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Abstract 

 

The SPIHT algorithm is characterized by low computational complexity, good 
performance, and the production of an embedded bitstream that can be decoded at 
several bit-rates with image quality enhancement as more bits are received. 
However, it suffers from the enormous computer memory consumption due to 
utilizing linked lists of size of about 2-3 times the image size to save the coordinates 
of the image pixels and the generated sets. In additions, it does not exploit the multi-
resolution feature of the wavelet transform to produce a resolution scalable bitstream 
by which the image can be decoded at numerous resolutions (sizes). The Single List 
SPIHT (SLS) algorithm resolved the high memory problem of SPIHT by using only 
one list of fixed size equals to just 1/4 the image size, and an average of 2.25 
bits/pixel. This paper introduces two new algorithms that are based on SLS. The first 
algorithm modifies SLS to reduce its complexity and improve its performance. The 
second algorithm, which is the major contribution of the work, upgrades the 
modified SLS to produce a bitstream that is both quality and resolution scalable 
(highly scalable). As such, the algorithm is very suitable for the modern 

heterogeneous nature of the Internet users to satisfy their different capabilities and 

desires in terms of image quality and resolution.  
 

Keywords: DWT, Image Compression, Quality Scalable Image Compression, 

Resolution Scalable Image Compression, Highly Scalable Image Compression, SLS, 

SPIHT. 

I. Introduction 

 

The main target of lossy image compression is to reduce the average number of bits 

per pixel of the compressed image as much as possible, and at the same time to 
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attempt to reduce the difference between the original and the recovered images as 

much as possible. The difference is usually measured by the mean squared error 

(MSE) between these images. Other important factors for an image compression 

algorithm are its computational complexity, and its memory consumption. So, the 

true judgment of any algorithm must consider all these factors [1, 2].  

 

A conventional image compression system permits to recover the image at just one 

bit-rate (quality) and resolution (size). As the current users have diverse capabilities 

in terms of bandwidths, display resolutions, processing power, and memory, this 

compression paradigm will not fit all users. Additionally, for browsing the images 

over the web, the users prefer to make a quick scan for all the searched images and 

then select the desired one(s). Evidently, there will be time, bandwidth, memory, and 

processing power losses when using this type of image compression. On the other 

hand, with a scalable image compression system, the quality or/and the resolution 

(size) of the recovered image can be controlled in such a way that permits to the end 

user to decode the image at the desired quality or/and resolution. In a quality scalable 

image compression (QSIC), only the quality of the recovered image can be 

controlled. A QSIC can be attained by encoding the image pixels utilizing some form 

of bit-plane coding, where each pixel is encoded from its most significant bit (MSB) 

to its least significant bit (LSB). On the other hand, in a resolution scalable image 

compression (RSIC), only the resolution of the recovered image can be controlled. 

Lastly, in a highly (or full) scalable image compression (HSIC), both the quality and 

the resolution of the recovered image can be controlled [3, 4]. Therefore, the HSIC 

is very appealing for the needs of modern users due to its versatility to decode the 

image at various qualities and resolutions.    

 

The dyadic 2Dimensional-Discrete Wavelet Transform (2D-DWT) is a basic tool for 

scalable image compression because it possesses high energy compaction, 

localization across space and frequency, and multiresolution properties. An M 

decomposition levels of the dyadic 2D-DWT partitions the image into 3M+1 

subbands. The first level decomposes the image into four subbands labeled LL1, HL1, LH1, and HH1. Each one of the next levels m, 2 ≤ m ≤ M, decomposes 

the LLm−1 subband into LLm, HLm, LHm, and HHm subbands. The LLm subband at 

any level represents a good approximation of the original image at lower resolution. 

Every stage of the inverse dyadic 2D-DWT combines the LLm, HLm, LHm, and HHm 

subbands to reproduce the LLm−1, m = M, M − 1…1. The subbands are organized 

into M+1 resolution levels R0, R1 … RM. Each resolution level Rm, 0 ≤ m ≤ M, is 

responsible to recover the image at a specific size which is equal to 1/22(M−m) the 

original image. The lowest resolution level R0 contains the LLM subband only. Each 

one of the next levels contains the three HLM−m+1, LHM−m+1, and HHM−m+1 



subbands that are compulsory to rebuilt the LLM−m subband during the inverse 2D-

DWT process [5, 6]. Figure 1 illustrates the forward and inverse 2D-DWT using two 

decomposition levels (M = 2). The first level decomposes the image into LL1, HL1, LH1, and HH1 subbands. The second level decomposes the LL1 subband into LL2, HL2, LH2, and HH2 subbands. For M = 2, there are three resolution levels (R0, R1, 

and R2). At the decoder side, an image at the lowestmost resolution with a size equal 

to 1/22(M−m) = 1/22(2−0) =  1/16 the image size can be gotten directly from the LL2 subband. The image may be reconstructed at a higher resolution by combining 

the LL2 subband with the three subbands of R1 (HL2, LH2, and HH2), and performing 

one stage of inverse 2D-DWT to obtain the LL1 with size equal to 1/22(2−1) =  1/4 

the image size. Finally, the image may be reconstructed at the entire size (full- 

resolution) by combining the LL1 subband with the three subbands of R2 (HL1, LH1, 

and HH1), and carrying out the last stage of the inverse 2D-DWT to obtain a replica 

of the original image. Thus, a resolution scalable bitstream can be attained easily if 

the resolution levels are encoded successively and they are identifiable within the 

compressed bitstream [3].     

 

 

The set partitioning in hierarchical trees (SPIHT) [7] is one of the benchmarks QSIC 

algorithms [8, 9]. It has relatively low computational complexity, and has a good 

MSE vs. bit per pixel performance. In brief, SPIHT first applies the dyadic 2D-DWT 

to the image. Then, it computes a maximum threshold T based on the maximum 

wavelet coefficient in the image. In what follows, the wavelet coefficients are called 

pixels for simplicity. Next, it encodes the image by multiple bit-plane coding passes 

with halving T (T = T/2) in each pass until T = 1. A pixel 𝑐(𝑖, 𝑗) is considered 

 

Figure 1: The forward and inverse 2D-DWT with two decomposition levels (from [15]) 
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insignificant (ISG) if |𝑐(𝑖, 𝑗)| < 𝑇, and it becomes significant (SG) when |𝑐(𝑖, 𝑗)| ≥𝑇. Similarly, a set of pixels is considered ISG if all of its pixels are ISG, and it 

becomes SG when one or more of its pixels become SG. SPIHT builds trees denoted 

as the spatial orientation trees (SOTs) by exploiting the correlation between the 

pixels across the different resolution levels of the dyadic 2D-DWT as follows: the 

pixels in LLM subband (level R0) are grouped into (2×2) pixels. The top-left pixel in 

each group is excluded (i.e., it does not belong to any SOT). Each one of the other 

three pixels that is located at (i, j) is considered as a root to four pixels located in 

LHM, HLM, and HHM subbands respectively (level R1) according to its orientation. 

More precisely, the top-right pixel is linked to four pixels in LHM, the down-left 

pixel is linked to four pixels in HLM, and the down-right pixel is linked to four pixels 

in HHM. These four pixels are referred to as the offspring O(i, j) of the root located 

at (i, j). Then, each one of O(i, j) is also in turn considered as a root to four offspring 

in LHM−1, HLM−1, and HHM−1 subbands (level R2). This recursive linking of the 

roots continues till the LH2, HL2, and HH2 subbands (level RM1) is reached. That is, 

the pixels in LH1, HL1, and HH1 (level RM) cannot be roots as they are the leaves of 

tree. Any root at coordinates (i, j) located in levels R1 to RM1, the coordinates of its 

four offspring O(i, j) = {(2i, 2j), (2i+1, 2j), (2i, 2j+1), (2i+1, 2j+1)}, which are 

located at levels R2 to RM respectively. The SPIHT assumes that for a given SOT, if 

its parent root is ISG, then it is expected that all pixels in the SOT are also ISG. 

Hence, the complete SOT can be encoded in a single bit.  

 

Unfortunately, SPIHT needs an enormous computer memory to save the coordinates 

of the pixels, and the roots of the SOTs. More specifically, it employs three linked 

lists labelled the list of insignificant pixels (LIP), the list of significant pixels (LSP), 

and the list of insignificant sets (LIS). These lists need a computer memory around 

2-3 times the DWT image [10]. In addition, the memory management of the linked 

lists is complex and time consuming because they must be accessed randomly due 

to adding/removing elements to/from them continually. Furthermore, the length of 

each list cannot pre-fixed as the number of ISG and SG pixels, and the ISG SOTs is 

not known. Therefore, we either use the dynamic memory approach or initialize each 

list to the maximum size. Regrettably, the first solution is very complex, while the 

second one increases the memory requirements further [11]. Lastly, the spanning of 

the SOTs across the different resolution levels together with the random access of 

the lists, inhibit to exploit the multi-resolution features of the dyadic 2D-DWT for 

producing a resolution scalable bitstream [3].  

 

Most reduced memory SPIHT algorithms that exist in the literature adopt the linear 

indexing technique to map the DWT image into a 1D array of the same image size 

[12-14]. However, this technique demands either storing the DWT image into the 



main memory and then writing it into a 1D array or both DWT image and the 1D 

array must be available in the RAM at the same time [15]. Unfortunately, the former 

solution is time-consuming while the latter one demands extra memory equals to the 

DWT image [11]. These constrains prohibit to use this approach for low memory 

and/or low power processing units such as wireless sensors [16].  

 

A. K. Al-Janabi proposed a reduced memory SPIHT called the Single List SPIHT 

(SLS) without using the linear indexing technique [17]. It employs one list of fixed 

size equal to ¼ the DWT image, and an average of 2.25 bits/pixel markers. It was 

demonstrated that the SLS algorithm kept nearly the same complexity and had better 

performance than the original SPIHT algorithm, with memory saving of about 75%.  

 

Monauwer et al. [18] mitigated the high memory requirements and the lack of 

resolution scalability in the SPIHT is his Listless Highly Scalable-SPIHT (LHS-

SPIHT) algorithm. It replaced the lists by state marker bits with average memory of 

4 bits/pixel. Unfortunately, LHS-SPIHT must test all the pixels and the all roots of 

the SOTs (which are lied in resolution levels R0 RM-1) two times in each bit-plane 

coding pass. Thus, the complexity of LHS-SPIHT rises significantly compared with 

the original SPIHT. Equally important, the algorithm also adopts the linear indexing 

technique. Hence, it has the same cons mentioned above. 

                

In [15], A. K. Al-Janabi et. al., proposed the Highly Scalable Listless SPIHT (HSLS) 

algorithm. HSLS has the following advantages over LHS-SPIHT: 

 It does not rely on the linear indexing technique. Hence, it avoids the 

complexity or memory increment as clarified above.  

 It needs to examine at most 1/4 the image pixels only in each bit-plane coding 

pass. In contrast, the LHS-SPIHT algorithm must examine all the image pixels 

twice in each coding pass.  

 The total memory of the state marker bits is 2.5 bits per pixel instead of 4.  

 HSLS has better performance especially when the image is reconstructed at 

low resolution.  

 

However, the HSLS algorithm also suffers from some complexity increment and 

performance decrement due to removing all lists. In this paper, we first introduce the 

Modified SLS algorithm (MSLS). The modifications reduce the complexity of the 

SLS algorithm and enhance algorithm’s performance slightly. Then, we present the 

Highly Scalable-MSLS (HS-MSLS) which is the major contribution of the work. 

The HS-MSLS upgrades the MSLS to produce a highly scalable bitstream by adding 

resolution scalability to it. The main feature of the proposed HS-MSLS algorithm is 



that the resolution scalability is added without any noticeable complexity increment 

nor performance decrement as compared to MSLS. In contrast, most of the existing 

highly scalable algorithms may involve complexity increment and/or performance 

deterioration in comparison to the rate scalable counterpart algorithms [18, 19].     

 

The rest of the paper is ordered as follows: section II summarizes the SLS algorithm. 

Section III introduces the proposed MSLS and HS-MSLS algorithms. Section IV 

provides the simulation results of our work, and other related works for the purpose 

of comparison. Finally, section V concludes the paper. 

    

II. Overview of the SLS Algorithm 

 

Like other wavelet-based algorithms, the image is first transformed using an M-

levels (M = 3  6) of the 2D-DWT. The (9, 7) 2D-DWT [6] is usually employed for 

lossy image compression, while the (5, 3) 2D-DWT [20] is employed for lossless 

image compression. The (9, 7) transform is more efficient than the (5, 3) transform 

in terms of energy compaction. However, the (9, 7) transform produces floating-

point numbers, while the (5, 3) transform produces integer numbers. So, if the (9, 7) 

transform is selected, the floating-point coefficients must be quantized to the nearest 

integers before coding. This is the main source of information loss.   

 

The central idea of SLS is that the pixels stored in LSP and LIP are the four offspring 

of a root that has a SG SOT. These offspring can therefore be inferred from the SG 

root itself rather than being kept in these lists. Eliminating these lists will reduce the 

memory greatly as LIP and LSP occupy about 75% of the total memory. At the first 

glance, it seems that the need to deduce the four offspring from the parent root leads 

to complexity increment. However, eliminating these lists reduces the complexity of 

the algorithm due to reducing the memory management overhead.    

 

The SLS algorithm employs a single list only labelled the List of Root Sets (LRS) 

that stores the (i, j) coordinates of the roots of the SOTs. As shown, these roots lie 

in the subbands that belong to R0RM-1, i.e., except the subbands that belong to RM 

(HL1, LH1, and HH1subbands). So, the maximum size of LRS is ¼ the image size. 

Additionally, when a root is added to LRS, it won’t be removed. This coding 

paradigm enables to implement LRS as an ordered simple 1D array that is 

sequentially accessed using the first in first out (FIFO) method which is widely 

known to be the fastest access method [11]. Clearly, by making memory 

management simpler, the algorithm's complexity will be reduced further. 

 



The function of the LIP and LSP is performed by providing each pixel 𝑐(𝑖, 𝑗) by 2 

bits state marker referred to as 𝜎(𝑖, 𝑗) to specify the pixel’s type as follows:   

 𝜎(𝑖, 𝑗) = 0: 𝑐(𝑖, 𝑗) is an ISG or untested pixel.  

 𝜎(𝑖, 𝑗) = 1: 𝑐(𝑖, 𝑗) becomes SG. 

 𝜎(𝑖, 𝑗) = 2: 𝑐(𝑖, 𝑗) is a visited SG (VSG) pixel that is found SG in one of the 

previous coding passes. 

 

Each entry in LRS has a one-bit marker termed 𝛿(𝑖, 𝑗) that is initialized to 0 to 

indicate that the root 𝑟(𝑖, 𝑗) is ISG and updated to 1 when 𝑟(𝑖, 𝑗) becomes SG. Since 

the maximum size LRS is ¼ the image size, so the average memory of the overall 

marker bits ( and ) is 2.25 bits/pixel.  

 

At initialization, SLS first computes the maximum bit-plane (𝑏𝑚𝑎𝑥) based on the 

maximum pixel value in the quantized DWT image (W) as follows:  

 𝑏𝑚𝑎𝑥 = ⌊𝑙𝑜𝑔2 {𝑚𝑎𝑥∀(𝑖,𝑗)∈𝑊|𝑐(𝑖, 𝑗)|}⌋                             (1) 

 𝑏𝑚𝑎𝑥 is then sent to the decoder within the bitstream. Next, it sets the threshold T to: 

 

   𝑇 = 2𝑏𝑚𝑎𝑥                                                            (2) 

  

Finally, it saves the (𝑖, 𝑗) coordinates of every pixel in LLM that has offspring in LRS 

as ISG roots, i.e., 𝛿(𝑖, 𝑗) = 0.   

 

After initialization, SLS performs several coding passes. Each coding pass 

corresponds to a given threshold T, and consists of the sorting and the refinement 

sub-passes. The sorting sub-pass starts by coding all the pixels in LLM subband as 

follows: if 𝑐(𝑖, 𝑗) is untested or yet ISG (𝜎(𝑖, 𝑗) = 0)), it is tested for significance. 

If it becomes SG, then 1, and its sign bit are sent to the bitstream, its marker bit 𝜎(𝑖, 𝑗) is updated to 1 to indicate that 𝑐(𝑖, 𝑗) becomes SG. If 𝑐(𝑖, 𝑗) is still ISG, a 0 

is sent to the bitstream. On the other hand, if 𝑐(𝑖, 𝑗) is found to be SG (𝑖. 𝑒. , 𝜎(𝑖, 𝑗) =1)), it is marked as VSG by setting 𝜎(𝑖, 𝑗) = 2, in order to be refined latter on in the 

current coding pass. This step is necessary to differentiate between these pixels and 

the pixels that will become SG during the current pass. Next, every root 𝑟(𝑖, 𝑗) in 

LRS is tested and coded accordingly. If 𝑟(𝑖, 𝑗) is yet ISG (𝛿(𝑖, 𝑗) = 0)), its SOT is 

constructed and its significance is checked with respect to T. If the SOT stills ISG, 

a 0 is sent to the bitstream. If it becomes SG, a 1 is sent to the bitstream, 𝛿(𝑖, 𝑗) is 

updated to 1 to indicate that 𝑟(𝑖, 𝑗) is now SG. Then, each one of its four offspring 



O(i, j) is coded as a pixel as given above. Finally, if O(i, j) don’t lie in the LH1, HL1, 

and HH1 subbands, i.e., in the highest resolution level (RM), O(i, j) are added to LRS 

as ISG roots be coded in the same manner at the current coding pass. On the other 

hand, if the 𝑟(𝑖, 𝑗) is found to be SG in one of the previous passes (𝛿(𝑖, 𝑗) = 1), then 

its O(i, j) are recomputed, and only the ISG and SG offspring (i.e., except the VSG 

ones) are coded as pixels as given above.  

 

In the refinement sub-pass, all the pixels in LLM subband that are marked as VSG 

pixels are refined. Then, the LRS scanned for the SG roots only. For each SG root, 

its O(i, j) are also recomputed, and only the VSG ones are refined. A VSG pixel 𝑐(𝑖, 𝑗) is refined to a more bit precision by sending its bth bit to the bitstream. The 

coding pass terminates by updating T to T/2 to begin a new coding pass. To give 

users the option to recover the image at the desired quality and/or resolution, a 

scalable image compression system should encode the DWT image at the full bit 

rate and resolution. As a result, the encoder must keep going until all bits of all image 

pixels have been encoded (i.e., until T = 1). On the other hand, the decoder stops 

when the target bit-rate is attained. 

  

III. The Proposed Algorithms 

 
This section first introduces the modified SLS (MSLS). The MSLS algorithm has 

lower complexity, and slightly better performance than the SLS algorithm. Then, we 

present the proposed HS-MSLS, which is the main contribution of the paper. HS-

MSLS adds resolution scalability to the MSLS to produce a highly scalable bitstream 

that is both quality and resolution scalable. 

 

a) The MSLS Algorithm 

 

The MSLS algorithm introduces the following two modifications to the SLS that 

lower its computational complexity and improve its performance especially at low 

bit-rates. The first modification is based on the observation that the maximum pixel 

value in the LLM subband is 4-8 times the maximum pixel value in all the other 

subbands. This is because LLM represents the average (DC) value of all the image 

pixels. So, the maximum bit-plane of LLM (𝑏𝑚𝑎𝑥𝐿𝐿𝑀 ) is greater than the maximum bit-

plane of all the other subbands (𝑏𝑚𝑎𝑥𝑂𝑡ℎ𝑒𝑟) by 2-3 or more bits. For instance, for the test 

images Lena, Goldhill, Mandrill, and Barbara, the value of 𝑏𝑚𝑎𝑥𝐿𝐿𝑀  and 𝑏𝑚𝑎𝑥𝑂𝑡ℎ𝑒𝑟 are {12, 

10}, {9, 6}, {12, 9}, and {12,10} respectively. Hence, as the threshold T depends on 𝑏𝑚𝑎𝑥𝐿𝐿𝑀 , then in the first 2 or 3 (or more) bit-plane coding passes, only the pixels in LLM may be SG, and the pixels in all other subbands are ISG. Consequently, all the 



SOTs are also ISG. Therefore, there will be a waste in the processing power, 

processing time, and the transmitted bits in attempting to test and code these ISG 

SOTs. The proposed solution is to employ two thresholds T1 and T2, such that 𝑇1 =2𝑏𝑚𝑎𝑥𝐿𝐿𝑀
, and 𝑇2 = 2𝑏𝑚𝑎𝑥𝑜𝑡ℎ𝑒𝑟

. The initial threshold T is set to T1. Then, the algorithm 

performs several mini coding passes that encodes the pixels in LLM subband only 

until T = T2. At T = T2, the algorithm performs the usual complete coding passes.      

 

The second and the most important modification is the elimination of the need to 

recompute the four offspring that belong to every SG root during the sorting sub-

pass and during the refinement sub-pass. The idea is based on that when a root 𝑟(𝑖, 𝑗) 

that is lied in levels R0 to RM2 (i.e., except RM1) becomes SG, its four offspring     

O(i, j) will be added to LRS. So, at the next coding passes, there is no need to 

recompute them again as they are already stored in LRS. That is, we need to 

recompute the offspring of the SG roots that are lied in the level RM1 only instead 

of recomputing the offspring of the SG roots that are lied in levels R0 to RM1 as done 

in SLS. Evidently, this will reduce the algorithm’s complexity. It worth noting that, 

according to this idea, every entry of LRS now plays the role of a root and a pixel.    

 

Algorithm 1 gives the pseudo-code of the MSLS encoder, where W is the DWT 

image, LLMX  represents the LLM subband minus the excluded top-left pixel in each 

group of 22 pixels, and LLMP  represents the excluded pixels in LLM. The MSLS is 

initialized by adding the (i, j) coordinates of the pixels in LLMX  to LRS, and setting 

all state marker bits to 0. The encoder then performs the mini passes until T = T2. In 

each one of these mini passes, every ISG or SG pixel in LLM (i.e., with 𝜎(𝑖, 𝑗) =0 𝑜𝑟 1) is encoded in the same manner done in SLS. The 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗) procedure 

given in algorithm 2 illustrates this step in details. Next, every pixel in LLM that is 

marked as a VSP (i.e., with 𝜎(𝑖, 𝑗) = 2) in the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗) during current or any 

one of the previous coding passes, is refined by the 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗) procedure given 

in algorithm 3.  

 

Starting from T = T2, the algorithm implements the complete coding passes. Every 

pass begins by coding every pixel in LLMP  as given above. Then, the LRS is encoded 

by three sub-passes. The first and the third sub-passes deal with the entries of LRS 

as pixels, while the second one deals with them as roots of the SOTs. In the first sub-

pass, every ISG or SG entry (𝑖, 𝑗) is encoded by the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗). At the same 

time, if the corresponding root 𝑟(𝑖, 𝑗) is found SG in a previous pass, i.e., 𝛿(𝑖, 𝑗) =1, and it is lied in level RM1, then its O(i, j) are recomputed, and each ISG or SG 

one of them is encoded by the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗). In the second sub-pass, every root 𝑟(𝑖, 𝑗) that is still ISG (i.e., with 𝛿(𝑖, 𝑗) = 0), it is encoded in a manner similar to 



that of the SLS algorithm. In the third pixel sub-pass, every (𝑖, 𝑗) entry marked VSP 

during the current or a previous pass, is refined by the 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗). At the same 

time if the root 𝑟(𝑖, 𝑗) is found SG in a previous pass, and lied in level RM1, then its 

O(i, j) are also recomputed, and each one of them marked as a VSP, is refined by the 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗). 

 

The MSLS algorithm is clarified using figure 2 which depicts a (1616) pixels DWT 

image with M = 3 decomposition levels. The figure also shows the SOTs originated 

from the top-right pixel (marked by *), where every SOT is represented by a different 

color. LRS is initialized by the LL3X, which are three pixels (0,1), (1,0), and (1,1). In 

the mini passes, which are devoted to LL3, the algorithm first sends the ISG and SG 

pixels in to the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗) for encoding. Then, it sends the VSG pixels to the 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗) for refining until T = T2. At this instant, the encoder does the complete 

coding passes. Then, it sends pixels stored in LRS (which are lied in R0) to the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗). Next, it tests the roots in LRS to see if there are SG SOTs. Figure 3 

depicts the content of the LRS during the 1st complete coding pass. Suppose that the 

root (0,1) has SG SOT (the yellow one). So, O(0,1) = {(0,2), (0,3), (1,2), (1,3)} are 

sent to the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑐𝑖,𝑗), and added to LRS because the parent root (0,1), is lied 

in R0 (LL3). The added offspring are considered as roots to processed exactly as their 

parent roots. Suppose again that the roots (0,2), and (1,3) have SG SOTs. So, O(0,2) 

= {(0,2), (0,3), (1,2), (1,3)}, and O(1,3) = {(2,6), (2, 7), (3,6), (3,7)}, are also sent to 

the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗), and added to LRS because roots (1,2), and (1,3) are lied in R1 

(HL3). Suppose finally that the root (1,4) has a SG SOT, so O(1,4) = {(2, 8), (2, 9), 

(3,8), (3,9)} are sent to the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗), but they will not be added to LRS because 

the root (1,4) is lied in R2 (i.e., its offspring are the leaves of the SOT that are lied in 

R3). During the refinement sub-pass, only the pixels (0,1), (1,0), and (1,1) may be 

VSG pixels to be passed to 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗) because they are previously encoded 

during the mini passes. All other pixels are either ISG or just become SG. It is worth 

noting that during the next coding pass, all the current pixels in LRS are sent to the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗). In addition, the root (1,4) is lied in R2, and found SG at the 1st pass. 

So, its four offspring are recomputed because they were not added to LRS in the last 

pass. Notice that, for this case, the size of LRS is equal to (1616)/4 = 64 entry.  

 

In comparison to SLS, it was necessary to recompute the offspring of every SG root 

in LRS two times in every coding pass. For this example, there are four SG roots 

with total offspring recomputing equal to 8 times. On the other hand, MSLS needs 

to recompute the offspring two times of the SG roots that are located in RM-1 only 



which is one root with total offspring recomputing equal to 2 times. The reduction 

in the algorithm’s complexity is obvious.  

 

 

 

 

 

 

 

 

 

 

 

1. Initialization 

 2𝑏𝑚𝑎𝑥𝐿𝐿𝑀 = ⌊𝑙𝑜𝑔2 {𝑚𝑎𝑥∀(𝑖,𝑗)∈𝐿𝐿𝑀|𝑐(𝑖, 𝑗)|}⌋; 

 2𝑏𝑚𝑎𝑥𝑜𝑡ℎ𝑒𝑟 = ⌊𝑙𝑜𝑔2 {𝑚𝑎𝑥∀(𝑖,𝑗)∈ 𝑊−𝐿𝐿𝑀|𝑐(𝑖, 𝑗)|}⌋ ; 
 𝑠𝑒𝑛𝑑 2𝑏𝑚𝑎𝑥𝐿𝐿𝑀  𝑎𝑛𝑑 2𝑏𝑚𝑎𝑥𝑜𝑡ℎ𝑒𝑟  𝑡𝑜 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚; 
 𝑇1 = 2𝑏𝑚𝑎𝑥𝐿𝐿𝑀 ;  𝑇2 = 2𝑏𝑚𝑎𝑥𝑜𝑡ℎ𝑒𝑟 ; 𝑇 = 𝑇1;    
 𝑎𝑑𝑑 𝑎𝑙𝑙 (𝑖, 𝑗) ∈ 𝐿𝐿𝑀𝑋  𝑡𝑜 𝐿𝑅𝑆; 

2. Coding the mini passes 𝑤ℎ𝑖𝑙𝑒 𝑇 ≥ 𝑇2 𝑑𝑜: 
2.1 ∀ (𝑖, 𝑗) ∈ 𝐿𝐿𝑀 𝑑𝑜:  𝑖𝑓 𝜎(𝑖, 𝑗) = 0 𝑜𝑟 1 𝑑𝑜: 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗); 
2.2 ∀ (𝑖, 𝑗) ∈ 𝐿𝐿𝑀 𝑑𝑜: 𝑖𝑓 𝜎(𝑖, 𝑗) = 2 𝑑𝑜: 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗);   
2.3 𝑇 = 𝑇/2; 

3. The Coding passes      

3.1 𝑇 = 𝑇2; 
3.2  ∀ (𝑖, 𝑗) ∈ 𝐿𝐿𝑀𝑃  𝑑𝑜: 𝑑𝑜 𝑠𝑡𝑒𝑝 2.1 & 2.2; 
3.3 ∀ (𝑖, 𝑗) ∈ 𝐿𝑅𝑆 𝑑𝑜:   
 𝑖𝑓 𝜎(𝑖, 𝑗) = 0 𝑜𝑟 1 𝑑𝑜: 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗); 
  𝑖𝑓 𝛿(𝑖, 𝑗) = 1 & (𝑖, 𝑗) ∈ 𝑅𝑀−1 𝑑𝑜: 
 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑂(𝑖, 𝑗); 
 ∀ 𝑂(𝑖, 𝑗) ∈ (𝑖, 𝑗) 𝑑𝑜:  
- 𝑖𝑓 𝜎(𝑂(𝑖, 𝑗)) = 0 𝑜𝑟 1 𝑑𝑜: 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗); 

3.4 ∀ (𝑖, 𝑗) ∈ 𝐿𝑅𝑆 𝑑𝑜:   
 𝑖𝑓 𝜎(𝑖, 𝑗) = 2 𝑑𝑜: 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗); 
 𝑖𝑓 𝛿(𝑖, 𝑗) = 1 & (𝑖, 𝑗) ∈ 𝑅𝑀−1  𝑑𝑜: 
 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑂(𝑖, 𝑗); 
 ∀ 𝑂(𝑖, 𝑗)  ∈ (𝑖, 𝑗) 𝑑𝑜:  
- 𝑖𝑓 𝜎(𝑂(𝑖, 𝑗)) = 2 𝑑𝑜: 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗); 

3.5  ∀ (𝑖, 𝑗) ∈ 𝐿𝑅𝑆 𝑑𝑜:  
 𝑖𝑓 𝛿(𝑖, 𝑗) = 0 𝑑𝑜: 
 𝑖𝑓 𝑆𝑂𝑇(𝑖, 𝑗) 𝑖𝑠 𝑆𝐺 𝑑𝑜: 
- 𝑠𝑒𝑛𝑑 1 𝑡𝑜 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚; 
- 𝛿(𝑖, 𝑗) = 1; 
- 𝑎𝑑𝑑 𝑂(𝑖, 𝑗) 𝑡𝑜 𝐿𝑅𝑆; 
- ∀ 𝑂(𝑖, 𝑗) 𝑑𝑜: 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥𝑒𝑙(𝑂(𝑖, 𝑗)); 
 𝑒𝑙𝑠𝑒 𝑑𝑜: 𝑠𝑒𝑛𝑑 0 𝑡𝑜 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚; 

3.6 𝑇 = 𝑇/2; 𝑎𝑛𝑑 𝑔𝑜𝑡𝑜 𝑠𝑡𝑒𝑝 3.2 𝑖𝑓 𝑛𝑒𝑒𝑑𝑒𝑑; 
Algorithm 1: The MSLS encoder 

𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗){ 

 𝑖𝑓 𝜎(𝑖, 𝑗) = 0 𝑑𝑜: 
 𝑖𝑓 |𝑐(𝑖, 𝑗)| ≥ 𝑇 𝑑𝑜: 

-  𝑠𝑒𝑛𝑑 1 & 𝑠𝑖𝑔𝑛 𝑏𝑖𝑡 𝑜𝑓 𝑐(𝑖, 𝑗)  
    𝑡𝑜 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚; 
- 𝜎(𝑖, 𝑗) = 1; 
-  𝑖𝑓𝑐(𝑖, 𝑗) > 0 𝑑𝑜:  
    𝑐(𝑖, 𝑗) =  𝑐(𝑖, 𝑗) − 𝑇; 
-  𝑒𝑙𝑠𝑒𝑖𝑓 𝑐(𝑖, 𝑗) < 0 𝑑𝑜:  
    𝑐(𝑖, 𝑗) =  𝑐(𝑖, 𝑗) + 𝑇; 

 𝑒𝑙𝑠𝑒𝑖𝑓 |𝑐(𝑖, 𝑗)| < 𝑇 𝑑𝑜:  𝑠𝑒𝑛𝑑 0 𝑡𝑜 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚; 
 𝑒𝑙𝑠𝑒𝑖𝑓 𝜎(𝑖, 𝑗) = 1 𝑑𝑜: 𝜎(𝑖, 𝑗) = 2; } 

 

Algorithm 2: The 𝑪𝒐𝒅𝒆_𝑷𝒊𝒙(𝒊, 𝒋) 

procedure 

𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗){ 

 𝑖𝑓 |𝑐(𝑖, 𝑗)| ≥ 𝑇 𝑑𝑜: 
- 𝑠𝑒𝑛𝑑 1 𝑡𝑜 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚; 
- 𝑖𝑓𝑐(𝑖, 𝑗) > 0 𝑑𝑜:  𝑐(𝑖, 𝑗) =  𝑐(𝑖, 𝑗) − 𝑇; 
- 𝑒𝑙𝑠𝑒𝑖𝑓 𝑐(𝑖, 𝑗) < 0 𝑑𝑜:  
    𝑐(𝑖, 𝑗) =  𝑐(𝑖, 𝑗) + 𝑇; 

 𝑒𝑙𝑠𝑒𝑖𝑓 |𝑐(𝑖, 𝑗)| < 𝑇 𝑑𝑜: 
     𝑠𝑒𝑛𝑑 0 𝑡𝑜 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚; } 

Algorithm 3: The 𝑹𝒆𝒇_𝑷𝒊𝒙(𝒊, 𝒋) 

procedure 
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Figure 2. Part of the SOTs for a (1616) pixels 2D-DWT image with three decomposition levels 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Figure 3: The content of the LRS. a) at the 1st complete pass; b) at the 2nd complete pass 
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The decompression algorithm undoes the same steps of the encoder. However, it 

doesn’t need to do the significance test for the pixels and the SOTs. That is, when 

the decoder receives 0/1, this means that the corresponding pixel or SOT is ISG/SG 

respectively. So, the decoder doesn’t need to build the SOTs and check their 
significance as the corresponding received bit determines this. This leads to make 

the decompression algorithm runs faster than the compression one. This feature is 

very valuable for scalable image compression schemes since images are compressed 

once but may be decompressed several times [3, 21]. Algorithms 4, 5, and 6 gives 

1. Initialization 

 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 2𝑏𝑚𝑎𝑥𝐿𝐿𝑀  𝑎𝑛𝑑 2𝑏𝑚𝑎𝑥𝑜𝑡ℎ𝑒𝑟  𝑓𝑟𝑜𝑚 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚; 
 𝑇1 = 2𝑏𝑚𝑎𝑥𝐿𝐿𝑀 ;  𝑇2 = 2𝑏𝑚𝑎𝑥𝑜𝑡ℎ𝑒𝑟 ; 𝑇 = 𝑇1;    
 𝑎𝑑𝑑 𝑎𝑙𝑙 (𝑖, 𝑗) ∈ 𝐿𝐿𝑀𝑋  𝑡𝑜 𝐿𝑅𝑆; 

2. Decoding the mini passes 𝑤ℎ𝑖𝑙𝑒 𝑇 ≥ 𝑇2 𝑑𝑜: 
2.1 ∀ (𝑖, 𝑗) ∈ 𝐿𝐿𝑀 𝑑𝑜:  𝑖𝑓 𝜎(𝑖, 𝑗) = 0 𝑜𝑟 1 𝑑𝑜: 𝐷𝑒𝑐𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗); 
2.2 ∀ (𝑖, 𝑗) ∈ 𝐿𝐿𝑀 𝑑𝑜: 𝑖𝑓 𝜎(𝑖, 𝑗) = 2 𝑑𝑜: 𝐷𝑒𝑟𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗);   
2.3 𝑇 = 𝑇/2; 

3. The Coding passes      

3.1 𝑇 = 𝑇2; 
3.2  ∀ (𝑖, 𝑗) ∈ 𝐿𝐿𝑀𝑃  𝑑𝑜: 𝑑𝑜 𝑠𝑡𝑒𝑝 2.1 & 2.2; 
3.3 ∀ (𝑖, 𝑗) ∈ 𝐿𝑅𝑆 𝑑𝑜:   
 𝑖𝑓 𝜎(𝑖, 𝑗) = 0 𝑜𝑟 1 𝑑𝑜: 𝐷𝑒𝑐𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗); 
 𝑖𝑓 𝛿(𝑖, 𝑗) = 1 & (𝑖, 𝑗) ∈ 𝑅𝑀−1 𝑑𝑜: 
 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑂(𝑖, 𝑗); 
 ∀ 𝑂(𝑖, 𝑗) ∈ (𝑖, 𝑗) 𝑑𝑜:  
- 𝑖𝑓 𝜎(𝑂(𝑖, 𝑗)) = 0 𝑜𝑟 1 𝑑𝑜: 𝐷𝑒𝑐𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗); 

3.4 ∀ (𝑖, 𝑗) ∈ 𝐿𝑅𝑆 𝑑𝑜:   
 𝑖𝑓 𝜎(𝑖, 𝑗) = 2 𝑑𝑜: 𝐷𝑒𝑟𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗); 
 𝑖𝑓 𝛿(𝑖, 𝑗) = 1 & (𝑖, 𝑗) ∈ 𝑅𝑀−1  𝑑𝑜: 
 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑂(𝑖, 𝑗); 
 ∀ 𝑂(𝑖, 𝑗)  ∈ (𝑖, 𝑗) 𝑑𝑜:  
- 𝑖𝑓 𝜎(𝑂(𝑖, 𝑗)) = 2 𝑑𝑜: 𝐷𝑒𝑟𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗); 

3.5 ∀ (𝑖, 𝑗) ∈ 𝐿𝑅𝑆 𝑑𝑜:  
 𝑖𝑓 𝛿(𝑖, 𝑗) = 0 𝑑𝑜: 
 𝑖𝑓 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚 = 1 𝑑𝑜:  
- 𝛿(𝑖, 𝑗) = 1; 
- 𝑎𝑑𝑑 𝑂(𝑖, 𝑗) 𝑡𝑜 𝐿𝑅𝑆; 
- ∀ 𝑂(𝑖, 𝑗) 𝑑𝑜: 𝐷𝑒𝑐𝑜𝑑𝑒_𝑃𝑖𝑥𝑒𝑙(𝑂(𝑖, 𝑗)); 

3.6 𝑇 = 𝑇/2; 𝑎𝑛𝑑 𝑔𝑜𝑡𝑜 𝑠𝑡𝑒𝑝 3.2 𝑖𝑓 𝑛𝑒𝑒𝑑𝑒𝑑; 
Algorithm 4: The MSLS decoder 

 𝐷𝑒𝑐𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗){ 

  𝑖𝑓 𝜎(𝑖, 𝑗) = 0 𝑑𝑜:  
 𝑖𝑓 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚 = 1 

- 𝜎(𝑖, 𝑗) = 1; 
- 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑠𝑖𝑔𝑛 𝑏𝑖𝑡 𝑓𝑟𝑜𝑚 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚; 
-  𝑖𝑓𝑠𝑖𝑔𝑛 𝑏𝑖𝑡 = 0 𝑑𝑜: 𝑐(𝑖, 𝑗) =  1.5𝑇; 
-  𝑒𝑙𝑠𝑒 𝑑𝑜: 𝑐(𝑖, 𝑗) =  −1.5𝑇; 

 𝑒𝑙𝑠𝑒𝑖𝑓 𝜎(𝑖, 𝑗) = 1 𝑑𝑜: 𝜎(𝑖, 𝑗) = 2;  } 
 

Algorithm 5: The 𝑫𝒆𝒄𝒐𝒅𝒆_𝑷𝒊𝒙(𝒊, 𝒋) 

procedure 

 

 𝐷𝑒𝑟𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗){ 

  𝑖𝑓 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚 = 1 

- 𝑖𝑓𝑐(𝑖, 𝑗) > 0 𝑑𝑜:  
    𝑐(𝑖, 𝑗) =  𝑐(𝑖, 𝑗) + ⌊𝑇/2⌋; 
- 𝑒𝑙𝑠𝑒𝑖𝑓 𝑐(𝑖, 𝑗) < 0 𝑑𝑜:  
    𝑐(𝑖, 𝑗) =  𝑐(𝑖, 𝑗) − ⌊𝑇/2⌋; 
 𝑒𝑙𝑠𝑒 𝑑𝑜: 
- 𝑖𝑓𝑐(𝑖, 𝑗) > 0 𝑑𝑜:  
   𝑐(𝑖, 𝑗) =  𝑐(𝑖, 𝑗) − ⌊𝑇/2⌋; 
- 𝑒𝑙𝑠𝑒𝑖𝑓 𝑐(𝑖, 𝑗) < 0 𝑑𝑜:  
   𝑐(𝑖, 𝑗) =  𝑐(𝑖, 𝑗) + ⌊𝑇/2⌋; } 

 

Algorithm 6: The 𝑫𝒆𝒓𝒆𝒇_𝑷𝒊𝒙(𝒊, 𝒋) 

procedure 



the pseudo-codes of the MSLS decoder, the 𝐷𝑒𝑐𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗) procedure, and the 𝐷𝑒𝑟𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗) procedure respectively. A part from the above note, the steps of the 

MSLS encoder and decoder are identical. However, the 𝐷𝑒𝑐𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗) and the 𝐷𝑒𝑟𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗) differ from the 𝐸𝑛𝑐𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗) and 𝑟𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗) by the pixel 

reconstruction process. At the decoder, the initial value of all image pixels is 0. 

During the 𝐷𝑒𝑐𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗), if 𝑐(𝑖, 𝑗) is yet ISG (𝜎(𝑖, 𝑗) = 0), and the received bit 

= 1, then 𝑐(𝑖, 𝑗) becomes SG. So 𝜎(𝑖, 𝑗) is set to 1, and 𝑐(𝑖, 𝑗) is updated to ±1.5T 

depending on the received sign bit (0 for positive, and 1 for negative). On the other 

hand, if 𝑐(𝑖, 𝑗) is found SG in one of the previous coding passes (𝜎(𝑖, 𝑗) = 1), it is 

updated to VSG (𝜎(𝑖, 𝑗) = 2) to be refined. During the 𝐷𝑒𝑟𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗), 𝑐(𝑖, 𝑗) is 

refined by updating its value to 𝑐(𝑖, 𝑗) ∓ ⌊𝑇/2⌋ depending on the received bit and its 

sign as given in the procedure. Table 1 describes the encoding and decoding 

processes for 𝑐(𝑖, 𝑗) = 45 and with initial T = 32. In the first coding pass, the pixel 𝑐(𝑖, 𝑗) is processed by 𝐸𝑛𝑐𝑜𝑑𝑒𝑃𝑖𝑥(𝑖,𝑗)/𝐷𝑒𝑐𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗), while in the other coding 

passes, it is processed by 𝑟𝑒𝑓𝑃𝑖𝑥(𝑖,𝑗)/𝐷𝑒𝑟𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗) respectively.  

 
Table 1: The encoding and decoding processes for 𝑐(𝑖, 𝑗) = 45 and T = 32 

Coding pass T 𝑐(𝑖, 𝑗) New 𝑐(𝑖, 𝑗) Reason Bitstream Recovered �̂�(𝑖, 𝑗) 

1 32 45 45-32 = 13 45  32  1, 0   1.532 = 48 

2 16 13 13 13 < 16 0 48  16/2 = 40 

3 8 13 13-8 = 5 13  8 1 40 + 8/2 = 44 

4 4 5 5-4 = 1 5  4 1 44 + 4/2 = 46 

5 2 1 1 1 < 2 0 46  2/2 = 45 

6 1 1 1-1 = 0 1  1 1 45 + 1/2 = 45  

 

 

b) The HS-MSLS Algorithm  

 

As stated before, a highly scalable bitstream must be both quality and resolution 

scalable. So, a QSIC algorithm like MSLS can be upgraded to be HSIC by encoding 

the resolution levels (R0  RM) in each coding pass successively. That is, each coding 

pass must encode all the data that belongs to Rm before proceeding to the next level 

Rm+1. In addition, sufficient resolution tag markers Gm, 0 ≤ m ≤ M, must be added 

to the bitstream to identify the different resolution levels. Gm represents the length 

(in bytes) of the bitstream devoted to the resolution level Rm.    

 

It can be easily shown that the coding paradigm of the MSLS algorithm permits to 

attain this object partially. Let Km be the number of pixels stored in LRS that belongs 

to the resolution level Rm, 0 ≤ 𝑚 ≤ 𝑀 − 1. Clearly K0 is fixed and equal to the 

number of pixels in the LLMX  subband which is equal to K0 = 34 |LLM| =



34 |N × N/22M| for an (NN) pixels DWT image with M decomposition levels. For 

our example, 𝐾0 = 34 |16 × 16/26| = 3 pixels. So, we can see that each coding pass 

already encodes the data that belong to 𝑅0 level first. Referring back to figure 3a, 

we can see that during the first coding pass, the data of LRS is also stored in 

increasing order of resolution levels. However, 𝐾𝑚, of each level is not fixed as it 

depends on the number of the roots that have SG SOTs. This problem can be solved 

simply by counting and storing 𝐾𝑚, m = 1, 2 …M1. For our example, 𝐾1 = 4, and 𝐾2 = 8.                         

 

The problem becomes more complicated apart from the second pass. Continuing 

with the same example, and assume that at this pass, the roots (1,0), and (1,2) have 

SG SOTs (the green ones shown in Figure 3b). So, O(1,0) = {(2,0), (2,1), (3,0), 

(3,1)} that are lied in 𝑅1, and O(1,2) = {(2,4), (2,5), (3,4), (3,5)}, that are lied in 𝑅2, 

are added to the end of LRS. As shown, LRS is not more arranged according to the 

resolution levels. The previous solution is not sufficient as we must know the 

(separated) portions where the data of the different levels are located in addition to 

their sizes. For instance, to encode the data of 𝑅1, we must encode the portion of 

data at indices (3-6), and the portion of data at indices (15-18). The same must be 

done for 𝑅2. It is worth noting that during each one of the next passes, the number 

of separated portions for every resolution level increases. Thus, it will be difficult to 

track them.    

 

The proposed solution to this problem is to preserve contiguous fixed-size portions 

within the LRS for the data of the different resolution levels referred to as resolution-

dependent portions 𝑃𝑚 such that 𝑃𝑚 is the portion in LRS devoted to store the data 

that belong to resolution level 𝑅𝑚, 0 ≤ 𝑚 ≤ 𝑀 − 1. In order to guarantee that 𝑃𝑚 

can support all the pixels of 𝑅𝑚, its size must equal to the maximum size of 𝑅𝑚 

(𝑘𝑚𝑚𝑎𝑥). Since 𝐾0 is fixed, so 𝑘0𝑚𝑎𝑥 = 𝐾0. It can be shown that for 𝑚 ≥ 1, 𝑘𝑚𝑚𝑎𝑥 is 

equal to the total number of pixels in the three subbands HLM−m+1, LHM−m+1, and HHM−m+1 that constitute 𝑅𝑚. As these subbands are of equal sizes, so, 𝑘𝑚𝑚𝑎𝑥 =3|HLM−m+1|. To track these portions, we use two pointers referred to as the portion 

start pointer 𝑃𝑆𝑚 and the portion end pointer 𝑃𝐸𝑚. 𝑃𝑆𝑚 stores the index of the first 

pixel, and 𝑃𝐸𝑚 stores the index of the last pixel in 𝑃𝑚 respectively.  Evidently, 𝑃𝑆0 =0, and 𝑃𝐸0 = 𝑘0𝑚𝑎𝑥 − 1. For 𝑚 ≥ 1, 𝑃𝑆𝑚 = 𝑃𝑆𝑚−1 + 𝑘𝑚−1𝑚𝑎𝑥. 𝑃𝐸𝑚 is initialized by 𝑃𝑆𝑚, and it is updated each time a pixel is added to 𝑃𝑚. Referring back to our case, 𝑘0𝑚𝑎𝑥 = 3 pixels, so 𝑃𝑆0 = 0, and 𝑃𝐸0 = 3 − 1 = 2. Similarly, 𝑃𝑆1 = 𝑃𝐸1 =𝑃𝑆0 + 𝑘0𝑚𝑎𝑥 = 0 + 3 = 3. Lastly, 𝑘1𝑚𝑎𝑥 = 3|𝐿𝐻3| = 12 pixels, so 𝑃𝑆2 = 𝑃𝐸2 =𝑃𝑆1 + 𝑘1𝑚𝑎𝑥 = 3 + 12 = 15. 



        

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4: The content of the adopted resolution-dependent portions LRS used by the proposed 

HS-MSLS algorithm. a) at the 1st complete pass; b) at the 2nd complete pass. 

 

The adopted structure of LRS facilitates sorting and tracking the roots and their 

offspring according to the resolution level they belong. This is simply achieved: if a 

root 𝑟(𝑖, 𝑗) stored at the portion 𝑃𝑚, 0 ≤ 𝑚 ≤ 𝑀 − 2, has a SG SOT, then its four 

offspring O(i, j) are added at the end of the next portion 𝑃𝑚+1. Notice that for the 

roots that are lied at the portion 𝑃𝑀−1, their offspring are not added to LRS. These 

offspring will be deduced from their parent roots that are lied at the portion 𝑃𝑀−2.  

 

Figures 4a, and 4b depict the structure of the adopted resolution-dependent portions 

LRS for the 1st and 2nd complete coding passes respectively for the same example. 

As shown in figure 4a, the root (0,1) is lied in 𝑃0, so O(0,1) = {(0,2), (0,3), (1,2), 

(1,3)}are added to 𝑃1 starting from index 𝑃𝐸1 = 3, and 𝑃𝐸1 is updated to 3+4 = 7. 

The roots (0,2), and (1,3) are lied in 𝑃1, so O(0,2) = {(0,4), (0,5), (1,4), (1,5)}, and 

Resolution level 

& portion 

LRS 

index 

LRS content during 

the 2nd coding pass 

R0 

P0 

0 (0,1)  

1 (1, 0)  

2 (1,1)  

R1 

P1 

3 (0,2) 

O
(0

,1
) 

4 (0, 3) 

5 (1,2) 

6 (1,3) 

7 (2,0) 

O
(1

,0
) 

8 (2,1) 

9 (3,0) 

10 (3,1) 

…
 

  

14   

R2 

P3 

15 (0,4) 

O
(0

,2
) 

16 (0,5) 

17 (1,4) 

18 (1,5) 

19 (2,6) 

O
(1

,3
) 

20 (2,7) 

21 (3,6) 

22 (3,7) 

23 (2,4) 

O
(1

,2
) 

24 (2,5) 

25 (3,4) 

26 (3,5) 

…
   

255   

(b) 

Resolution level 

& portion 

LRS 

index 

LRS content during 

the 1st coding pass 

R0 

P0 

0 (0,1)  

1 (1, 0)  

2 (1,1)  

R1 

P1 

3 (0,2) 

O
(0

,1
) 

4 (0, 3) 

5 (1,2) 

6 (1,3) 

7   

8   

9   

10   

…
 

  

14   

R2 

P3 

15 (0,4) 

O
(0

,2
) 

16 (0,5) 

17 (1,4) 

18 (1,5) 

19 (2,6) 

O
(1

,3
) 

20 (2,7) 

21 (3,6) 

22 (3,7) 

23   

24   

…
   

255   

(a) 

 



O(1,3) = {(2,6), (2,7), (3,6), (3,7)} are added to 𝑃2 starting from index 𝑃𝐸2 = 15, 

and 𝑃𝐸2 is updated to 15+4+4 = 23. At the 2nd pass, the root (1,0) is lied in 𝑃0, so 

O(1,0) = {(2,0), (2,1), (3,0), (3,1)}are added to 𝑃1 starting from index 𝑃𝐸1 = 7, and 𝑃𝐸1 is updated to 7+4 = 11. Finally, the root (1,2) is lied 𝑃1, so O(1,2) = {(1,4), (1,5), 

(2,4), (2,5)} are added to 𝑃2 starting from index 𝑃𝐸2 = 23 , and 𝑃𝐸2 is updated to 

27. 

 

The HS-MSLS algorithm works exactly as MSLS except that it makes use of 

resolution-dependent coding passes with the associated LRS resolution-dependent 

portions. The mini passes, which are devoted to LLM (R0), starts by putting the 

resolution tag G0 in the bitstream, followed by passing the ISG and SG pixels to the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗), and the VSG pixels to the 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗). Every complete coding 

pass also starts by putting G0 followed by passing the ISG and SG pixels in LLMP , 

and the ISG and SG entries in 𝑃0 of LRS to the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗). Then, it performs 

the pixel sorting sub-pass of LRS for each portion 𝑃𝑚, 1 ≤ 𝑚 ≤ 𝑀 − 1. This is 

achieved by putting Gm in the bitstream, followed by passing the ISG and SG entries 

in 𝑃𝑚 to the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗). Next, GM is put in the bitstream, and for every root 𝑟(𝑖, 𝑗) found SG in a previous pass and belongs to 𝑃𝑀−1, its O(i, j) are recomputed 

and ISG and SG ones are passed to the 𝐶𝑜𝑑𝑒_𝑃𝑖𝑥(𝑖, 𝑗). The root pass of LRS is also 

performed for each portion 𝑃𝑚 by putting Gm+1 in the bitstream. Then, every ISG 

root is processed exactly as done in MSLS. Notice that the resolution tag is started 

at Gm+1 because this pass encodes the root’s offspring, which are lied in Rm+1 for a 

root that is lied in Rm. Lastly, the refinement pixel sub-pass of LRS is also done for 

each resolution portion 𝑃𝑚, 0 ≤ 𝑚 ≤ 𝑀 − 1 by putting Gm in the bitstream, followed 

by sending the VSG entries in 𝑃𝑚 to the 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗). Finally, GM is put in the 

bitstream, and for every root 𝑟(𝑖, 𝑗) found SG in a previous pass and belongs to 𝑃𝑀−1, 

its O(i, j) are recomputed and each VSG one of them is sent to the 𝑅𝑒𝑓_𝑃𝑖𝑥(𝑖, 𝑗). As 

mentioned before, Gm represents the length of the coded data of Rm. Obviously, Gm 

will be available only after finishing coding Rm. So, at least the bitstream of the 

corresponding resolution level must be buffered until its length is available.  

 

Figure 5 depicts the structure of the bitstream of the HS-MSLS algorithm for the 

first coding pass. The other coding passes have the same structure as the first one 

excluding the part devoted to the mini-passes. The header contains information about 

the image such as image name, image size, 𝑏𝑚𝑎𝑥𝐿𝐿𝑀 , 𝑏𝑚𝑎𝑥𝑜𝑡ℎ𝑒𝑟, etc. The bitstream is 

divided into four parts. The mini-passes part consists of the resolution level part R0 

only. The other three parts consist of M resolution levels parts. Each Rm consists of 

the resolution tag Gm, and the output bitstream due to coding the portion 𝑃𝑚 within 

LRS started from 𝑆𝐸𝑚 to 𝑃𝐸𝑚.  



 

During the decoding, an image at resolution Rm, 0 ≤ 𝑚 ≤ M can be reconstructed 

by parsing the bitstream, and in each bit-plane coding pass the data that belongs to 

R0  Rm are selected and the rest of the data are skipped. Then, an m stages of inverse 

2D-DWT is done only. The size of the reconstructed image is equal to 1/22𝑚 the 

size of the original image.  

    

 𝑅0 𝑅0 𝑅1 𝑅2 … 𝑅𝑀−1 𝑅𝑀 

Header 𝐺0 𝐿𝐿𝑀 𝐺0 LLMP  𝑃0 𝐺1 𝑃1 𝐺2 𝑃2 … 𝐺𝑀−1 𝑃𝑀−1 𝐺𝑀 𝑃𝑀−1 

 The Mini-

passes 

The first LRS sub-pass (sorting sub-pass for pixels) 𝑅1 𝑅2 … 𝑅𝑀 𝑅0 𝑅1 … 𝑅𝑀 𝐺1 𝑃0 𝐺2 𝑃1 … 𝐺𝑀 𝑃𝑀−1 𝐺0 𝑃0 𝐺1 𝑃1 … GM 𝑃𝑀 

The second LRS sub-pass (sorting sub-pass for roots) The third LRS sub-pass (refinement sub-

pass) 

 

Figure 5: The bitstream structure of the HS-MSLS for the mini passes and the first complete pass 

 

IV. Simulation Results and Discussion 

 

The proposed MSLS and the HS-MSLS algorithms are evaluated by MATLAB 

Package using a laptop furnished by Intel Core i3 processor with 1.8 GHz CPU and 

2 GB RAM. We employed the conventional gray-scale test images Lena, Barbara, 

Mandrill, and Goldhill, each of size (512×512) pixels. The images are first 

transformed using the dyadic (9, 7) 2D-DWT. The results are represented by the 

algorithm’s performance, its computational complexity, and its memory usage 

against the compression bit-rate which is the average number of bits per pixel (bpp) 

for the compressed image.  

 

The performance is measured by the mean squared error (MSE) between the original 

image (Io), and the reconstructed image (Ir), each of size MN pixels. MSE is defined 

as: 

 𝑀𝑆𝐸 =  1𝑀𝑁 ∑ ∑ [𝐼𝑜(𝑖, 𝑗) − 𝐼𝑟(𝑖, 𝑗)]2𝑁𝑗=1𝑀𝑖=1          (3) 

 

However, the Peak Signal to Noise Ratio (PSNR), which is derived from the MSE, 

is more employed. It is defined as:   

 



𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 𝑃𝑚𝑎𝑥2𝑀𝑆𝐸         𝑑𝑒𝑐𝑖𝑏𝑒𝑙 (𝑑𝐵)          (4) 

 

where 𝑃𝑚𝑎𝑥 is the maximum pixel value in Io. For grayscale images, 𝑃𝑚𝑎𝑥 = 255. 

Obviously, the lowest MSE, or the highest PSNR for a given bpp is the target.  

 

a) PSNR Performance of the QSIC Algorithms  

 

Table 2 gives the PSNR against the bit-rate for the QSIC SPIHT [7], SLS [17], and 

the proposed MSLS algorithms. The results of SPIHT are gotten by executing the 

SPIHT Public License MATLAB program of Mustafa, and Pearlman [22]. Every 

image is decomposed into M = 6 levels since SPIHT is evaluated using this value of 

M. The value of PSNR where MSLS is the highest is made boldface. As clearly 

shown, the PSNR superiority of MSLS over SPIHT is apparent for all the test 

images, and at all bit-rates. Moreover, MSLS is slightly better than SLS. This 

improvement is achieved mainly due to the adopted two thresholds method that 

reduced the number of transmitted bits especially at the early bit-planes coding 

passes.  

    
Table 2: PSNR versus bit-rate of the QSIC algorithms  

Bit rate 

(bpp) 

PSNR (dB) 

Lena Goldhill  

SPIHT SLS MSLS SPIHT SLS MSLS 

0.0625 26.51 27.56 27.59 26.17 26.17 26.25 

0.125 29.39 30.15 30.18 27.77 27.76 27.84 
0.25 32.71 33.05 33.07 29.75 29.76 29.79 

0.5 36.13 36.30 36.31 32.27 32.29 32.31 
1 39.50 39.61 39.62 35.51 35.57 35.58 

Bit rate 

(bpp) 

PSNR (dB) 

Barbara  Mandrill  

SPIHT SLS MSLS SPIHT SLS MSLS 

0.0625 23.07 23.44 23.46 19.00 20.35 20.35 

0.125 24.36 24.69 24.71 19.54 21.32 21.33 
0.25 26.96 27.37 27.39 20.55 22.69 22.70 

0.5 30.97 31.14 31.17 23.14 24.88 24.89 
1 36.25 36.37 36.37 28.41 28.33 28.33 

 

b) PSNR Performance of the HSIC Algorithms  

 

Table 3 depicts the PSNR against the bit-rate for the HSIC LHS-SPIHT [18], HSLS 

[15], and the proposed HS-MSLS algorithms when the decoder recovers the image 

at full resolution (m = 5). We used M = 5 decomposition levels as the other 

algorithms. The result of MSLS is also included in order to investigate the effect of 



making the algorithm highly scalable on its PSNR. As the table indicate, the 

proposed HS-MSLS algorithm has the highest PSNR for nearly all cases. In addition, 

HS-MSLS has unnoticeable PSNR deterioration as compared to MSLS. This is very 

normal due to adding the resolution tag indicators to the bitstream, and due to coding 

the resolution levels in increasing order.              

 
Table 3: PSNR versus bit-rate of the HSIC algorithms at full resolution (M = 5, m = 5) 

Bit rate 

(bpp) 

PSNR (dB) 

Lena Goldhill  

LHS- 

SPIHT 
HSLS 

HS- 

MSLS 

MSLS LHS- 

SPIHT 
HSLS 

HS- 

MSLS 
MSLS 

0.0625 26.85 27.35 27.43 27.52 26.26 26.15 26.22 26.25 

0.125 29.93 30.04 30.08 30.12 27.50 27.80 27.82 27.84 

0.25 33.19 33.00 33.00 33.04 29.39 29.73 29.75 29.79 

0.5 36.49 36.24 36.25 36.30 32.10 32.05 32.23 32.31 

1 39.58 39.58 39.59 39.61 35.54 35.40 35.53 35.58 

Bit rate 

(bpp) 

PSNR (dB) 

Barbara  Mandrill  

LHS- 

SPIHT 
HSLS 

HS- 

MSLS 
MSLS 

LHS- 

SPIHT 
HSLS 

HS- 

MSLS 
MSLS 

0.0625 22.59 23.37 23.41 23.46 20.38 20.26 20.27 20.35 

0.125 23.65 24.26 24.28 24.71 21.25 21.27 21.30 21.33 

0.25 26.75 27.31 27.33 27.39 22.66 22.58 22.67 22.70 

0.5 30.48 31.05 31.07 31.17 24.60 24.68 24.71 24.89 

1 35.19 36.23 36.28 36.37 28.30 28.30 28.30 28.33 

 

As mentioned previously, with a HSIC, the decoder may reconstruct the image at 

different resolution than that of the original image. So, we can’t use equations 2 and 

3 directly to compute the PSNR because the original and recovered images have 

different sizes. Danyali et. al [19] solved this problem by exploiting the fact that an 

image recovered at resolution m, 0 ≤ m ≤ M, represents the LLM−m subband of the 

2D-DWT image. So, the original LLM−mo  and the recovered LLM−mr  subbands, which 

have the same size, are used instead of the full-size original and recovered images. 

For our case, an image size (512  512) pixels is decomposed with M = 5 levels, and 

if the image is recovered at resolution m = 4, then LLM−mo = LL5−4o =  LL1o  

represents the original image, and LL1r  represents the recovered image, each has (256 

 256) pixels (1/4 the original image size).  

 

Tables 4 and 5 shows the PSNR vs. the bit-rate when the image recovered at 1/4 

resolution (M = 5, m = 4), and at 1/16 resolution (M = 5, m = 3) respectively. The 

bit-rate is calculated with respect to the size of the original image. The PSNR 

improvement of the HS-MSLS over the other algorithms is very clear. There is one 

exception, in table 5, at 0.5 bpp. The PSNR of HS-MSLS is lower than that of LHS-



SPIHT for all images except Mandrill. It should be noted that the number with the 

PSNR cell after the (@) sign represents the full bit-rate. That is, all the bits of all 

image pixels are encoded. As shown, we get lower PSNR but at lower bit-rate. 

However, a PSNR  50 dB can be considered of a perfect quality [23].      

 
Table 4: PSNR versus bit-rate of the HSIC algorithms at 1/4 resolution (M = 5, m = 4) 

Bit rate 

(bpp) 

PSNR (dB) 

Lena Goldhill  

LHS-SPIHT HSLS HS-MSLS LHS-SPIHT HSLS HS-MSLS 

0.0625 27.98 28.45 28.57 27.36 27.61 27.72 

0.125 31.84 32.14 32.21 29.78 30.21 30.25 

0.25 37.21 37.01 37.15 32.97 32.79 32.79 

0.5 43.52 43.35 43.38 38.51 38.62 38.68 

1 53.17 53.05 53.34 49.73 49.77 49.67 

Bit rate 

(bpp) 

PSNR (dB) 

Barbara  Mandrill  

LHS-SPIHT HSLS HS-MSLS LHS-SPIHT HSLS HS-MSLS 

0.0625 25.48 26.84 26.92 21.28 22.74 22.85 

0.125 27.93 29.24 29.35 23.45 24.73 24.42 

0.25 32.42 33.66 33.72 28.59 28.87 27.59 
0.5 38.97 39.23 40.53 31.21 31.58 32.99 

1 50.02 50.19 51.07 39.23 39.52 43.58 

 
Table 5: PSNR versus bit-rate of the HSIC algorithms at 1/16 resolution (M = 5, m = 3) 

Bit rate 

(bpp) 

PSNR (dB) 

Lena Goldhill  

LHS-SPIHT HSLS HS-MSLS LHS-SPIHT HSLS HS-MSLS 

0.0625 31.86 32.08 32.44 30.86 31.33 31.50 

0.125 39.53 40.34 39.92 36.12 36.87 37 
0.25 50.30 50.89 50.98 46.87 47.05 47.98 

0.5 
70.51 64.77 

@0.45  

64.77 

@0.45 

70.71 64.80 

@0.47  

64.80 

@0.47 

Bit rate 

(bpp) 

PSNR (dB) 

Barbara  Mandrill  

LHS-SPIHT HSLS HS-MSLS LHS-SPIHT HSLS HS-MSLS 

0.0625 29.89 31.93 32.31 25.21 26.00 28.20 

0.125 35.83 36.03 37.80 31.31 30.42 32.88 
0.25 46.12 46.52 48.53 40.82 40.87 43.68 

0.5 
70.89 63.75 

@0.46 

64.84 

@0.47 

59.97 64.70 

 

64.77 

 

 

Figure 7 shows the image Lena reconstructed at 0.25 bpp, at full, 1/4, and 1/16 

resolutions with the corresponding PSNR 33, 37.15, and 50.98 dB, respectively. As 

depicted, for the same bit-rate we can get better PSNR by reconstructing the image 

at a reduced resolution. Inversely, we can preserve the same PSNR while the bit-rate 

is reduced if the image is reconstructed at reduced resolution.         



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) Computational Complexity 

 

Tables 6 and 7 show the complexity represented by the encoding time and the 

decoding time against the bit-rate for the different QSIC, and HSIC algorithms 

respectively. The MSLS is also included in table 7 to investigate the effect of making 

the algorithm highly scalable on its complexity. The Lena image is selected for this 

purpose. The shortest coding and decoding times at each bit-rate is made boldface. 

As it can be noticed, for all algorithms, the encoding time is longer than the decoding 

time. This is expected since the decoder does not require building the SOTs and 

testing their significances. From table 6, it can be shown that for MSLS, both the 

encoding and decoding times are widely shorter than that of SPIHT for all bit-rates. 

This is mainly due to removing the lists, which in turn reduced the random access 

read/write memory operations. Additionally, these times are also shorter than that of 

SLS. This speed improvement is the result of eliminating the need of offspring 

recalculation for the SG roots that are lied in resolution levels R0RM-2 twice in each 

coding pass.  

 

Table 7 shows that our HS-MSLS algorithm is again the fastest one in encoding and 

decoding times among the other HSIC algorithms. In addition, a comparison 

between MSLS and HS-MSLS reveals that the later encompasses unnoticeable speed 

increment in encoding and decoding. The reason for this negligible increment is 

separating the LRS into the M resolution portions (Pm) that are FIFO accessed by the 

associated M pointers instead of FIFO accessing the entire LRS by one pointer.     

 

               (a)  PSNR = 33 dB             (b) PSNR = 37.15 dB        (c) PSNR = 50.98 dB 

Figure 7: Lena image reconstructed at 0.25 bpp. a) at full resolution; b) at 1/4 

resolution; and c) at 1/16 resolution 

 



 
Table 6: The encoding time and the decoding time 

 of the QSIC algorithms versus the bit-rate for Lena image   

Bit rate 

(bpp) 

Encoding time (seconds) Decoding time (seconds) 

SPIHT SLS MSLS SPIHT SLS MSLS 

0.0625 0.750 0.734 0.359 0.391 0.078 0.031 

0.125 1.281 0.765 0.531 0.672 0.093 0.062 
0.25 2.078 1.062 0.875 1.000 0.188 0.140 

0.5 3.328 1.609 1.359 1.828 0.223 0.186 
1 5.719 2.421 2.156 3.500 0.556 0.348 

 

 
Table 7: The encoding time and the decoding time  

versus the bit-rate of the HSIC algorithms for Lena image   

Bit rate 

(bpp) 

Encoding time (seconds) Decoding time (seconds) 

LHS- 

SPIHT 
HSLS 

HS- 

MSLS 

MSLS LHS- 

SPIHT 
HSLS 

HS- 

MSLS 

MSLS 

0.0625 0.579 0.495 0.360 0.359 0.141 0.105 0.032 0.031 

0.125 0.814 0.611 0.533 0.531 0.157 0.146 0.064 0.062 

0.25 1.095 1.062 0.877 0.875 0.203 0.189 0.142 0.140 

0.5 1.593 1.609 1.363 1.359 0.234 0.204 0.189 0.186 

1 2.359 2.578 2.159 2.156 0.382 0.362 0.351 0.348 

    

c) Memory requirements 

 

The memory requirement is measured by the amount of computer memory needed 

by the algorithm to compress/decompress an image with (N×N) pixels. As 

mentioned previously, the memory of SPIHT is variable as it depends on the bit-

rate. However, in order to guarantee that SPIHT works properly for all bit-rates, the 

memory that is required to compress/decompress at full bit-rate must be used. At 

this rate total number of LSP and LIP entries is equal to two times the number of 

pixels (N×N), and the number of LIS entries is equal to N×N/4 [10]. So, the total 

memory of SPIHT is: 

  𝑀𝐸𝑀𝑆𝑃𝐼𝐻𝑇 =  2𝑏(2𝑁2) + 2𝑐 (𝑁24 ) = 4𝑏𝑁2 + 𝑐 (𝑁22 ) = (4𝑏 + 𝑐2) 𝑁2  bit  (6) 

 

where b is number of bits needed to store each one of the (i, j) pixel coordinates in 

LSP or LIP, and c is number of bits needed to store each one of the (i, j) pixel 

coordinates in LIS. So, 𝑏 = 𝑙𝑜𝑔2𝑁 bits, and 𝑐 = 𝑙𝑜𝑔2𝑁/2 bits. The LHS-SPIHT 

uses fixed-size memory of an average of 4 bits/pixel with total memory = 4(N×N) 

bits. Finally, the MSLS (and the HS-MSLS) also uses fixed-size memory, where the 

total number of entries of LRS = N×N /4, and it uses 2 bits/pixel, and 1 bit/root, so 

the total memory of MSLS is equal to: 



 𝑀𝐸𝑀𝑀𝑆𝐿𝑆 =  2𝑁2 + 𝑁24 + 2𝑐 (𝑁24 ) = (2 + 14 + 𝑐2) 𝑁2   bit           (7) 

 

Table 8 depicts the memory requirement of these algorithms for different image 

sizes. The column (%) represents the percentage of the total memory to the memory 

required to store the DWT image, which is equal to 16(N×N) bit, as each wavelet 

coefficient is represented by 16 bits. As shown, the memory of our HS-MSLS is 

greatly lower than that of SPIHT, and it slightly higher than that of LHS-SPIHT. 

However, as mentioned previously, the LHS-SPIHT algorithm utilizes the linear 

indexing technique that maps the DWT image to 1D array, which demands storing 

both in the memory. So, the image size should be added to the actual memory 

consumption of LHS-SPIHT.  

 
Table 8: Memory requirements of SPIHT, LHS-SPIHT, 

and the proposed HS-MSLS for different image sizes  

Image  

size 

Memory (KB) 

SPIHT LHS- SPIHT HS-MSLS 

MEM (KB) % MEM (KB) % MEM (KB) % 

256×256 284 2.21 32 0.25 46  0.36 

512×512 1280 2.50 128 0.25 200 0.39 

1024×1024 5696 2.78 512 0.25 864 0.42 

 

 

V. Conclusion 

 

The paper presented the MSLS and the HS-MSLS algorithms. The MSLS algorithm 

produces a quality scalable bitstream. As demonstrated from the simulation, MSLS 

has better PSNR performance, and has lower complexity than its predecessor the 

SLS algorithm. The proposed HS-MSLS algorithm upgraded the MSLS algorithm 

to produce a highly scalable bitstream that owns the quality and resolution 

scalabilities. As such, the image can be easily reconstructed at multiple qualities and 

resolutions using a simple bitstream parsing process. As shown, this is realized by 

arranging and identifying the data in each coding pass according to the resolution 

levels it belongs. As given from the simulation results, the HS-MSLS algorithm has 

improved PSNR, and runs faster than the other HSIC algorithms. The proposed HS-

MSLS is therefore very suitable for sending images over the Internet where the users 

to be serviced according to their capabilities and desires. Additionally, the high 

speed and reduced memory advantages of HS-MSLS makes it very appropriate as a 

part of the real-time scalable video transmission systems [24], and for compressing 

super-resolution and 3-D images [25]. 
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