dependent portions 𝑃𝑚 such that 𝑃𝑚 is the portion in LRS devoted to store the data

that belong to resolution level 𝑅𝑚, 0 ≤ 𝑚 ≤ 𝑀 − 1. In order to guarantee that 𝑃𝑚

can support all the pixels of 𝑅𝑚, its size must equal to the maximum size of 𝑅𝑚

(𝑘𝑚𝑚𝑎𝑥). Since 𝐾0 is fixed, so 𝑘0𝑚𝑎𝑥 = 𝐾0. It can be shown that for 𝑚 ≥ 1, 𝑘𝑚𝑚𝑎𝑥 is

equal to the total number of pixels in the three subbands HLM−m+1, LHM−m+1, and HHM−m+1 that constitute 𝑅𝑚. As these subbands are of equal sizes, so, 𝑘𝑚𝑚𝑎𝑥 =3|HLM−m+1|. To track these portions, we use two pointers referred to as the portion

start pointer 𝑃𝑆𝑚 and the portion end pointer 𝑃𝐸𝑚. 𝑃𝑆𝑚 stores the index of the first

pixel, and 𝑃𝐸𝑚 stores the index of the last pixel in 𝑃𝑚 respectively. Evidently, 𝑃𝑆0 =0, and 𝑃𝐸0 = 𝑘0𝑚𝑎𝑥 − 1. For 𝑚 ≥ 1, 𝑃𝑆𝑚 = 𝑃𝑆𝑚−1 + 𝑘𝑚−1𝑚𝑎𝑥. 𝑃𝐸𝑚 is initialized by 𝑃𝑆𝑚, and it is updated each time a pixel is added to 𝑃𝑚. Referring back to our case, 𝑘0𝑚𝑎𝑥 = 3 pixels, so 𝑃𝑆0 = 0, and 𝑃𝐸0 = 3 − 1 = 2. Similarly, 𝑃𝑆1 = 𝑃𝐸1 =𝑃𝑆0 + 𝑘0𝑚𝑎𝑥 = 0 + 3 = 3. Lastly, 𝑘1𝑚𝑎𝑥 = 3|𝐿𝐻3| = 12 pixels, so 𝑃𝑆2 = 𝑃𝐸2 =𝑃𝑆1 + 𝑘1𝑚𝑎𝑥 = 3 + 12 = 15.

Figure 4: The content of the adopted resolution-dependent portions LRS used by the proposed

HS-MSLS algorithm. a) at the 1st complete pass; b) at the 2nd complete pass.

The adopted structure of LRS facilitates sorting and tracking the roots and their

offspring according to the resolution level they belong. This is simply achieved: if a

root 𝑟(𝑖, 𝑗) stored at the portion 𝑃𝑚, 0 ≤ 𝑚 ≤ 𝑀 − 2, has a SG SOT, then its four

offspring O(i, j) are added at the end of the next portion 𝑃𝑚+1. Notice that for the

roots that are lied at the portion 𝑃𝑀−1, their offspring are not added to LRS. These

offspring will be deduced from their parent roots that are lied at the portion 𝑃𝑀−2.

Figures 4a, and 4b depict the structure of the adopted resolution-dependent portions

LRS for the 1st and 2nd complete coding passes respectively for the same example.

As shown in figure 4a, the root (0,1) is lied in 𝑃0, so O(0,1) = {(0,2), (0,3), (1,2),

(1,3)}are added to 𝑃1 starting from index 𝑃𝐸1 = 3, and 𝑃𝐸1 is updated to 3+4 = 7.

The roots (0,2), and (1,3) are lied in 𝑃1, so O(0,2) = {(0,4), (0,5), (1,4), (1,5)}, and

Resolution level

& portion

LRS

index

LRS content during

the 2nd coding pass

R0

P0

0 (0,1)

1 (1, 0)

2 (1,1)

R1

P1

3 (0,2)

O
(0

,1
)

4 (0, 3)

5 (1,2)

6 (1,3)

7 (2,0)

O
(1

,0
)

8 (2,1)

9 (3,0)

10 (3,1)

…

14

R2

P3

15 (0,4)

O
(0

,2
)

16 (0,5)

17 (1,4)

18 (1,5)

19 (2,6)

O
(1

,3
)

20 (2,7)

21 (3,6)

22 (3,7)

23 (2,4)

O
(1

,2
)

24 (2,5)

25 (3,4)

26 (3,5)

…

255

(b)

Resolution level

& portion

LRS

index

LRS content during

the 1st coding pass

R0

P0

0 (0,1)

1 (1, 0)

2 (1,1)

R1

P1

3 (0,2)

O
(0

,1
)

4 (0, 3)

5 (1,2)

6 (1,3)

7

8

9

10

…

14

R2

P3

15 (0,4)

O
(0

,2
)

16 (0,5)

17 (1,4)

18 (1,5)

19 (2,6)

O
(1

,3
)

20 (2,7)

21 (3,6)

22 (3,7)

23

24

…

255

(a)

O(1,3) = {(2,6), (2,7), (3,6), (3,7)} are added to 𝑃2 starting from index 𝑃𝐸2 = 15,

and 𝑃𝐸2 is updated to 15+4+4 = 23. At the 2nd pass, the root (1,0) is lied in 𝑃0, so

O(1,0) = {(2,0), (2,1), (3,0), (3,1)}are added to 𝑃1 starting from index 𝑃𝐸1 = 7, and 𝑃𝐸1 is updated to 7+4 = 11. Finally, the root (1,2) is lied 𝑃1, so O(1,2) = {(1,4), (1,5),

(2,4), (2,5)} are added to 𝑃2 starting from index 𝑃𝐸2 = 23 , and 𝑃𝐸2 is updated to

27.

The HS-MSLS algorithm works exactly as MSLS except that it makes use of

resolution-dependent coding passes with the associated LRS resolution-dependent

portions. The mini passes, which are devoted to LLM (R0), starts by putting the

resolution tag G0 in the bitstream, followed by passing the ISG and SG pixels to the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗), and the VSG pixels to the 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗). Every complete coding

pass also starts by putting G0 followed by passing the ISG and SG pixels in LLMP ,

and the ISG and SG entries in 𝑃0 of LRS to the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗). Then, it performs

the pixel sorting sub-pass of LRS for each portion 𝑃𝑚, 1 ≤ 𝑚 ≤ 𝑀 − 1. This is

achieved by putting Gm in the bitstream, followed by passing the ISG and SG entries

in 𝑃𝑚 to the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗). Next, GM is put in the bitstream, and for every root 𝑟(𝑖, 𝑗) found SG in a previous pass and belongs to 𝑃𝑀−1, its O(i, j) are recomputed

and ISG and SG ones are passed to the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗). The root pass of LRS is also

performed for each portion 𝑃𝑚 by putting Gm+1 in the bitstream. Then, every ISG

root is processed exactly as done in MSLS. Notice that the resolution tag is started

at Gm+1 because this pass encodes the root’s offspring, which are lied in Rm+1 for a

root that is lied in Rm. Lastly, the refinement pixel sub-pass of LRS is also done for

each resolution portion 𝑃𝑚, 0 ≤ 𝑚 ≤ 𝑀 − 1 by putting Gm in the bitstream, followed

by sending the VSG entries in 𝑃𝑚 to the 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗). Finally, GM is put in the

bitstream, and for every root 𝑟(𝑖, 𝑗) found SG in a previous pass and belongs to 𝑃𝑀−1,

its O(i, j) are recomputed and each VSG one of them is sent to the 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗). As

mentioned before, Gm represents the length of the coded data of Rm. Obviously, Gm

will be available only after finishing coding Rm. So, at least the bitstream of the

corresponding resolution level must be buffered until its length is available.

Figure 5 depicts the structure of the bitstream of the HS-MSLS algorithm for the

first coding pass. The other coding passes have the same structure as the first one

excluding the part devoted to the mini-passes. The header contains information about

the image such as image name, image size, 𝑏𝑚𝑎𝑥𝐿𝐿𝑀 , 𝑏𝑚𝑎𝑥𝑜𝑡ℎ𝑒𝑟, etc. The bitstream is

divided into four parts. The mini-passes part consists of the resolution level part R0

only. The other three parts consist of M resolution levels parts. Each Rm consists of

the resolution tag Gm, and the output bitstream due to coding the portion 𝑃𝑚 within

LRS started from 𝑆𝐸𝑚 to 𝑃𝐸𝑚.

During the decoding, an image at resolution Rm, 0 ≤ 𝑚 ≤ M can be reconstructed

by parsing the bitstream, and in each bit-plane coding pass the data that belongs to

R0  Rm are selected and the rest of the data are skipped. Then, an m stages of inverse

2D-DWT is done only. The size of the reconstructed image is equal to 1/22𝑚 the

size of the original image.

 𝑅0 𝑅0 𝑅1 𝑅2 … 𝑅𝑀−1 𝑅𝑀

Header 𝐺0 𝐿𝐿𝑀 𝐺0 LLMP 𝑃0 𝐺1 𝑃1 𝐺2 𝑃2 … 𝐺𝑀−1 𝑃𝑀−1 𝐺𝑀 𝑃𝑀−1

 The Mini-

passes

The first LRS sub-pass (sorting sub-pass for pixels) 𝑅1 𝑅2 … 𝑅𝑀 𝑅0 𝑅1 … 𝑅𝑀 𝐺1 𝑃0 𝐺2 𝑃1 … 𝐺𝑀 𝑃𝑀−1 𝐺0 𝑃0 𝐺1 𝑃1 … GM 𝑃𝑀

The second LRS sub-pass (sorting sub-pass for roots) The third LRS sub-pass (refinement sub-

pass)

Figure 5: The bitstream structure of the HS-MSLS for the mini passes and the first complete pass

IV. Simulation Results and Discussion

The proposed MSLS and the HS-MSLS algorithms are evaluated by MATLAB

Package using a laptop furnished by Intel Core i3 processor with 1.8 GHz CPU and

2 GB RAM. We employed the conventional gray-scale test images Lena, Barbara,

Mandrill, and Goldhill, each of size (512×512) pixels. The images are first

transformed using the dyadic (9, 7) 2D-DWT. The results are represented by the

algorithm’s performance, its computational complexity, and its memory usage

against the compression bit-rate which is the average number of bits per pixel (bpp)

for the compressed image.

The performance is measured by the mean squared error (MSE) between the original

image (Io), and the reconstructed image (Ir), each of size MN pixels. MSE is defined

as:

 𝑀𝑆𝐸 = 1𝑀𝑁 ∑ ∑ [𝐼𝑜(𝑖, 𝑗) − 𝐼𝑟(𝑖, 𝑗)]2𝑁𝑗=1𝑀𝑖=1 (3)

However, the Peak Signal to Noise Ratio (PSNR), which is derived from the MSE,

is more employed. It is defined as:

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 𝑃𝑚𝑎𝑥2𝑀𝑆𝐸 𝑑𝑒𝑐𝑖𝑏𝑒𝑙 (𝑑𝐵) (4)

where 𝑃𝑚𝑎𝑥 is the maximum pixel value in Io. For grayscale images, 𝑃𝑚𝑎𝑥 = 255.

Obviously, the lowest MSE, or the highest PSNR for a given bpp is the target.

a) PSNR Performance of the QSIC Algorithms

Table 2 gives the PSNR against the bit-rate for the QSIC SPIHT [7], SLS [17], and

the proposed MSLS algorithms. The results of SPIHT are gotten by executing the

SPIHT Public License MATLAB program of Mustafa, and Pearlman [22]. Every

image is decomposed into M = 6 levels since SPIHT is evaluated using this value of

M. The value of PSNR where MSLS is the highest is made boldface. As clearly

shown, the PSNR superiority of MSLS over SPIHT is apparent for all the test

images, and at all bit-rates. Moreover, MSLS is slightly better than SLS. This

improvement is achieved mainly due to the adopted two thresholds method that

reduced the number of transmitted bits especially at the early bit-planes coding

passes.

Table 2: PSNR versus bit-rate of the QSIC algorithms

Bit rate

(bpp)

PSNR (dB)

Lena Goldhill

SPIHT SLS MSLS SPIHT SLS MSLS

0.0625 26.51 27.56 27.59 26.17 26.17 26.25

0.125 29.39 30.15 30.18 27.77 27.76 27.84
0.25 32.71 33.05 33.07 29.75 29.76 29.79

0.5 36.13 36.30 36.31 32.27 32.29 32.31
1 39.50 39.61 39.62 35.51 35.57 35.58

Bit rate

(bpp)

PSNR (dB)

Barbara Mandrill

SPIHT SLS MSLS SPIHT SLS MSLS

0.0625 23.07 23.44 23.46 19.00 20.35 20.35

0.125 24.36 24.69 24.71 19.54 21.32 21.33
0.25 26.96 27.37 27.39 20.55 22.69 22.70

0.5 30.97 31.14 31.17 23.14 24.88 24.89
1 36.25 36.37 36.37 28.41 28.33 28.33

b) PSNR Performance of the HSIC Algorithms

Table 3 depicts the PSNR against the bit-rate for the HSIC LHS-SPIHT [18], HSLS

[15], and the proposed HS-MSLS algorithms when the decoder recovers the image

at full resolution (m = 5). We used M = 5 decomposition levels as the other

algorithms. The result of MSLS is also included in order to investigate the effect of

making the algorithm highly scalable on its PSNR. As the table indicate, the

proposed HS-MSLS algorithm has the highest PSNR for nearly all cases. In addition,

HS-MSLS has unnoticeable PSNR deterioration as compared to MSLS. This is very

normal due to adding the resolution tag indicators to the bitstream, and due to coding

the resolution levels in increasing order.

Table 3: PSNR versus bit-rate of the HSIC algorithms at full resolution (M = 5, m = 5)

Bit rate

(bpp)

PSNR (dB)

Lena Goldhill

LHS-

SPIHT
HSLS

HS-

MSLS

MSLS LHS-

SPIHT
HSLS

HS-

MSLS
MSLS

0.0625 26.85 27.35 27.43 27.52 26.26 26.15 26.22 26.25

0.125 29.93 30.04 30.08 30.12 27.50 27.80 27.82 27.84

0.25 33.19 33.00 33.00 33.04 29.39 29.73 29.75 29.79

0.5 36.49 36.24 36.25 36.30 32.10 32.05 32.23 32.31

1 39.58 39.58 39.59 39.61 35.54 35.40 35.53 35.58

Bit rate

(bpp)

PSNR (dB)

Barbara Mandrill

LHS-

SPIHT
HSLS

HS-

MSLS
MSLS

LHS-

SPIHT
HSLS

HS-

MSLS
MSLS

0.0625 22.59 23.37 23.41 23.46 20.38 20.26 20.27 20.35

0.125 23.65 24.26 24.28 24.71 21.25 21.27 21.30 21.33

0.25 26.75 27.31 27.33 27.39 22.66 22.58 22.67 22.70

0.5 30.48 31.05 31.07 31.17 24.60 24.68 24.71 24.89

1 35.19 36.23 36.28 36.37 28.30 28.30 28.30 28.33

As mentioned previously, with a HSIC, the decoder may reconstruct the image at

different resolution than that of the original image. So, we can’t use equations 2 and

3 directly to compute the PSNR because the original and recovered images have

different sizes. Danyali et. al [19] solved this problem by exploiting the fact that an

image recovered at resolution m, 0 ≤ m ≤ M, represents the LLM−m subband of the

2D-DWT image. So, the original LLM−mo and the recovered LLM−mr subbands, which

have the same size, are used instead of the full-size original and recovered images.

For our case, an image size (512  512) pixels is decomposed with M = 5 levels, and

if the image is recovered at resolution m = 4, then LLM−mo = LL5−4o = LL1o

represents the original image, and LL1r represents the recovered image, each has (256

 256) pixels (1/4 the original image size).

Tables 4 and 5 shows the PSNR vs. the bit-rate when the image recovered at 1/4

resolution (M = 5, m = 4), and at 1/16 resolution (M = 5, m = 3) respectively. The

bit-rate is calculated with respect to the size of the original image. The PSNR

improvement of the HS-MSLS over the other algorithms is very clear. There is one

exception, in table 5, at 0.5 bpp. The PSNR of HS-MSLS is lower than that of LHS-

SPIHT for all images except Mandrill. It should be noted that the number with the

PSNR cell after the (@) sign represents the full bit-rate. That is, all the bits of all

image pixels are encoded. As shown, we get lower PSNR but at lower bit-rate.

However, a PSNR  50 dB can be considered of a perfect quality [23].

Table 4: PSNR versus bit-rate of the HSIC algorithms at 1/4 resolution (M = 5, m = 4)

Bit rate

(bpp)

PSNR (dB)

Lena Goldhill

LHS-SPIHT HSLS HS-MSLS LHS-SPIHT HSLS HS-MSLS

0.0625 27.98 28.45 28.57 27.36 27.61 27.72

0.125 31.84 32.14 32.21 29.78 30.21 30.25

0.25 37.21 37.01 37.15 32.97 32.79 32.79

0.5 43.52 43.35 43.38 38.51 38.62 38.68

1 53.17 53.05 53.34 49.73 49.77 49.67

Bit rate

(bpp)

PSNR (dB)

Barbara Mandrill

LHS-SPIHT HSLS HS-MSLS LHS-SPIHT HSLS HS-MSLS

0.0625 25.48 26.84 26.92 21.28 22.74 22.85

0.125 27.93 29.24 29.35 23.45 24.73 24.42

0.25 32.42 33.66 33.72 28.59 28.87 27.59
0.5 38.97 39.23 40.53 31.21 31.58 32.99

1 50.02 50.19 51.07 39.23 39.52 43.58

Table 5: PSNR versus bit-rate of the HSIC algorithms at 1/16 resolution (M = 5, m = 3)

Bit rate

(bpp)

PSNR (dB)

Lena Goldhill

LHS-SPIHT HSLS HS-MSLS LHS-SPIHT HSLS HS-MSLS

0.0625 31.86 32.08 32.44 30.86 31.33 31.50

0.125 39.53 40.34 39.92 36.12 36.87 37
0.25 50.30 50.89 50.98 46.87 47.05 47.98

0.5
70.51 64.77

@0.45

64.77

@0.45

70.71 64.80

@0.47

64.80

@0.47

Bit rate

(bpp)

PSNR (dB)

Barbara Mandrill

LHS-SPIHT HSLS HS-MSLS LHS-SPIHT HSLS HS-MSLS

0.0625 29.89 31.93 32.31 25.21 26.00 28.20

0.125 35.83 36.03 37.80 31.31 30.42 32.88
0.25 46.12 46.52 48.53 40.82 40.87 43.68

0.5
70.89 63.75

@0.46

64.84

@0.47

59.97 64.70

64.77

Figure 7 shows the image Lena reconstructed at 0.25 bpp, at full, 1/4, and 1/16

resolutions with the corresponding PSNR 33, 37.15, and 50.98 dB, respectively. As

depicted, for the same bit-rate we can get better PSNR by reconstructing the image

at a reduced resolution. Inversely, we can preserve the same PSNR while the bit-rate

is reduced if the image is reconstructed at reduced resolution.

b) Computational Complexity

Tables 6 and 7 show the complexity represented by the encoding time and the

decoding time against the bit-rate for the different QSIC, and HSIC algorithms

respectively. The MSLS is also included in table 7 to investigate the effect of making

the algorithm highly scalable on its complexity. The Lena image is selected for this

purpose. The shortest coding and decoding times at each bit-rate is made boldface.

As it can be noticed, for all algorithms, the encoding time is longer than the decoding

time. This is expected since the decoder does not require building the SOTs and

testing their significances. From table 6, it can be shown that for MSLS, both the

encoding and decoding times are widely shorter than that of SPIHT for all bit-rates.

This is mainly due to removing the lists, which in turn reduced the random access

read/write memory operations. Additionally, these times are also shorter than that of

SLS. This speed improvement is the result of eliminating the need of offspring

recalculation for the SG roots that are lied in resolution levels R0RM-2 twice in each

coding pass.

Table 7 shows that our HS-MSLS algorithm is again the fastest one in encoding and

decoding times among the other HSIC algorithms. In addition, a comparison

between MSLS and HS-MSLS reveals that the later encompasses unnoticeable speed

increment in encoding and decoding. The reason for this negligible increment is

separating the LRS into the M resolution portions (Pm) that are FIFO accessed by the

associated M pointers instead of FIFO accessing the entire LRS by one pointer.

 (a) PSNR = 33 dB (b) PSNR = 37.15 dB (c) PSNR = 50.98 dB

Figure 7: Lena image reconstructed at 0.25 bpp. a) at full resolution; b) at 1/4

resolution; and c) at 1/16 resolution

Table 6: The encoding time and the decoding time

 of the QSIC algorithms versus the bit-rate for Lena image

Bit rate

(bpp)

Encoding time (seconds) Decoding time (seconds)

SPIHT SLS MSLS SPIHT SLS MSLS

0.0625 0.750 0.734 0.359 0.391 0.078 0.031

0.125 1.281 0.765 0.531 0.672 0.093 0.062
0.25 2.078 1.062 0.875 1.000 0.188 0.140

0.5 3.328 1.609 1.359 1.828 0.223 0.186
1 5.719 2.421 2.156 3.500 0.556 0.348

Table 7: The encoding time and the decoding time

versus the bit-rate of the HSIC algorithms for Lena image

Bit rate

(bpp)

Encoding time (seconds) Decoding time (seconds)

LHS-

SPIHT
HSLS

HS-

MSLS

MSLS LHS-

SPIHT
HSLS

HS-

MSLS

MSLS

0.0625 0.579 0.495 0.360 0.359 0.141 0.105 0.032 0.031

0.125 0.814 0.611 0.533 0.531 0.157 0.146 0.064 0.062

0.25 1.095 1.062 0.877 0.875 0.203 0.189 0.142 0.140

0.5 1.593 1.609 1.363 1.359 0.234 0.204 0.189 0.186

1 2.359 2.578 2.159 2.156 0.382 0.362 0.351 0.348

c) Memory requirements

The memory requirement is measured by the amount of computer memory needed

by the algorithm to compress/decompress an image with (N×N) pixels. As

mentioned previously, the memory of SPIHT is variable as it depends on the bit-

rate. However, in order to guarantee that SPIHT works properly for all bit-rates, the

memory that is required to compress/decompress at full bit-rate must be used. At

this rate total number of LSP and LIP entries is equal to two times the number of

pixels (N×N), and the number of LIS entries is equal to N×N/4 [10]. So, the total

memory of SPIHT is:

 𝑀𝐸𝑀𝑆𝑃𝐼𝐻𝑇 = 2𝑏(2𝑁2) + 2𝑐 (𝑁24) = 4𝑏𝑁2 + 𝑐 (𝑁22) = (4𝑏 + 𝑐2) 𝑁2 bit (6)

where b is number of bits needed to store each one of the (i, j) pixel coordinates in

LSP or LIP, and c is number of bits needed to store each one of the (i, j) pixel

coordinates in LIS. So, 𝑏 = 𝑙𝑜𝑔2𝑁 bits, and 𝑐 = 𝑙𝑜𝑔2𝑁/2 bits. The LHS-SPIHT

uses fixed-size memory of an average of 4 bits/pixel with total memory = 4(N×N)

bits. Finally, the MSLS (and the HS-MSLS) also uses fixed-size memory, where the

total number of entries of LRS = N×N /4, and it uses 2 bits/pixel, and 1 bit/root, so

the total memory of MSLS is equal to:

 𝑀𝐸𝑀𝑀𝑆𝐿𝑆 = 2𝑁2 + 𝑁24 + 2𝑐 (𝑁24) = (2 + 14 + 𝑐2) 𝑁2 bit (7)

Table 8 depicts the memory requirement of these algorithms for different image

sizes. The column (%) represents the percentage of the total memory to the memory

required to store the DWT image, which is equal to 16(N×N) bit, as each wavelet

coefficient is represented by 16 bits. As shown, the memory of our HS-MSLS is

greatly lower than that of SPIHT, and it slightly higher than that of LHS-SPIHT.

However, as mentioned previously, the LHS-SPIHT algorithm utilizes the linear

indexing technique that maps the DWT image to 1D array, which demands storing

both in the memory. So, the image size should be added to the actual memory

consumption of LHS-SPIHT.

Table 8: Memory requirements of SPIHT, LHS-SPIHT,

and the proposed HS-MSLS for different image sizes

Image

size

Memory (KB)

SPIHT LHS- SPIHT HS-MSLS

MEM (KB) % MEM (KB) % MEM (KB) %

256×256 284 2.21 32 0.25 46 0.36

512×512 1280 2.50 128 0.25 200 0.39

1024×1024 5696 2.78 512 0.25 864 0.42

V. Conclusion

The paper presented the MSLS and the HS-MSLS algorithms. The MSLS algorithm

produces a quality scalable bitstream. As demonstrated from the simulation, MSLS

has better PSNR performance, and has lower complexity than its predecessor the

SLS algorithm. The proposed HS-MSLS algorithm upgraded the MSLS algorithm

to produce a highly scalable bitstream that owns the quality and resolution

scalabilities. As such, the image can be easily reconstructed at multiple qualities and

resolutions using a simple bitstream parsing process. As shown, this is realized by

arranging and identifying the data in each coding pass according to the resolution

levels it belongs. As given from the simulation results, the HS-MSLS algorithm has

improved PSNR, and runs faster than the other HSIC algorithms. The proposed HS-

MSLS is therefore very suitable for sending images over the Internet where the users

to be serviced according to their capabilities and desires. Additionally, the high

speed and reduced memory advantages of HS-MSLS makes it very appropriate as a

part of the real-time scalable video transmission systems [24], and for compressing

super-resolution and 3-D images [25].

Declarations

Ethical Approval

Not applicable.

Competing interests

Not applicable.

Authors' contributions

The 2nd author prepared all the tables in the paper.

The 3rd author prepared all the figures in the paper.

All authors revised the paper.

Funding
Not applicable.

Availability of data and materials

The datasets used are available freely on the Internet, and can be accessed using

the following link

https://ccia.ugr.es/cvg/CG/base.htm

References

[1] Uthayakumar J., et al., A survey on data compression techniques: From the

perspective of data quality, coding schemes, data type and applications, Journal

of King Saud University - Computer and Information Sciences, Vol. 33, No. 2,

pp. 119-140, 2021. https://doi.org/10.1016/j.jksuci.2018.05.006

[2] Rohit M. et al., Hybrid and Advanced Compression Techniques for Medical

Images, Springer Nature press, 1st edition, 2019, ch2.

https://doi.org/10.1007/978-3-030-12575-2

[3] Taubman, D. et al., Embedded block coding in JPEG 2000. Signal Processing:

Image Communication, Vol. 17, No. 1, pp. 49-72, 2002.

https://doi.org/10.1016/S0923-5965(01)00028-5

[4] Rüefenacht, D., et al., Base-Anchored Model for Highly Scalable and Accessible

Compression of Multiview Imagery. IEEE Transactions on Image Processing,

Vol. 28, No. 7, pp. 3205-3218, 2019. https://doi.org/10.1109/TIP.2019.2894968

https://ccia.ugr.es/cvg/CG/base.htm
https://doi.org/10.1016/j.jksuci.2018.05.006
https://doi.org/10.1007/978-3-030-12575-2
https://doi.org/10.1016/S0923-5965(01)00028-5
https://doi.org/10.1109/TIP.2019.2894968

[5] Patrick J. V. F., Discrete Wavelet Transformations: An Elementary Approach

with Application, Wiley, 2019. https://doi.org/10.1002/9781119555414.ch5

[6] Vetterli M. et al., Wavelets and Subband Coding, Prentice-Hall, New Jersey, 1st

edition, 1995.

[7] Said A. et al., A New, Fast, and Efficient Image Codec Based on Set Partitioning

in Hierarchical Trees, IEEE Transactions on Circuits and Systems for Video

Technology, Vol. 6, No. 3, pp. 243-250, 1996.

https://doi.org/10.1109/76.499834

[8] Lee, RC., et al., New Modified SPIHT Algorithm for Data Compression

System. J. Med. Biol. Eng. Vol. 39, pp. 18–26, 2019.

https://doi.org/10.1007/s40846-018-0384-z

[9] Ekram K., et al., An efficient and scalable low bit-rate video coding with virtual

SPIHT, Signal Processing: Image Communication, Vol. 19, No. 3, pp. 267-283,

2004. https://doi.org/10.1016/j.image.2003.08.019

[10] Ranjan K. Senapati, et. al., Listless block-tree set partitioning algorithm for

very low bit rate embedded image compression, AEU - International Journal of

Electronics and Communications, Vol. 66, No. 12, pp. 985-995, 2012.

https://doi.org/10.1016/j.aeue.2012.05.001

[11] Drozdek, A., Data structure and Algorithms in C++, CENGAGE LEARNING

press, 4th ed., 2012, ch3.

[12] Chew, L. W., et al., Reduced Memory SPIHT Coding Using Wavelet

Transform with Post-Processing, 2009 International Conference on Intelligent

Human-Machine Systems and Cybernetics, Hangzhou, Zhejiang, 2009, pp. 371-

374. https://doi.org/10.1109/IHMSC.2009.101

[13] Deepthi, S. A. et al., Image transmission and compression techniques using

SPIHT and EZW in WSN," 2018 2nd International Conference on Inventive

Systems and Control (ICISC), Coimbatore, 2018, pp. 1146-1149.

http://dx.doi.org/10.1109/ICISC.2018.8398984

[14] Alam M, et al., Modified Listless Set Partitioning in Hierarchical Trees (MLS)

For Memory Constrained Image Coding Applications, Current Trends in Signal

Processing Vol. 2, No. 2, pp. 56-66, 2012.

https://doi.org/10.37591/ctsp.v2i1-3.5124

[15] Al-Janabi, A.K, et al., An efficient and Highly Scalable Listless SPIHT Image

Compression Framework, Journal of Applied Research and Technology, Vol.

20, No. 2, pp. 173-187, 2022.

https://doi.org/10.22201/icat.24486736e.2022.20.2.1269

https://doi.org/10.1002/9781119555414.ch5
https://doi.org/10.1109/76.499834
https://doi.org/10.1007/s40846-018-0384-z
https://doi.org/10.1016/j.image.2003.08.019
https://doi.org/10.1016/j.aeue.2012.05.001
https://doi.org/10.1109/IHMSC.2009.101
http://dx.doi.org/10.1109/ICISC.2018.8398984
https://doi.org/10.37591/ctsp.v2i1-3.5124
https://doi.org/10.22201/icat.24486736e.2022.20.2.1269

[16] Y. Meraj et al., Modified ZM-SPECK: A Low Complexity and Low Memory

Wavelet Image Coder for VS/IoT Nodes, 2021 International Conference on

Emerging Smart Computing and Informatics (ESCI), 2021, pp. 494-500.

https://doi.org/10.1109/ESCI50559.2021.9396834

[17] Al-Janabi, A. K, Low Memory Set-Partitioning in Hierarchical Trees Image

Compression Algorithm, International Journal of Video & Image Processing and

Network Security IJVIPNS-IJENS, Vol. 13, No. 2, pp. 12-18, 2013.

[18] Monauwer, A. et al., Listless Highly Scalable Set Partitioning in Hierarchical

Trees Coding for Transmission of Image over Heterogeneous Networks,

International Journal of Computer Networking, Wireless and Mobile

Communications (IJCNWMC), Vol. 2, No. 3, pp. 36-48, 2012.

http://www.tjprc.org/view_paper.php?id=729

[19] Danyali, H. et. al., A., Flexible, highly scalable, object-based wavelet image

compression algorithm for network applications, IEE Proceedings - Vision,

Image and Signal Processing, Vol. 151, No. 6, pp. 498-510, 2004.

https://doi.org/10.1049/ip-vis:20040734

[20] Calderbank, A. et al., Wavelet transforms that map integers to integers,

Applied and computational harmonic analysis Vol. 5, No. 3, pp. 332-369, 1998.

[21] Hu, Yueyu, et al., Towards coding for human and machine vision: A scalable

image coding approach, in 2020 IEEE International Conference on Multimedia

and Expo (ICME), pp. 1-6. IEEE, 2020.

[22] http://www.spiht.com/spiht3.html#mat-spiht (Last visited on Sunday 22

August 2022).

[23] Sara, U., et al., Image Quality Assessment through FSIM, SSIM, MSE and

PSNRA Comparative Study. Journal of Computer and Communications, Vol.

7, pp. 8-18, 2019. https://doi.org/10.4236/jcc.2019.73002

[24] Wu, D. Zhang, et al., Multiview Video Coding Based on Wavelet Pyramids,

2013 International Conference on Computational and Information Sciences,

Shiyang, 2013, pp. 225-228. https://doi.org/10.1109/ICCIS.2013.67

[25] Song, Xiaoying et. al., Three-dimensional separate descendant-based SPIHT

algorithm for fast compression of high-resolution medical image sequences, IET

Image Processing, Vol. 11, No. 1, pp. 80-87, 2017.

https://doi.org/10.1049/iet-ipr.2016.0564

https://doi.org/10.1109/ESCI50559.2021.9396834
http://www.tjprc.org/view_paper.php?id=729
https://doi.org/10.1049/ip-vis:20040734
http://www.spiht.com/spiht3.html#mat-spiht
https://doi.org/10.4236/jcc.2019.73002
https://doi.org/10.1109/ICCIS.2013.67
https://doi.org/10.1049/iet-ipr.2016.0564

