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ABSTRACT

Musical instrument making is often considered a mysterious form of art, its secrets still escaping scientific quantification. There

is not yet a formula to make a good instrument, so historical examples are regarded as the pinnacle of the craft. This is the case

of Stradivari’s violins or Torres guitars that serve as both models and examples to follow. Geometric copies of these instruments

are still the preferred way of building new ones, yet reliably making acoustic copies of them remains elusive. One reason for

this is that the variability of the wood used for instruments makes for a significant source of uncertainty – no two pieces of wood

are the same. In this article, using state-of-the-art methodologies, we show a method for matching the vibrational response

of two guitar top plates made with slightly different materials. To validate our method, we build two guitar soundboards: one

serving as a reference and the second acting as a copy to which we apply model-predicted geometry variations. The results are

twofold. Firstly, we can experimentally validate the predictive capabilities of our numerical model regarding geometry changes.

Secondly, we can significantly reduce the deviation between the two plates by these precisely predicted geometry variations.

Although applied to guitars here, the methodology can be extended to other instruments, e.g. violins, in a similar fashion. The

implications of such a methodology for the craft could be far-reaching by turning instrument-making more into a science than

artistic craftsmanship and paving the way to accurately copy historical instruments of a high value.

Introduction

One of the largest problems found in guitar making is the lack of reproducibility: even though people talk of a ’Torres’ or a1

’Hausser’ model1, intrinsic material variations of the wood make every instrument unique. Yet, in their uniqueness, they all2

share a certain something that lets us speak of the different models and their characteristic sounds. To achieve that characteristic3

sound, luthiers subtly modify the internal bracing of the guitar based on their experience and sensibility. This is where the art4

comes in.5

There are, however, many reasons why a more systematic approach to instrument-building is timely and sorely needed.6

Global warming has already altered the habitat of trees2, 3, and tone-wood (the particular kind of spruce used for the soundboard7

of musical instruments) is bound to become more and more scarcely available. Recent research has clearly shown that the8

design of a guitar is much more important for the sound than environmental and material variability4. What this research9

lacks, however, is a concrete methodology of how to compensate for those material variations by adjusting the design. In this10

article, we close this gap by combining the state-of-the-art in parameter identification applied to guitars together with standard11

optimisation techniques.12

The starting point for our research lies with the recent advances in simplified FEM simulations for musical instruments, be13

they for guitars with model order reduction methods5, 6 or violins with neural networks7. These simplified approaches allow us14

to obtain the values for the eigenfrequencies of the system in 1/1000th of the time compared to traditional FEM simulations15

without significant loss of accuracy, allowing us to perform optimisations in a reasonable time6, 8. The traditional approach has16

been used in a variety of musical instruments, from the kantele9 to the viola da gamba10, with numerous studies focusing on17

string instruments4–8, 11–17.18

In engineering, shape optimisation using finite element models evolved into a standard method used in many applications18, 19.19

However, in the field of musical instruments, the only examples that we are aware of are the shape optimisation of a bell,20

e.g.20, and of vibraphone bars21, 22. To the best of the authors’ knowledge, shape optimisation has not yet been applied to string21

instruments because, in stark contrast to other examples, one does not know how to choose a suitable objective function because22

one lacks objective criteria to define a ’good’ instrument. We can, however, count on the expert knowledge of luthiers and23

the evaluation of musicians to identify ’good’ examples of guitars or violins23–25. Therefore, trying to copy the vibrational24



top 2 - modifiedtop 2 - initial

top 1 - reference top 1 - reference top 2 - modified

=

geometry

optimisation

experimental
modal

analysis

experimental
modal

analysis

experimental
modal

analysis

material
parameter

identification

!

Figure 1. Visualisation of the workflow that we use for matching the modal parameters of two soundboards by compensating

the material differences through geometry modifications. Starting from the modal parameters of the reference plate (top 1). By

fitting the material parameters of a different plate (top 2) in an initial state with thicker braces than the reference, we can

optimise the geometry of the bracing by only looking at the differences in the eigenfrequencies. Finally, the experimental

modal analyses show that two different geometries can have a very similar vibrational response.

response of these well-sounding instruments seems to be the most reasonable choice when it comes to designing an objective25

function for the optimisation of string instruments like guitars.26

This article’s contribution is a methodology for creating a vibrational copy of a reference guitar’s top plate. We focus on the27

top plate since it is not only the most complex but also the most relevant part for sound production in a guitar. Figure 1 shows28

a diagram of the proposed methodology: Starting from a reference plate (top 1), we identify its modal parameters - namely29

eigenfrequencies, eigenmodes, and modal damping ratios - in a frequency range up to 1000 Hz. The measured modal parameters30

of another plate (top 2) with identical geometry besides initially higher braces are fed into a material parameter identification31

process to obtain a virtual prototype that is able to predict the influence of geometric changes on this plate. This virtual prototype32

is used in numerical optimisation of the bracing heights to compensate for the differences in the eigenfrequencies between the33

two plates. The modifications to the bracing height are then applied to top 2 as predicted by the numerical optimisation. Finally,34

the experimental modal analysis of the reference and the modified copy shows that two different geometries can have a very35

similar vibrational response. Photographs of the final experimental plates can be seen in Fig. 5.36

We believe this is an excellent starting point to tackle more general problems regarding the interaction between material37

and design of musical instruments, as it demonstrates that the traditional geometrical reconstruction of the outer shape of38

instruments is not necessarily the best to obtain a standard vibrational response. Our approach shows that noticeable geometric39

modifications must be considered if a reference plate’s vibrational response is to be achieved.40

Results41

We constructed two guitar top plates according to a simplified Torres fan bracing pattern1. Great care was taken in building42

them as similarly as possible by matching the density of the braces used and the final weight of the top plates.43

A diagram of the two plates and their bracing height indicated by colours can be seen in Fig. 1, for ’top 1 - reference’ and44

’top 2 - initial’. We have coloured the top plates in different shades to indicate that they have different material parameters. In45

particular for top 1 the identified longitudinal stiffness is E1
L = 11.6 GPa and the density is ρ1 = 403kgm−3 and for top 2 we46
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Figure 2. (a) Comparison of eigenfrequencies calculated from the numerical model and experimentally identified

eigenfrequencies for the initial configuration of top 1. (b) Comparison of eigenmodes between the numerical model and the

experimental modal analysis. (c) Conducted bracing height changes to validate the numerical model. (d) Relative frequency

changes caused by the bracing height variation in the numerical model and the experiment.

get E2
L = 9.31 GPa and ρ2 = 407kgm−3. In total, 35 material parameters are identified for each top as all braces are handled47

individually (see Methods). We have started from very thick braces (7mm in the fan region) for two reasons. First, it serves us48

as a validation of the numerical model for different geometric configurations. Secondly, when we try to optimise top 2 to fit the49

vibrational response of top 1, we need to have a range of possible heights for the braces, and since taking out wood is easier50

than adding it, we decided to start from an oversized configuration.51

Figure 2a compares the eigenfrequencies of the experimental setup and the numerical model once the material parameters52

of the braces and the plate have been identified for top 1. The experimentally identified eigenfrequencies are the mean values53

from 4 measurements, with the eigenfrequencies varying in a mean range of ±0.7% for the first 24 modes. Figure 2b shows the54

modal assurance criterion matrix26 for the first 24 modes of the top plate — showing that the modal similarity is excellent.55

In order to validate the model, we implement the modal identification in two stages. Starting from the initial configuration56

with rather thick braces (Fig. 2c top 1 - initial), we arrive at the reference configuration (Fig. 2c top 1 - reference) and compute57

the relative change of the eigenfrequencies in the numerical model as well as in the experimental setup. Figure 2d shows the58

relative change in the frequencies for the experiments and simulations. Notice that the material parameter identification is only59

made for the initial configuration of top 1.60

Once the material parameters are fully identified, we can develop a linear model of the relative influence of the bracing height61

on the eigenfrequencies (see Methods). Figure 3a shows the normalised influence of the braces’ heights on the eigenfrequencies62

of the first 6 modes of the top plate. The vertical inset shows the modal shape associated with each eigenfrequency, whereas63

the horizontal diagrams show which of the braces it refers to. Notice that for symmetry, we only take pairs of braces in the64

fan, except for the central one. In Fig. 3b, the height changes necessary to influence the eigenfrequency of modes 1 and 2 are65

depicted vividly.66

In order to quantify the variability in the eigenfrequencies due to material or design parameter changes, we sample the67

parameter space for each of them in the range of possible values for each (see Methods). We sample the eigenfrequencies68
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Figure 3. (a) Correlation matrix between eigenfrequencies of the first modes and the height of specific bracing areas. (b)

Bracing height changes that are necessary to change the eigenfrequency of the specified modes. (c) Relative standard deviation

of eigenfrequencies caused by feasible bracing height changes and possible material parameter changes within spruce wood.

10000 times and obtain a distribution that turns out to be very close to normal, similarly to the results reported in7. From those69

distributions, and for each eigenfrequency, we measure the standard deviation of the frequency change. Figure 3c shows the70

relative standard deviation in percentage for the first 10 modes of the top plate. Interestingly, the variation due to material71

parameters is, on average, slightly larger than that due to geometric variations, which explains why the wood selection is such a72

critical step in instrument making. Particularly modes 1, 2, 4, 6, and 8 are extremely sensitive to the variation in the material73

parameters and are much less affected by the bracing height. We conclude that these modes depend more on the plate’s specific74

stiffness than on the braces’ geometry. Nevertheless, these results explain that our method to reproduce the vibrational response75

works well since we started with very similar woods that only vary in their stiffness and had almost the same density.76

Finally, in order to find out the necessary bracing heights of top 2 so that it vibrates as top 1, we use a straightforward77

optimisation process. Instead of using directly the finite element simulations at each iteration step, we use the linear model of78

Fig. 3a to solve the optimisation problem of the eigenfrequencies of both top plates with the objective function79

L =
13

∑
m=1

(

f ref
m − fm

f ref
m

)2

. (1)

To minimise this objective function, we use Matlab’s fmincon constrained optimisation algorithm for the seven brace heights80

shown in Fig. 3a.81

The optimisation problem converges after around 100 iterations, and the height profile for the braces is carved into top 2 as82

depicted in Fig. 4a. After the optimisation, the difference in eigenfrequencies between top 1 and top 2 can be observed for the83

initial and modified configuration (purple and green line in Fig. 4b respectively), as well as the difference predicted from the84

numerical model (red line). The mean error between top 1 and top 2 is less than 2 %, which is extremely well predicted by the85

numerical model.86
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Figure 4. (a) Conducted bracing height changes given by the optimisation to fit the soundboard copy to the reference. (b)

Experimentally identified relative frequency difference compared to the reference soundboard before and after the height

changes. (c) Modal damping ratios of the reference and the copy soundboard in comparison. (d) One exemplary experimentally

identified mode in comparison between reference and copy.

Even though our objective function only considers the eigenfrequencies, the damping ratios and modal shapes are also well87

fitted, showing that the choice of the objective function is very well suited for the problem. Figure 4c shows the damping ratio88

for the reference top 1 and the optimised top 2. The match is very good for the first six modes, which are the most radiative89

ones, so we expect a similar tonal performance of both top plates. The fit of the modal shapes is even better, showing an average90

MAC of 0.92 for the first 13 modes. An example of the mode similarity can be seen in Fig. 4d where for mode 5, a MAC of91

0.98 is achieved. In conclusion, by fitting the first 13 eigenfrequencies, our model can correctly predict the height profile that92

top 2 needs to yield a similar vibrational response to top 1. The results are even great for both modal shapes and damping ratios,93

which come ’for free’ when optimising the eigenfrequencies. In Fig. 5 the plates are depicted in their final state. The height94

differences between the harmonic bars are clearly visible while the small height differences in the fan are barely recognisable.95

Discussions96

In this article, we have presented a methodology for the material identification of a guitar top plate and a predictive framework97

that allows one to ’copy’ a target vibrational response. The framework uses state-of-the-art methodologies to rapidly compute98

a linear model of the vibrational response of the plate as a function of the bracing height. We then use that linear model to99

minimise an objective function based on the first 13 eigenfrequencies to obtain the geometry that matches the vibrational100

response in a top plate of a different material than the original. We carve the optimised bracing height profile in our experimental101

top and show that, indeed, the results are very similar, not only for the eigenfrequencies but also for the damping ratios and102

the modal shapes of the first 13 modes. Note, however, that the damping ratios cannot yet be explicitly controlled with the103

methodology since they are not included in the objective function.104

Thanks to the model order reduction technique, we can sample a vast array of material and geometrical values and study105

how geometry and material parameters affect the eigenfrequencies. Previous results on the use of metamaterials for thin wooden106

plates27 show that, to a certain degree, the density and stiffness of the plates can be purposefully controlled. By matching the107

density and the longitudinal stiffness of the top and the back plate, we can be certain that the modifications of the braces will be108

minimal6.109
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The implications of these results are far-reaching in the field of instrument making: By quantifying how close we can come110

to a desired vibrational response with a given material, we have taken guesswork out of the equation in guitar-making. One111

could argue that the equipment used in this research is far beyond the reach of standard contemporary instrument-making112

workshops. However, the principles behind our method can be applied with any setup of modal identification. Some luthiers113

already perform this as part of their workflow to characterise their instruments28, 29. Furthermore, recent advances in the114

development of efficient surrogate models like neural network prediction of the vibrational response of wood7, 30 and parametric115

model order reduction for shape optimisation31 make us hopeful that in the near future this optimisation method can become a116

fundamental part of guitar-makers’ toolboxes.117

Finally, the ability to deliberately achieve a certain vibrational response is unheard of in classical instrument making. Instead118

of blindly following older designs or searching for new ones based only on intuition, we propose a method for scientifically119

and methodically producing a copy of a given instrument. This is not only relevant in guitar-making but in other instruments120

as well. A case in point is violins, where some historical instruments more than 300 years old are no longer suited for actual121

playing. This method could help us hear instruments that are no longer playable (and the example of Stradivari’s Messiah122

comes immediately to mind) and create accurate acoustic copies of them. Whether the accuracy of the method is sufficient to123

produce indistinguishable acoustic copies of instruments still remains an open question in the field of musical perception25, 32, 33.124

The path is rather long still, but this is a necessary step in the direction of turning instrument making more into a science than a125

mysterious art.126

Methods127

Guitar plates construction128

The guitar plates were built with same-grade wood pieces bought from the same dealer (Rivolta Wood, Desio, Italy). The wood129

used is Abete Rosso (Picea abies). Each guitar plate is made of two bookmatched pieces supplied by the dealer. The plates130

were glued up with fish glue (Kremer pigments, Aichstetten, Germany) using the traditional guitar-making methods. Six weeks131

passed between glueing the top plate and glueing the braces to allow the wood to regain its original moisture content.132

The wood for the braces was sorted by density, and the two top plates were matched as closely as possible to have the same133

weight distribution on space. The mass variation of the braces for either guitar was less than 3 gr. Due to the size of the brace134

wood, an independent material parameter identification could not be used, and we opted for a bulk characterisation from the135

MOR model. The braces were glued to the soundboard with rabbit glue (Cremona tools, Cremona, Italy). The braces were136

planed by hand to a standard cross-section of 7x7 mm and glued in a fan pattern based on a simplified Torres model from 18841,137

the Stradivari of guitar-making. Harmonic bars had a 23.5x7 mm cross-section. Before glueing the fan bars, we measured their138

density and ordered them in such a way that the heaviest bars were in the centre of the top plate and the lightest on the sides.139

The impact of the glue was in no way characterised and assumed irrelevant. After construction, the plates were shipped from140

Cremona to Stuttgart, where they were kept in a climate-controlled room for 3 months before starting the measurements.141
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Experimental modal analysis142

Experimental modal analysis is the standard method when it comes to identifying modal parameters of vibration structures143

and has been applied to various musical instruments5, 29, 34, 35. A setup with the guitar plates being suspended by very soft144

springs approximating free boundary conditions was developed for the experimental modal analysis. The plates were kept, and145

measurements were taken in a climate-controlled room, with a relative humidity of 55±1% and a constant temperature of146

24◦C. One can find details on the climate-controlled room in36. The plates’ velocities were measured with a Polytec PSV-500147

Scanning Laser Doppler Vibrometer, and an automatic impulse hammer acts as the excitation device37. The excitation with148

the hammer yielded a reproducible excitation of frequencies up to 1000 Hz, and the maximum forces on the guitar plates149

did not exceed 3.0 N. A total of 220 mobilities were measured. These measurements were composed of 110 points on the150

soundboard, where the velocity is measured and two distinct excitation positions between the fan braces. Each measurement151

resulted in a data sequence of duration T = 0.8 s. Using a sampling step of ∆t = 1.6 ·10−4 s, the width of each frequency bin of152

the corresponding Fourier transform was ∆ f = 1.25 Hz. Longer measurements would have resulted in zero padding due to the153

faded signal and were, therefore, avoided. The complex mode indicator function, in combination with enhanced frequency154

response functions, was used to identify the modal parameters of the plates. Details on the method can be found in38, and a155

detailed description of the application to a classical guitar is included in5. The uncertainty of the modal parameter changes,156

given in the error bars in Figs. 2 and 4, was calculated from 15 measurements throughout the modification process of top 1 by157

interval arithmetic39.158

Material parameter identification159

The material parameter identification follows the approach described in detail in6. Detailed finite element models of the160

guitar plates act as the key pieces of the approach40, 41. The models were created in the commercial software Abaqus with161

free boundary conditions and an orthotropic material model for all the braces42. The plates were discretised with linear shell162

elements of Abaqus type S4, while the braces’ discretisation was carried out with linear C3D8 volume elements. In former163

publications, rigid tie constraints have shown to be a reasonable assumption for binding the plate and the braces together5, 6.164

Hence, this approach was used in this publication, too. The degrees of freedom of the full-order model with a very fine165

discretisation sum up to N = 400128.166

Unfortunately, the detailed model takes too much computational time to be evaluated thousands of times during the167

parameter identification procedure. Furthermore, the parameter space would contain up to 107 material parameters if all braces168

with all their material parameters were to be identified individually. Thus, a projection-based Krylov approach for parametric169

model order reduction was applied to reduce the number of degrees of freedom in an efficient surrogate model to n = 600 while170

keeping a good approximation of the full-order model’s results up to 1000 Hz. This was reached by matching the transfer171

function of 4 inputs and outputs distributed over the plate at 20 frequency shifts equally distributed in the frequency range and172

60 parameter expansion points created with a Sobol sequence as explained in6. General information on model order reduction173

can be found in43, 44 while a review of parametric model order reduction techniques is given in45, and the used software is174

described in46. The order-reduction approach reduces the computational time to calculate the first 30 modal parameters from175

78 s with the full-order model to 0.04 s with the reduced-order model, corresponding to a numerical speedup of 1950. On176

a set of test data consisting of 100 evaluations for the first 30 eigenfrequencies, the common coefficient of determination is177

R2 = 0.96 between the reduced-order model and the full-order model47.178

In the reduced-order model, parameter dependency is preserved for the 35 most influential parameters chosen with the help179

of a sensitivity analysis. The parameters kept for the plates are the density ρ , the Young’s moduli EL in longitudinal and ET180

in the tangential direction, and the shear modulus GLT. The parameters are identified for each brace individually. However,181

the number of parameters varies between the different braces as follows. Parameters for the fan braces comprise ρ , EL, and182

the shear modulus GLR with the subscript R denoting the radial direction. The higher braces directly above and below the183

soundhole are characterised by ρ , EL, the Young’s modulus in radial direction ER, and GLR. The horizontal brace on the upper184

part of the plates is parameterised with ρ and EL. Values for spruce from48 are used for all the remaining values.185

The parameter identification procedure follows a two-step approach. Firstly, the 35-dimensional parameter space were186

explored as done in6 using a sampling approach based on a Sobol-sequence and one million samples49. In the second step, an187

objective function comparing eigenfrequencies and eigenmodes was evaluated, and the eight best-performing solutions were188

given into the Matlab fmincon algorithm as starting values. In both sets, constraints were set in such a way that the total mass189

of the plates would not allow variations beyond ±5% with respect to the experimentally measured value. As a second set of190

constraints, the material parameter values were not allowed to exceed bounds taken from literature4, 48, 50, 51. The best solution191

with respect to the objective function evaluated for the first 24 modes of the algorithm was used for the geometry optimisation.192

Geometry optimisation193

The finite element model with the identified material parameters served as a virtual prototype to apply the changes to the braces.194

The model of top 1 was used for validation purposes, as shown in Fig. 2, while the model with the material parameters for top 2195
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was used to optimise the bracing heights of top 2 to match the modal parameters of top 1, as visible in Fig. 4. In this procedure,196

seven independent height parameters were used for the ten braces as the symmetry in the fan braces was kept constant. Again,197

the full-order model turned out to be unsuitable for optimisation purposes due to its high computational cost. For this reason, a198

linear regression model was fitted for the correlation between the first 13 eigenfrequencies and the heights of the braces. The199

linear regression model was trained with a set of 950 parameter samples of bracing heights created from a Sobol sequence in a200

realistic range of hrange = [1mm,7mm] for the lower braces and Hrange = [8mm,23.5mm] for the harmonic bars. On a set of201

test data consisting of 50 further samples, the coefficient of determination is R2 = 0.96.202

This regression model was then used in the optimisation process to identify the optimal bracing heights. Since the finite203

element model approximates the absolute values of the eigenfrequencies with a small systematic error, the desired relative204

change of eigenfrequencies was used as optimisation criterion as depicted in the violet curve in Fig. 4b. Hence, the systematic205

error between the finite element model and the experiment did not influence the results. Then, the mean squared error of the206

first 13 eigenfrequencies was minimised using Matlab’s fmincon. The only constraints set in the optimisation process were the207

lower and upper bounds, and they were specified as written above in hrange and Hrange.208
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