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Abstract

The recent trend of fusing complementary data from LiDARs and
cameras for more accurate perception has made the extrinsic calibra-
tion between the two sensors critically important. Indeed, to align
the sensors spatially for proper data fusion, the calibration process
usually involves estimating the extrinsic parameters between them. Tra-
ditional LiDAR-camera calibration methods often depend on explicit
targets or human intervention, which can be prohibitively expensive
and cumbersome. Recognizing these weaknesses, recent methods usu-
ally adopt the autonomic targetless calibration approach, which can
be conducted at a much lower cost. This paper presents a thorough
review of these automatic targetless LiDAR-camera calibration meth-
ods. Specifically, based on how the potential cues in the environment
are retrieved and utilized in the calibration process, we divide the
methods into four categories: information theory based, feature based,
ego-motion based, and learning based methods. For each category, we
provide an in-depth overview with insights we have gathered, hoping
to serve as a potential guidance for researchers in the related fields.
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1 Introduction

In modern autonomous systems such as self-driving vehicles, accurate per-
ception of the surrounding environment is an important capability and a
prerequisite for making subsequent decisions. In order to further improve per-
ception accuracy, autonomous systems usually apply different types of sensors
and combine their advantages through data fusion (Cui et al., 2022, Feng et al.,
2021, Wang et al., 2020b). Among them, a most typical multi-sensor fusion is
for a LiDAR sensor and an RGB camera, as shown in Fig. 1.

Currently, LiDAR-camera fusion has been widely applied to a variety of
challenging tasks, such as object detection and tracking (Chen et al., 2017,
Kim et al., 2021, Vora et al., 2020), simultaneous localization and mapping
(SLAM) (Graeter et al., 2018, Zuo et al., 2019), and navigation (Hussein et al.,
2016).

In order to fuse the data from a LiDAR sensor and a camera, it is criti-
cal to first calculate the extrinsic transformation between the two sensors in
a common frame of reference. The process of the parameter estimation for
the transformation between sensor coordinate systems, including rotation and
translation, is called LiDAR-camera extrinsic calibration.

The extrinsic calibration involves finding the correspondence between data
from the two sensors. LiDAR point clouds and camera images are of two
distinct modalities, which differ in dimension, resolution, field of view, etc.,
bringing great challenges to the calibration process. Traditionally, the two sen-
sors are calibrated by placing definite targets, such as checkerboards, polygonal
boards, and boxes, in specific scenes, or by manually extracting and matching
particular features from the sensor outputs. However, these methods require
pricey and lengthy manual operations, which is expensive to compensate for
the drifts of calibration parameters caused by displacements in the location of
sensors on moving vehicles.

To approach this problem, a recent trend is to extract features or other
discriminative information, such as the common attribute probability distri-
bution and the motion trajectory, that can be used to calibrate the sensors in
the actual driving environment. This approach does not require any calibra-
tion target or manual effort. As a result, it is referred to as automatic targetless
calibration.

Automatic targetless calibration promises to revolutionize the way calibra-
tion is done, but it also brings great challenges to the design of the system. In
particular, without a clear calibration target, the difficulties of feature extrac-
tion and matching increase significantly. In this paper, we carefully review
recent automatic targetless calibration methods, with a special focus on how
they tackle this challenge mathematically. Specifically, based on how these
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Fig. 1 The process for LIDAR-camera fusion based on extrinsic calibration, the image and
the point cloud are taken from the KITTI public dataset (Geiger et al., 2013), as are the
following figures

methods exploit potential cues in the environment, we divide them into four
categories: (1) information-theory based methods that measure the statisti-
cal similarity between joint histogram values of several common properties
between the two modalities, (2) feature based methods that extract geomet-
ric, semantic or motion features from the environment, (3) ego-motion based
methods that make use of the sensor-movement related information, and
(4) learning based methods that use neural network models to estimate the
extrinsic parameters.

Though there are already a few surveys on LiDAR~camera calibration such
as (Khurana and Nagla, 2021, Nie et al., 2021, Wang et al., 2021, Yaopeng
et al., 2021), they usually cover a wide range of traditional calibration methods
and only provide a relatively brief review of automatic targetless calibration.
Given its rapidly increasing popularity, we believe a thorough and insightful
review on automatic targetless LiDAR-camera calibration is both imperative
and important. To summarize, our contributions are as follows:

1. We provide an accurate and inclusive automatic targetless LIDAR~camera
calibration classification. Based on how the potential information in the
environment is utilized to solve the extrinsic calibration problem, we divide
these methods into four categories, i.e., information-theory based meth-
ods, feature based, ego-motion based, and learning based methods. Then
we further split each category according to their different choices for the
implementation.

2. We present an extensive and detailed introduction to related studies that
fall within the scope of automatic targetless calibration. Then we carefully
classify and introduce these papers in detail.

3. We provide elaborate comparisons and discussions for the four categories
on their characteristics and advantages, as well as their limitations.

The remainder of this paper is organized as follows. In section 2 we explain
the mathematical principles of extrinsic calibration between a LiDAR sen-
sor and a camera, and introduce the criteria for the classification of current
methods, then we present our automatic targetless LIDAR~camera calibration
framework. Section 3 provides a review of LiDAR-camera extrinsic calibration
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methods from the four previously-mentioned categories. In section 4 we sum-
marize and compare the four categories of methods on their characteristics
and advantages. Section 5 provides the conclusion of the paper.

2 Background

The calibration for LiDAR and camera is aimed at obtaining the transforma-
tion between the two sensors’ coordinates, which enables the conversion of the
data from the LiDAR sensor and the camera into the same coordinate system.
Fusion of the calibrated data is crucial to improve performance for perception
tasks, such as object detection, classification, tracking, and so on (Chen et al.,
2017, Zhang et al., 2019).

In this section, we specify the concepts of intrinsic and extrinsic calibration
parameters and review the mathematics for transformation between LiDAR
and camera coordinates. Then we introduce four categories of extrinsic cali-
bration methods, that can be summarized according to the need for calibration
targets and whether human intervention is required. In this paper, we focus
on automatic targetless extrinsic calibration between a LiDAR sensor and a
camera.

2.1 Transformation between LIDAR and Camera
Coordinates

The transformation relationship between the coordinate systems of a LiDAR
sensor and a camera is specified by extrinsic parameters in LiDAR-camera
calibration. Meanwhile, the camera is treated as a classical pinhole camera
model. Then a 3D point in the camera coordinate system is projected onto a 2D
point in the image plane, where intrinsic parameters specifies the projection.
We use both extrinsic and intrinsic parameters to transform a 3D point in the
LiDAR coordinate system to a 2D pixel in the image plane and vice versa,
which defines the correspondence between points and pixels. Notice that, the
intrinsic parameters represent the internal properties of the camera such as
focal length and principal point, which can be measured offline. Then we only
need to estimate extrinsic parameters online for the transformation.

As illustrated in Figure 2, we use Op and O¢ to denote the origin of
coordinate systems attached to the LiDAR sensor (L) and the camera (C),
respectively. The position coordinates of a point P w.r.t. L and C can be
denoted as P, = [X1 Yz, Z1)" and Po = [X¢ Yo Zc| T, respectively. The point
P is also projected on the image plane at pc = [u v]T. Then the projection
between the 3D point P¢ in the camera coordinates and the 2D point pc on the
image plane, i.e., intrinsic parameters, is specified by the following equation:

U fe s w| [Xc Xc
Zo (v =10 fy Vo Yo | =Kc¢c | Yo, (1)
1 0 0 1 Zo Zc
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Fig. 2 Transformation between a LIDAR sensor and a camera using extrinsic parameters.
A point P in 3D world scene is observed by a LiDAR sensor and a camera, with Py, in
the LiIDAR coordinate system and Pc in the camera coordinate system. The coordinate
transformation of these two points P, and P¢ is performed through extrinsic parameters R
and t

where f, and f, denote the focal length in pixels on the z and y axes respec-
tively, (up,vp) denotes the optical center (the principal point), and s denotes
the skew coefficient, which is non-zero if the image axes are not perpendicular.
Meanwhile, Z+ denotes the depth scale factor.

The transformation between the point Pr in the LiDAR coordinates and
the point Pc in the camera coordinates, i.e., extrinsic parameters, is specified
by the following equation:

X
Xo Xr YLL
Yoe| =R |Y, | +t= [R t} 70> (2)
Zc Zy 1L

where R and t denote the rotation matrix and the translation vector between
LiDAR and camera coordinates, respectively. Let T = [R t]. In the following,
we use T to denote the extrinsic parameters.

At last, we can specify the transformation between Py, and pc by combining
Equation (1) and (2):

XL
u YL
ZC ( :KC [R t] ZL . (3)
1

1
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In the following, we use projp(Pr) = pc to denote the projection function
from the 3D LiDAR point Py to the 2D point pc on the image plane w.r.t.
the extrinsic parameters T. With a slight abuse of the notion, we also use
projp(Pr) = pe to denote the projection function from a set of 3D LiDAR
points Py, to an image p¢, where for each Pr, € Py, projp(Pr) € pe, and vice
versa.

2.2 Categories of Extrinsic Calibration Methods

According to the need for calibration targets and whether human intervention
is required, extrinsic calibration between a LiDAR sensor and a camera can
be divided into the following four categories:

Manual target-based: These extrinsic calibration methods require engi-
neers to manually specify the correspondences between the LiDAR point clouds
and camera images based on one or more calibration targets, like checkerboard
patterns (Geiger et al., 2012, Zhang and Pless, 2004, Zhou and Deng, 2012),
ArUco tags (Dhall et al., 2017, Yoo et al., 2018), custom-made planar targets
(Guindel et al., 2017, Vel’as et al., 2014), ordinary boxes (Hassanein et al.,
2016, Pusztai and Hajder, 2017).

These specified calibration targets impose geometric constraints between
corresponding 3D points in point clouds and pixels in images, which enable the
agent to estimate extrinsic parameters. For example, Zhang and Pless (2004)
proposed to use a checkerboard from multiple views to calibrate a 2D LiDAR
sensor and a camera, where the extrinsic parameters were estimated by solving
a nonlinear least-squares iterative minimization problem. Later, Unnikrishnan
and Hebert (2005) extended the work to calibrate 3D LiDARs and cameras
following a similar procedure.

Automatic target-based: Different from manual target-based methods,
these methods do not require human intervention, where the correspondences
between point clouds and images are automatically estimated using various
features w.r.t. the calibration targets.

There are various calibration methods in this category. For instance, Geiger
et al. (2012) presented an automatic extrinsic calibration method using a single
shot only. In specific, the method required finding several checkerboards in
different places, other than taking several shots on one checkerboard located
differently. Toth et al. (2020) uses a spherical target for automatic extrinsic
calibration. The method calculates the sphere center of the target using the
detected surfaces and contour from point clouds and images respectively, and
estimates extrinsic parameters via the geometric constraint for the same sphere
center.

Manual targetless: Extrinsic parameters may need to be adjusted
online in some real-world applications, like self-driving (Levinson and Thrun,
2013). Then targetless calibration methods are required to estimate extrinsic
parameters in the real world without specified targets.

Manual targetless methods consider the problem by manually specifying
the correspondences between point clouds and images, which often require
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a set of predefined rules or patterns for selecting the correspondences. For
example, Scaramuzza et al. (2007) proposed a targetless calibration method.
The method first manually selects a set of pairs between 3D points in point
clouds and pixels in images. Then it estimates extrinsic parameters using the
PnP (Perspective from n Points) algorithm (Quan and Lan, 1999) followed by
an iterative least-squares refinement.

Automatic targetless: Automatic targetless calibration methods esti-
mate extrinsic parameters by exploiting useful information from surrounding
environments automatically. These approaches neither require any specified
calibration targets nor heavy manual work. In the next section, we summarize
various existing automatic targetless extrinsic calibration methods according
to which information they are used for the estimation.

Notice that, automatic targetless calibration is widely applied for lots of
practical applications for autonomous systems, like intelligent vehicles, drones,
and robots (Li et al., 2017), (Liu et al., 2018a). There exist multiple surveys
for LiDAR-camera calibration. Nie et al. (2021) categorized calibration meth-
ods into offline and online methods. Yaopeng et al. (2021) divided them into
manual calibration and automatic calibration solutions. Later, Khurana and
Nagla (2021) classified existing calibration methods based on: (1) 2D or 3D
LiDAR, (2) target-based or targetless, and (3) manual or automatic. Wang
et al. (2021) Considered the need for targets and geometric constraints as
transverse and longitudinal dimensions to classify the calibration methods.
Different from these previous works, we focus on automatic targetless extrinsic
LiDAR-camera calibration methods and consider their potential applications
in various autonomous systems.

3 Automatic Targetless LIDAR-Camera
Calibration

Automatic targetless LIDAR-camera calibration methods intend to estimate
the extrinsic parameters between LiDAR and camera automatically, by exploit-
ing useful information from surrounding environments online, without any
human intervention.

According to three specific sources of information exploited from envi-
ronments, there are three categories of automatic targetless LiDAR-camera
calibration methods, i.e., information theory based methods, feature based
methods, and ego-motion based methods. Different from them, learning based
methods use neural networks to implicitly capture useful information from
environments for the calibration.

In this section, we summarize most recent automatic targetless calibration
methods into four categories, i.e., information theory based methods, feature
based methods, ego-motion based methods, and learning based methods. For
each category, we introduce the basic principles of the methods and further
explore their differences by specifying multiple choices for the implementation.
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Fig. 3 A typical pipeline of information theory based Methods. In this figure, the LiDAR-
camera attribute pair is chosen as reflectivity — grayscale intensity, and the statistical
similarity measure is chosen as MI

3.1 Information Theory Based Methods

Information theory based methods estimate the extrinsic parameters by max-
imizing the similarity transformation between the LiDAR sensor and the
camera, which is measured by various information metrics. In specific, the
basic principles of information theory based methods can be summarized as
the following equation:

T = argmax IM( projr(PL), pc ), (4)

where P, denotes the set of 3D points generated by the LiDAR sensor, po
denotes the image generated by the camera, projp denotes the project function
from the set of 3D points to the image w.r.t. the extrinsic parameters T, and
IM denotes the corresponding information metric that measures the similarity
between projp(Pr) and pc.

Following the statement in Equation (4), an information theory based
method for LiDAR~camera calibration consists of three steps:

3D-2D projection for LiDAR points: projr projects the set P, of 3D
LiDAR points to the image projp(Pr) w.r.t. the extrinsic parameters T.

Statistical similarity measure: IM measures the statistical similarity
between the 2D projected image projp(Pr) and the camera image pc w.r.t.
some features that share the similar distribution between the sensor data
obtained by LiDAR and camera. Notice that, different choices of these features
and corresponding statistical dependence measures would result in different
LiDAR-camera calibration methods.

Optimization: The statistical dependence measure IM is usually a non-
convex function, which requires an optimization method to reach global
optima. A typical pipeline of an information theory based approach is shown
in Fig.3.

Note that, there are several attributes of the sensor data obtained by
LiDAR and camera that share a similar distribution. For instance, LiDAR
data points with high reflectivity usually correspond to bright surfaces in the
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image, and points with low reflectivity correspond to dark areas (Pandey et al.,
2021). The correlation between the LiDAR reflectivity and camera intensity
is often applied to measure the similarity between the data of LiDAR and
camera. Besides reflectivity and intensity, gradient magnitude and orientation
extracted from both LiDAR points clouds and camera images can also be
considered here (Taylor et al., 2013).

3.1.1 Pairs of Point Cloud and Image Attributes

We summarize pairs of attributes for LIDAR point clouds and images that are
commonly adopted in existing information theory based methods and specify
them in the form of “Point cloud attribute — Image attribute”.

¢ Reflectivity — Grayscale intensity: The reflectivity of a LIiDAR point
is recorded as the return strength of a laser beam, and grayscale intensity
denotes the intensity of the pixel in a grayscale image. When the camera
and LiDAR simultaneously observe the environment, there would be a sta-
tistical similarity between the reflectivity of the LiDAR point clouds and the
grayscale intensity of the image, as both attributes mainly depend on the
same surface property of the objects (Pandey et al., 2014). Similarly, other
pairs of attributes, like Reflectivity — Hue (Zhao et al., 2016), Reflectiv-
ity — Visible light wavelengths (Pascoe et al., 2015) and Reflectivity
— color (Irie et al., 2016), also depend on the same surface property of the
objects.

e Surface normal — Grayscale intensity: Given the light sources in the
environment, the surface normal will affect the grayscale intensity of the cor-
responding pixels in the image. Then, there is a statistical relation between
the surface normal obtained from the LiDAR point clouds and the grayscale
intensity of the image. The surface normal can be estimated from either
dense or sparse LiDAR point clouds via various methods(Taylor and Nieto,
2012). Given the normal vector of a point, the corresponding angle between
the horizontal plane can also be calculated (Taylor and Nieto, 2013). It often
assumes that most of the light is coming from above, then this angle results
in the largest influence on the intensity, which implies the statistical relation
between the surface normal and the grayscale intensity.

¢ Gradient magnitude and orientation — Gradient magnitude and
orientation: When comparing two multi-modal images, a camera picture
and a LiDAR depth image for example, if the pixel intensity of a patch in one
image differs significantly from its surroundings, then the strength of the cor-
responding site in the other modality is likely to change accordingly (Taylor
et al., 2013). This correlation exists as changes in these intensities typically
represent differences between the background and the detected material or
object. For 2D images, the magnitude and orientation of its pixel gradi-
ent can be calculated using the Sobel operator (Taylor et al., 2014). As for
point clouds, each pixel is first projected onto a sphere, then the gradient is
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computed using its nearest 8 neighbors based on the algorithm proposed in
(Taylor et al., 2014).

3D semantic label — 2D semantic label: Due to the fact that the
semantic label of each 3D point is the same as its corresponding image
pixel if exists, we should be able to perform data association using such
information (Jiang et al., 2021). The point-wise semantic labels in an image
and a point cloud can be predicted respectively, in a segmentation task using
neural network models (Cortinhal et al., 2020, Takikawa et al., 2019).
Combination of 3D-2D attribute-pairs: Instead of relying on one spe-
cific pair of 3D-2D attributes to estimate the pixel similarity, some methods
found that using a mixture of features is advantageous for improving algo-
rithmic robustness against varying environments (Irie et al., 2016). They
compute similarity measurements using a combined set of 3D-2D attribute
pairs with appropriate weights assigned to each. These attribute sets are
usually a combination of some of the above attribute pairs, such as reflectiv-
ity, surface normal, and gradient in the point cloud, and grayscale intensity
and gradient in the image. They compute similarity measurements with a
combined set of 3D-2D attribute pairs and assign them appropriate weights.

1.2 Statistical Similarity Measure

Based on the above attribute pairs for LIDAR point clouds and camera images,
we can use various statistical dependence measures to measure the statistical
similarity between them, where larger measure values lead to better correspon-

de

nces. In the following, we summarize statistical dependence measures that

are commonly applied in existing information theory based methods.

Mutual Information (MI): MI provides a means to measure statistical
dependence between two random variables or the amount of information
that one variable contains about the other. Under the Shannon entropy
(Shannon, 2001), MI is defined as:

MI(X,Y)=H(X)+ H(Y) - H(X,Y),

where H(X) and H(Y') are the individual entropies of random variables X
and Y, and H(X,Y) is the joint entropy of the two random variables, i.e.,

= px(x)logpx (x),

zeX
=—> pv(y)logpy(y),
yey
HX,)Y)==> Y pxy(z,y)logpxy(z,y),
zeX yey

where px (), py (v), pxy (z,y) denote the marginal and joint probabilities of
these random variables, respectively. In practice, we can use, for example,
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the reflectivity value of each LiDAR point and the intensity of each image
pixel as two random variables X and Y. Then the probability distribution of
both random variables can be estimated using methods, like kernel density
estimation (KDE) Scott (1992).

Normalized Mutual Information (NMI): Notice that, MI can be influ-
enced by the total amount of information contained in both LiDAR points
and the image. Then the preferred similarity transformations between the
LiDAR sensor and the camera, i.e., the extrinsic parameters for the calibra-
tion, may not result in larger MI measure values (Studholme et al., 1999).
NMI addresses the problem by normalizing the value in MI, i.e.,

H(X)+ H(Y)
NMI(X,Y) = HX.Y)

Gradient Orientation Measure (GOM): GOM operates by calculating
how well the orientation of the gradients is aligned between two images
(Taylor et al., 2013). The magnitude of the gradient is also considered as
the weight.

There is a major difference between NMI and GOM. GOM uses the gradients
of points rather than their intensity, so it takes into account the values of
neighboring points and the geometry present in the image.

Normalised Information Distance (NID): NID (Li et al., 2004) is
a similarity metric that can be used to match the modalities of different
sensors. The normalization property of NID brings similar advantages over
MI metrics, as it does not depend on the total information content of the
two images, thus, it does not detrimental to global image alignment due to
matching between highly textured image regions.
Bagged Least-squares Mutual Information (BLSMI): BLSMI (Irie
et al., 2016) is a combination of methods composed of a kernel-based depen-
dence estimator and noise reduction by bootstrap aggregating (bagging).
One of the advantages of BLSMI over ordinary MI is that BLSMI is robust
against outliers because it does not include a logarithm.
Mutual Information and Distance between Histogram of Oriented
Gradients (MIDHOG): MIDHOG is a metric that combines NMI and
Distance between Histogram of Oriented Gradients (DHOG) to measure the
consistency between images (Guislain et al., 2017). MIDHOG is defined as
a parameter representing the weight a:

MIDHOG = (2.0 — NMI) + - DHOG.

When applied to images with only a few textures, DHOG performs much
better than NMI. However, on images with a lot of textures, NMI gives more
accurate results. Thus, MIDHOG is able to deal with different scenarios by
inheriting the properties of MI and DHOG.

Mutual Information Neural Estimation (MINE): MINE (Belghazi
et al., 2018) use neural networks to estimate the mutual information between
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high dimensional continuous random variables. MINE is scalable, flexible,
and completely trainable via back-propm, and it can be used in mutual

information estimation, maximization, and minimization.
MINE uses the Donsker-Varadhan (DV) duality to represent MI as:

I(X,)Y) = sup Ep(x.v)[Fo] = 1og(Epx)pv)[e"™])-
S

Fy is a function parameterized by a neural network, where 6 are the
parameters of the neural network.

1.3 Optimization Methods

We also summarize optimization methods that are most commonly adopted in

ex

3.

isting information theory based methods.

Barzilai-Borwein steepest descent method: The Barzilai-Borwein
steepest descent method (Barzilai and Borwein, 1988) is a gradient method
with an adaptive step size in the direction of the gradient of the cost function.
Nelder-Mead downhill simplex method: The Nelder—-Mead method
(Nelder and Mead, 1965) is a direct search method and is often applied to
nonlinear optimization problems for which derivatives may not be known.
Levenberg—Marquardt algorithm: The Levenberg-Marquardt algo-
rithm (Levenberg, 1944) is a commonly used iterative algorithm to solve
non-linear minimization problems.

Particle swarm optimization: Particle swarm optimization (Kennedy
and Eberhart, 1995) is a global optimization algorithm. It works by plac-
ing an initial population of particles randomly in the search space, then
iteratively optimizing to solve the problem.
Broyden—Fletcher—Goldfarb—Shanno (BFGS) quasi-Newton
method: The BFGS quasi-Newton method (Kelley, 1999) is a
gradient-based algorithm to maximize the objective function.

The Bound Optimization BY Quadratic Approximation
(BOBYQA) algorithm: The BOBYQA algorithm (Powell, 2009) is
a deterministic, derivative-free optimization algorithm that relies on an
iteratively constructed quadratic approximation.

1.4 Summary of Information Theory Based Methods

Following the above discussion, we summarize information theory based meth-
ods in Tab. 1 and group the methods by corresponding ‘Information metric’,
‘LiDAR attribute — Image attribute’, and ‘Optimization method’.

When using combined 3D-2D attribute pairs, the specific attribute pairs

are selected differently for each method. Taylor and Nieto (2013) and Guislain

et

al. (2017) both choose ‘reflectivity — grayscale intensity’ and ‘surface normal

— grayscale intensity’ the two attribute pairs.
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Table 1: Summary of information theory based methods. We list popular information theory
methods in terms of information metrics, chosen attributes of point clouds and images, and

optimization methods

LiDAR attribute

Image attribute

Optimization method

Reflectivity

Grayscale intensity

Barzilai-Borwein
steepest descent method

Reflectivity

Grayscale intensity

Nelder-Mead
downhill simplex method

Reflectivity

Grayscale intensity

Levenberg—Marquardt
algorithm

Surface normal

Grayscale intensity

Particle swarm
optimization

Combination of
3D-2D attribute-pairs
i.e., Reflectivity
Grayscale intensity,
Surface normal

Grayscale intensity

Particle swarm
optimization

Combination of
3D-2D attribute-pairs
i.e., Reflectivity
Grayscale intensity,
Reflectivity

Hue,
Surface normal
Grayscale intensity,
Curvature
Gradient magnitude
and orientation

Nelder-Mead
downhill simplex method

Reflectivity

Grayscale intensity

Nelder-Mead
downhill simplex method

Gradient magnitude
and orientation
Gradient magnitude
and orientation

Particle swarm
optimization

Method Informa'tlon
metric
Pandey et al. (2014, 2021) MI
Wang et al. (2012) MI
Miled et al. (2016) MI
Taylor and Nieto (2012) NMI
Taylor and Nieto (2013) NMI
Zhao et al. (2016) NMI
Igelbrink et al. (2018) NMI
Taylor et al. (2013, 2014) GOM
Pascoe et al. (2015) NID

Reflectivity

Visible light wavelengths

BFGS quasi-Newton
method
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Table 1: Summary of information theory based methods. We list popular information theory
methods in terms of information metrics, chosen attributes of point clouds and images, and
optimization methods

Information LiDAR attribute
Method . — Optimization method
metric .
Image attribute

Combination of
3D-2D attribute-pairs
i,e., Reflectivity
Grayscale intensity,
Irie et al. (2016) BLSMI Surface normal

BFGS quasi-Newton
method

Grayscale intensity,
Depth discontinuity

Edge

Combination of
3D-2D attribute-pairs
i.e., Reflectivity

Guislain et al. (2017) MIDHOG BOBYQA algorithm

Grayscale intensity,
Surface normal

Grayscale intensity

3D semantic label
Jiang et al. (2021) MINE -
2D semantic label

Gradient descent
method

Irie et al. (2016) also used ‘depth discontinuity — edge’ attribute pair. The
assumption of this method is that depth changes in the point cloud are likely
to appear as edges in the image, which will be described in detail later in
the feature based method section. Zhao et al. (2016) used reflectivity, surface
normal, and curvature as LiDAR attributes and intensity, hue, and gradient
as image attributes. Here, the curvature attribute in the point cloud is used
to correspond to the gradient attribute in the image. Besides reflectivity and
surface normal for the point cloud and color for the image, the curvature
attribute in the point cloud corresponds to the gradient attribute in the image.

3.2 Feature Based Methods

Different from information theory based methods, feature based methods for
automatic targetless LIDAR~camera calibration directly extract and match the
features from LiDAR and camera images, without optimizing their statistical
similarities.

Features that are commonly adopted in these methods can be sorted into
three categories, including geometric, semantic and motion features. They need
to be acquired online from both LiDAR points and camera images of surround-
ing environments. In specific, geometric features are constructed by a set of
geometric elements like points or edges in environments. Semantic features are
high-level representations that often specify semantic-aware components of the
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Point cloud

|
|
|
|
I Transformation estimation

Fig. 4 A typical pipeline of feature based methods. Here we use the extraction and matching
of line features as an example

environment, such as skylines, cars, and poles. Motion features describe the
characteristics of moving objects, including pose, velocity, acceleration, etc.

As illustrated in Fig. 4, the process of a typical feature based method
often contains three steps, i.e., feature extraction, feature matching, and
transformation estimation.

Feature extraction: Feature extraction aims to automatically detect
stable and unique features from both point clouds and images. These features
usually represent specific geometric or semantic elements in the surrounding
environments.

Feature matching: Feature matching intends to provide the correspon-
dence between the features extracted from the point cloud and the image.
For this purpose, various feature descriptors as well as spatial relationships
between features are applied.

Transformation estimation: This step estimates the transformation
relationship, i.e., extrinsic parameters, for LiDAR-camera calibration, based
on feature correspondences provided by feature matching. Singular Value
Decomposition (SVD) is a widely applied algorithm for the step.

Meanwhile, many methods also combine the steps of feature matching and
transformation estimation (Levinson and Thrun, 2013, Li et al., 2017, Zhu
et al., 2020). They estimate the transformation relationship while looking for
the feature correspondences.

In the following, we summarize typical features and corresponding extrac-
tion methods for feature extraction and commonly applied strategies for
feature matching. Then we summarize feature based methods for automatic
targetless LiDAR~camera calibration in the literature.

3.2.1 Feature Extraction

In the early stage, features in camera images and point clouds are specified by
hand (Scaramuzza et al., 2007), which are often used in some manual methods
for the LiDAR-camera calibration problem. With the development of computer
vision and the requirement for automatic matching, many feature detection



Springer Nature 2021 B TEX template

16 Automatic Targetless LiDAR-Camera Calibration: A Survey

methods have been developed to extract unique and robust features from both
images and point clouds.

There are a number of feature detectors for point clouds and images, respec-
tively. In LiDAR-camera calibration, we need a pair of feature detectors for
both point clouds and images. In the following, we summarize the pairs that
are commonly employed in existing feature based methods and address them
in the form of “point cloud feature extractor — image feature extractor”. We
collect these pairs into three categories, i.e., both features in the pair are
geometric features, semantic features, and motion features, respectively.

We first summarize the pairs of feature detectors for geometric features,
where points of interest and edges are widely applied.

Points of interest are geometric features that are widely applied in LiDAR-
camera calibration. A point of interest may have a special attribute that can
be significantly different from its neighbors, such as color or brightness. It
may also have an explicit location in the image space, e.g., intersection points
of geographic edges (Willis and Sui, 2009). Point features can be calculated
regularly and reliably to provide effective detection results.

¢ Forstner operator — Forstner operator: Forstner operator (Forstner
and Giilch, 1987) is a fast operator for detecting and precisely locating
distinct points and corners. The algorithm extracts junction and circular
points from a image with subpixel accuracy. Interest points extraction in the
LiDAR point cloud can be performed by projecting the points into a range
image and applying the Forstner operator (Gonzalez-Aguilera et al., 2009).

® Corner — Corner: Defined as the intersection of horizontal and vertical
edges, corners can be naturally found in the data of urban scenes. These
edges can be detected by the edge detectors such as Sobel operator (Sobel
et al.). Similar to the above case for Forstner operator, the corner feature
extraction can be performed on both the camera image and the projected
intensity image from the point cloud.

e SIFT — SIFT: Scale Invariant Feature Transform (SIFT) (Lowe, 1999)
is a popular operator that detects and matches local features in images.
With SIFT, the extracted point features are invariant to image translation,
scaling, and rotation, and partially invariant to illumination changes and
affine or 3D projection. There are several variants of SIF'T available for point
feature extraction. For instance, Speeded Up Robust Features (SURF) is a
faster version of SIFT (Bay et al., 2006), Affine SIFT (ASIFT) (Morel and
Yu, 2009) extends the SIFT method to fully affine invariant. For images
and point clouds, interest point extraction based on SIFT or its variants is
performed on both pristine and projected images.

Besides points of interest, edges are another type of geometric feature that
is widely applied in LiDAR~camera calibration. These edges in point clouds
and images contain geometric information of environments that are useful,
especially for environments when point features disclose their instability (Yu
et al., 2020).
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¢ Depth discontinuity — Intensity difference: FEdges in LiDAR point
clouds can be extracted using depth discontinuities. In specific, these edges
are recognized from the points by calculating the differences in depth
between neighboring points and filtering out points whose values of differ-
ences are below a pre-set threshold (Levinson and Thrun, 2013). This idea
has been widely applied in various edge extraction methods (Banerjee et al.,
2018, Blaga and Nedevschi, 2017, Ma et al., 2021a, Munoz-Banon et al.,
2020, Wang et al., 2018, Xu et al., 2019). The idea can be further extended
by first generating a dense depth map by upsampling the point cloud, then
identifying the edges by calculating gradient changes in depth (Castorena
et al., 2016). Meanwhile, edges in images can be extracted by detecting
shape changes in pixel intensity. It is often assumed that edges extracted
by depth discontinuity in point clouds are one-to-one corresponded to edges
extracted by intensity difference in images.

¢ Depth discontinuity — Sobel operator: Edges in LiDAR point clouds
are still extracted by depth discontinuity. Meanwhile, edges in images are
extracted by performing Sobel operator (Sobel et al.), which is an operator
that detects edges based on changes of image grayscales. In specific, Sobel
operator combines Gaussian smoothing and differentiation to compute the
approximation of the gradient of the image intensity function. Besides Soble
operator, Canny edge detector (CANNY, 1987) and LSD algorithm (von
Gioi et al., 2012) also provide methods to extract edges in images. In particu-
lar, Canny edge detector uses a multi-stage algorithm to detect a wide range
of edges in images, which involves steps of noise reduction, intensity gradi-
ent estimation, non-maximum suppression, and hysteresis thresholding. On
the other hand, LSD is an edge detection algorithm based on the gradient
of the grayscale image. Therefor, Depth discontinuities — Canny detec-
tor and Depth discontinuities — LSD are also possible pairs for feature
based methods.

¢ 3D line detector — LSD: 3D line detector (Yu et al., 2020) provides an
alternative way for extracting edges in point clouds. In specific, based on the
point cloud segmentation and a 2D line detector (Lu et al., 2019), a 3D line
detector utilizes a simple 3D point cloud segment detection algorithm for
structured environments. Meanwhile, edges in images are extracted by LSD.

® Depth continuity — Canny detector: We can extract two kinds of edges
in point clouds, i.e., edges with depth discontinuity and edges with depth
continuity. In specific, depth-discontinuous edges are those whose depth val-
ues changed dramatically w.r.t. their neighboring points, which often refer
to edges between foreground and background objects. In contrast, depth-
continuous edges are those with continuously varying depth values, which
tend to suggest planar intersection lines.
These depth-continuous edges can be extracted from a dense point cloud,
like the one generated by a solid-state LiDAR. In particular, these edges,
i.e., plane intersection lines, can be extracted using point cloud voxel parti-
tioning and plane fitting, which divides the point cloud into small voxels of



Springer Nature 2021 B TEX template

18 Automatic Targetless LiDAR-Camera Calibration: A Survey

given sizes and repeatedly uses RANSAC to fit and extract planes in these
voxels (Yuan et al., 2021). Meanwhile, edges in images can be extracted by
Canny detector.

¢ Depth continuity — L-CNN: Bai et al. (2020) reports that the edges of
buildings often have sharp edges and explicit line textures, which can be
easily extracted in both point clouds and images. In specific, the planes of
corresponding buildings can be identified by various point cloud segmenta-
tion methods (Nurunnabi et al., 2012, Vo et al., 2015, Xu et al., 2015). Then
the edges, i.e., plane intersection lines, in the point cloud can be conveniently
obtained by a line detection algorithm based on these segmented 3D planes.
On the other hand, an end-to-end neural model, named L-CNN (Zhou
et al., 2019), can be trained to output a vectorized wireframe that contains
semantically significant and geometrically salient lines and junctions.

Notice that, real-world environments often contain a large number of sim-
ilar geometric features, which would increase the difficulty of LiDAR-camera
calibration. On the other hand, semantic features often reflect high-level char-
acteristics that account for semantic-aware constraints of the environments,
such as skyline (Hofmann et al., 2014), vehicles (Zhu et al., 2020), and road
lanes (Ma et al., 2021b). This semantic information is consistent across data
modalities. Then they can be extracted from both LiDAR point clouds and
camera images and used for LiDAR-camera calibration.

e Skyline — Skyline: A skyline is a curve or contour between the sky and
other objects in urban environments. This semantic feature is evident in both
LiDAR point clouds and images and can be extracted for calibration. In the
point cloud, the skyline can be obtained from the contour plot involving the
foreground and the sky, since LIDAR sensors only get distance measurements
for objects and receive no response from the open sky (Hofmann et al., 2014).
Other methods first generate a projected image of the point cloud, then
identify the highest pixel in the image from the bottom in a column-wise
fashion. Once such a pixel is found, the corresponding point is considered
to be on the skyline (Zhu et al., 2018). The skyline in an image can be
determined from all world objects based on a given brightness threshold
and alpha shapes (Edelsbrunner et al., 1983). Alternatively, based on the
large difference in image pixel values between the sky and other objects,
along with some prior information on the skyline’s location in the image, the
desired skyline points can be retrieved by performing a column-wise search
for the first pixel point with a jump in grayscale values from top to bottom.

¢ Lane and Pole — Lane and Pole: Lanes and poles are objects with
distinct linear shapes in the images and point clouds. Most road lanes are
outlined with high reflectivity paint to enhance visibility in the dark, which
gives the LiDAR a stronger signal. Lanes on the road can be extracted by
choosing a threshold for the pixel intensity (Ma et al., 2021b). Meanwhile,
the road poles in the point cloud can be extracted using their obvious feature
of being perpendicular to the ground, which is often calculated by setting
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a height threshold within the field of the image. BiSeNet-V2 (Yu et al.,
2018) has been used as an image semantic segmentation network for such
tasks, which is further refined by improving the contours using a Dense CRF
operator (Kriahenbiihl and Koltun, 2011).

3D Semantic Centroid — 2D Semantic Centroid: Recent convolu-
tional neural networks (CNN) based methods have made make remarkable
progress and largely improved the performance of semantic segmentation
tasks (Liu et al., 2018b). Multiple methods have applied such networks to
extract semantic information for LiDAR-camera calibration. Wang et al.
(2020a) proposed such a calibration method, where PointR-CNN (Shi et al.,
2019b) and Nvidia Semantic Segmentation (Zhu et al., 2019) were applied
respectively to obtain the semantic information from the point cloud and
the image. Later, the 3D and 2D Semantic Centroids are calculated based
on these segmentation results.

Besides geometric and semantic features for static elements in environ-

ments, motion features such as trajectories of moving objects can also be used
to calibrate multiple sensors.

Object trajectory — Object trajectory: Based on multiple detection
and tracking algorithms, we can receive estimated trajectories of moving
objects from LiDAR and camera respectively. Notice that, we can obtain
two trajectories for a moving object from LiDAR and camera respectively.
These two trajectories should be as closely matched as possible, which helps
us to calibrate the LIDAR and camera (Persi¢ et al., 2020).

3.2.2 Feature Matching Strategies

Feature matching intends to establish the correspondences between the points
in LiDAR point clouds and the pixels in images, which are identified by feature
extraction. Here we summarise popular feature matching strategies, which are
specified for certain kinds of features by considering descriptor similarities and
spatial geometric relationships, respectively.

Descriptors similarity: Descriptor similarity based matching methods are
usually applied for geometric features focusing on points of interest. Based
on extracted feature points, a description, i.e., a compact representation of
the neighborhood of the points, is often used to compute a descriptor for each
feature point. This strategy matches the feature points with the most similar
descriptors between the image and the projected image from the point cloud.
Brute force matching calculates the similarity of the matched features w.r.t.
the reference feature set. On the other hand, the nearest neighbor fast search
method can alleviate the problem. Meanwhile, Euclidean distance is often
used as the distance metric. Since there are many incorrectly matched points
in established correspondences, it is usually necessary to apply a random
sampling consistent random optimization algorithm (RANSAC) to eliminate
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these incorrectly matched point pairs (Gonzélez-Aguilera et al., 2009, Li-
Chee-Ming and Armenakis, 2010).

e Spatial geometrical relation: This kind of feature matching strategy
aims to establish the correspondences from two given feature sets by directly
using spatial geometrical relations and optimization methods. They align
features, such as line features distributed at different locations in space,
as much as possible and assume that the calibration parameters reach the
optimal solution when these features are perfectly aligned (Levinson and
Thrun, 2013).

® Semantic relation: The semantic relation based matching strategies intend
to find the correspondences by matching the features at the semantic level
as much as possible. For example, the points reflecting the vehicle in the
point cloud can be matched to the pixels for the vehicle in the image (Wang
et al., 2020a, Zhu et al., 2020).

® Trajectory relation: The basic method for trajectory association is based
on matching the locations in both trajectories with the same time stamp.
Moreover, velocity and curvature can also be used for matching these trajec-
tories. Persic¢ et al. (2020) determine the trajectory association by observing
two criteria: the average of the velocity norm difference and the average of
the position norm difference. The track pairs are required to satisfy these
two criteria and not exceed a predefined threshold.

3.2.3 Summary of Feature Based Methods

In Tab. 2, we summarize feature based methods for LIDAR-camera calibration
and group them by categories of their features.

Besides the methods listed in Tab. 2, there exist multiple methods (Baner-
jee et al., 2018, Bileschi, 2009, Blaga and Nedevschi, 2017, Jiang et al., 2018,
Li et al., 2017, Ma et al., 2021a, Munoz-Banon et al., 2020, Xiao et al., 2017)
that extract line features in point clouds and images respectively using depth
discontinuities with image edge detectors.

Besides only considering line features alone, there are also methods that use
the combination of line features and depth information from both images and
point clouds for calibration. These methods assume that the depth difference
between the measured LiDAR data and the image should be minimized. The
depth information from images can be obtained either from the point cloud pro-
jection (Castorena et al., 2016) or from the monocular depth estimation (Vaida
and Nedevschi, 2019).

For the methods that extract lines using depth continuity in the point
cloud, the point cloud is often segmented into uniform size voxels in (Yuan
et al., 2021). Different from these methods, Liu et al. (2021) implements the
adaptive voxelization to dynamically segment the LiDAR point cloud into
voxels of different sizes.
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Table 2: Summary of feature based methods. We list popular feature based methods in terms of
feature type, feature extraction of point clouds and images, and feature matching strategy

Method Feature type Feature extraction Feature matching

Gonzalez-Aguilera et al. Forstner operator

Point - Descriptors similarity
2009 ..
Forstner operator
Li-Chee-Ming and Armenakis . Corner . R
Point - Descriptors similarity
2010
Corner
SIFT
Bohm and Becker (2007) Point - Descriptors similarity
SIFT
SURF
Zhang et al. (2015) Point - Descriptors similarity
SURF
SIFT/SURF
Alba et al. (2012) Point Descriptors similarity
SIFT/SURF
ASIFT
Moussa et al. (2012) Point - Descriptors similarity
ASIFT
Depth discontinuity . .
Levinson and Thrun (2013) Edge - Spatial geqmetrlcal
. . relation
Intensity difference
Depth discontinuity . .
Li et al. (2017) Edge - Spatial ge(?metrlcal
relation
Sobel operator
Depth discontinuity . .
Hsu et al. (2018) edge - Spatial geqmetrlcal
relation
Canny detector
Depth discontinuity . .
Zhang et al. (2021) Edge - Spatlal.rldg;?cr)r;etrlcal
LSD
3D line detector Spatial geometrical
Yu et al. (2020) Edge - o e
LSD
Depth continuity . .
Bai et al. (2020) Edge - Spatial iget(?met“cal
L-CNN relation
Depth continuity . .
Yuan et al. (2021) Edge - Spatial ge(?metrlcal
relation
Canny
Skyline
Hofmann et al. (2014) Semantic - Semantic relation
Skyline
3D semantic centroid
Wang et al. (2020a) Semantic - Semantic relation
2D semantic centroid
Pole + road lane
Ma et al. (2021b) Semantic Semantic relation
Pole + road lane
Object trajectory
Persié et al. (2020) Motion - Trajectory relation

Object trajectory
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As an alternative method for extracting feature points, Nieto et al. (2010)
used the SIFT extractor automatically and matches the features by looking
for the two closest features in the space of SIFT descriptors. As an alternative
way to use semantic features, Zhu et al. (2020) applied semantic masks of
vehicles in the image and constructs a height map to encourage LiDAR, points
to fall on the pixels labeled as vehicles. In this work, semantic segmentation is
performed only in the image.

3.3 Ego-motion Based Methods

Ego-motion based methods exploit the motion of sensors mounted on the trav-
eling vehicle to estimate the extrinsic parameter. In this scope, some methods
try to find the correspondence between the trajectories generated by LiDARs
and those by cameras, with LiDARs and visual odometry techniques, or IMU
and GNSS measurements (Ishikawa et al., 2018, Park et al., 2020, Taylor and
Nieto, 2015). There are also methods that make use of the structure from
motion (SfM) approach to estimate the 3D structure from the image sequences,
thus converting the 3D-2D LiDAR-camera data registration into a 3D-3D case
(Nagy et al., 2019a, Swart et al., 2011). In accordance with how the ego-motion
information between sensors is used, ego-motion based methods can be divided
into hand-eye based and 3D structure estimation based ones.

3.3.1 Hand-eye Based Methods

Hand-eye calibration problem is a fundamental and critical issue in robot vision
applications. It is a problem in determining the transformation between a robot
base and a camera, in the case where the camera (the “eye”) is mounted on
an arm (the “hand”) of the robot, or fixed elsewhere other than the arm. The
mathematical formulation of this problem also takes the form of AX = X B,
where A and B describe the motions of the arm and the camera respectively,
and X is the desired unknown transformation matrix. Methods discussed in
this section extend the traditional hand-eye calibration to the LiDAR-camera
calibration problem, although the rigid-mounted robot sensors should satisfy
the same traditional constraints.

Given the following notation:

T: The transformation between a LiDAR sensor and a camera.

T : The motion or the transformation of the LIDAR sensor from timestamp ¢;
to timestamp ;4.

Té: The motion of the camera from timestamp ¢; to timestamp ;1.

Then the extrinsic parameter between a LiDAR sensor and a camera can
be formulated by the hand-eye calibration:

TLT =TT:. (5)
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Camera

(a) Standard hand-eye calibration (b) Hand-eye based LiDAR-camera calibration

Fig. 5 (a) Standard hand-eye calibration problem. The camera “eye” is mounted on the
robot gripper “hand”, and the robot is performing a series of movements. The transformation
between the camera and the gripper is calculated by solving the equation AX = XB. (b)
LiDAR-camera calibration formulated as the hand-eye calibration problem. The two sensors
are mounted on the vehicle. As the carrier vehicle moves, each sensor’s motion is estimated.
The extrinsic parameter between the two sensors is determined by the same equation above

A depiction of the hand-eye calibration problem is shown in Fig. 5. Hand-
eye based LiDAR-Camera calibration procedure can be roughly split into three
stages:

Estimation of each sensor’s motion: In the first stage, the state
transformation matrices for the LiDAR and the camera, i.e. Tf and T},
are estimated with rotation and translation considered between neighboring
frames for each sensor. For the LiDAR, Iterative Closest Point (ICP) and
LiDAR odometry are popular algorithms to compute 7% (Shi et al., 2019a,
Taylor and Nieto, 2014), while for the camera, SfM and visual odometry are
commonly used methods to find T¢ (Park et al., 2020, Taylor and Nieto, 2015).

Estimation of the extrinsic parameter: Since the motion of each sensor
is estimated independently, the transformation between the LiDAR sensor and
the camera can be obtained by solving the homogeneous equation defined by
Equation (5).

Solutions to the transformation equation can be categorized based on
whether the rotation and translation parameters are estimated separately or
simultaneously. In a hand-eye based extrinsic calibration problem, the sep-
arated solution is frequently used due to its simplicity (Taylor and Nieto,
2015).

T}, T}, and T are 4 x 4 transformation matrices which can be written as:

; RL, ; R} Ry tr
e e i I

The matrix T’ can be divided into two parts: RT and . Thus, Equation (5)
yields the following two equations. First, the rotation R” is determined by:

RLRr = RrRY. (6)
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F----

Point clouds

Ego-motion estimation Transformation estimation

Fig. 6 The hand-eye based LiDAR-Camera calibration procedure can be roughly divided
into three stages: the estimation of each sensor’s ego-motion, the estimation of the transfor-
mation according to AX = X B, and the refinement of the estimated transformation. In the
refinement stage, we use the line feature alignment method as an example

Once RT is known, Equation (7) becomes linear and t* can then be calculated
by:
(R& — Ity = Ryt — ti. (7)

Refinement of extrinsic parameter: In hand-eye based methods, the
external parameter is usually initialized by solving the homogeneous transform
equation. However, deviations in the motion estimation can affect the calibra-
tion results and lead to inaccuracies (Taylor and Nieto, 2015). The appearance
information in the surroundings, such as geometric edge alignment, can be use-
ful to reduce such errors. Liao and Liu (2019) utilizes the line features in both
the image and the point cloud to refine the calibration parameter by feature
matching. A typical pipeline of a hand-eye based method is shown in Fig. 6.

To further discuss the above ego-motion based calibration pipeline, we focus
on the selections of algorithms in each step. For the first motion-estimation
step, we introduce the widely used LiDAR and camera motion estimation
algorithms (Besl and McKay, 1992, Mur-Artal et al., 2015, Zhang and Singh,
2014); for the second equation-solving step, if the rotational parameter Rr
is given, then Equation (7) for the translational parameter t7 becomes linear
that can be solved straightforwardly. Therefore, we focus on the way that R
behaves in the solution. For the final calibration-refinement step, we present
exactly what kinds of appearance information are involved.

To calculate the extrinsic parameter, we first estimate the pose of the
LiDAR and the camera respectively for each paired data. Various methods
are applied depending on the type of sensors. We summarize multiple popular
methods for sensor motion estimation in hand-eye based calibration tasks.

e LiDAR motion estimation: The iterative Closest Point (ICP) algo-
rithm (Besl and McKay, 1992) is a classical approach for point cloud
registration. It iteratively queries the closest points between two sets of
point clouds and minimizes the distance between the corresponding points.
The output of ICP is a rigid transformation that associates the two point
clouds. In addition, some variants of ICP have been developed for both point
clouds and images (Oishi et al., 2005, Pomerleau et al., 2013). The motion
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of LiDAR sensors can also be estimated by LIDAR odometry methods (Park
et al., 2020, Shi et al., 2019a). For example, LOAM Zhang and Singh (2014)
is a simple and efficient 3D algorithm for this task, which matches the cor-
responding feature edges and planes. From each trajectory, LOAM extracts
a set of relative transformations and utilizes them for extrinsic calibration.

¢ Camera motion estimation: Using the SfM approach, a set of transfor-
mations that describe the movement of the camera can be calculated, up to
scale ambiguity (Ullman, 1979). Given 2-D images, SfM estimates the cam-
era pose and retrieves a sparse reconstruction simultaneously. The camera
motion transformations can also be found using a standard visual odometry
approach, which estimate the motion of a camera in real time using sequen-
tial images (i.e., ego-motion). As an example, ORB-SLAM (Mur-Artal et al.,
2015) is a feature-based monocular simultaneous localization and mapping
(SLAM) system that is frequently mentioned (Liao and Liu, 2019, Shi et al.,
2019a). Note that, the motion estimation purely based on visual estimation
faces the problem of scale ambiguity and requires the use of some addi-
tional methods to estimate the scale Ishikawa et al. (2018), Taylor and Nieto
(2016).

As mentioned above, Equation (7) can be solved as a linear equation
for translational transformation parameter ¢ with known rotational param-
eter Rp. Here we focus mainly on different parameterization techniques for
Ryp, including rotation matrix, Angle-axis (Shiu and Ahmad, 1989), Lie
algebra (Park and Martin, 1994) and Quaternions (Chou and Kamel, 1991).

¢ Rotation matrix: A rotation matrix is determined by a 3 x 3 matrix.
Although not as compact as other representations, a matrix uniquely defines
a 3D rotation. Park et al. (2020) found the rotation matrix of the equation
by decomposing the covariance matrix of camera-LiDAR relative poses,
after aligning the correspondences in the continuous-time trajectories of the
Sensors.

¢ Angle-axis: The axis-angle representation parameterizes a rotation by two
quantities: a unit vector, i.e., the rotation axis, pointing to the direction of
the rotation, along with an angle indicating the magnitude of the rotation
about this axis. In solving the homogeneous transformation equation for the
rotation parameter, the use of an angle-axis representation can simplify the
process (Taylor and Nieto, 2016).

® Lie algebra: The rotation parameters can also be expressed in the form of
Lie algebras (Xu et al., 2019), which is suitable for optimization problems.
Lie algebra specifies the extrinsic parameter through a vector with 6 degrees
of freedom (DoF) variables. The 6 DoF parameters include a rotation vector
r = (r1,r2,73) and a translation vector t = (z,y, 2).

® Quaternion: Quaternion provides a simple and unique representation for
describing finite rotations in 3D space. Liao and Liu (2019) presented the
rotation with quaternion which reduced the variable number from nine to
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four. Given the rotation, the translation parameter can be found by solving
the linear equation (7).

Several methods based on environmental information have been reported

useful for refining the calibrations between LiDARs and cameras, such as align-
ing edges (Levinson and Thrun, 2013) or correlating the data intensity of
the two modalities (Pandey et al., 2021). There are also methods to contin-
uously optimize the estimation for camera motion and extrinsic parameters
alternatively by sensor fusion odometry (Ishikawa et al., 2018).

Edge alignment: Line features in natural scenes can be used for optimizing
the extrinsic parameter (Liao and Liu, 2019, Taylor and Nieto, 2014). The
correspondence between 3D lines in point clouds and 2D lines in images can
be derived from the line-to-line constraints, thus refining the results obtained
from the motion estimation.

Intensity matching: An intensity alignment approach based on the sta-
tistical dependence measure can also be used to further refine extrinsic
parameters. Shi et al. (2019a) aligned the LiDAR reflectivity with the camera
image intensity through the metric of mutual information. The hypothesis
for this matching is that the LiDAR reflectivity is usually similar to the
image intensity in the environment.

Depth matching: The correspondence between the depth images generated
by LiDAR and the camera respectively, also adds to the optimization of the
extrinsic parameters (Xu et al., 2019). The LiDAR depth map is created by
projecting the LiDAR point cloud from the initial extrinsic parameter and
the camera depth map is produced from the monocular depth estimation.
The principle is that an arbitrary point in the LiDAR depth map should is
bound to a pixel in the camera depth map at the same pixel coordinates
and their depth values should be identical.

Color matching: This refinement method works by assuming that the
points in the point cloud are of the same color as in the camera images in two
consecutive frames (Taylor and Nieto, 2016). It operates by first projecting
points onto the image to obtain the corresponding colors of the local pixels,
then the same points are projected onto the next frame of the image, with
the time offset being compensated by the estimated motion information. By
minimizing the average difference between the color of the points in current
and previous frames, a more accurate extrinsic parameter can be obtained.
3D-2D point matching: Park et al. (2020) refined the extrinsic parameter
by reducing the 3D-2D projection error. In their work, the 3D coordinates
of 2D features are computed by triangulation instead of directly from 3D
LiDAR points. After the 3D-2D projection is performed with LiDAR-camera
extrinsic parameter, the result is improved using non-linear optimization.

We summarize hand-eye based methods for LiDAR-camera calibration in

Tab. 3.
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Table 3: Summary of hand-eye based methods. We list the differences between hand-eye based
methods in terms of estimation method of motion trajectory, rotation parameterization, and
refinement strategy

Method Motion estimation Rotat{on . Refinement Strategy
parameterization

ICP

Taylor and Nieto (2014) — Angle-axis Edge alignment
SfM
ICP

Taylor and Nieto (2015) — Angle-axis Color matching
SFM
ICP

Taylor and Nieto (2016) - Angle-axis Color matching

Visual odometry

ICP

Ishikawa et al. (2018) - Angle-axis Intensity matching

Visual odometry

LiDAR odometry
Shi et al. (2019a) - Angle-axis Intensity matching
Visual odometry

ICP
Liao and Liu (2019) - Quaternion Edge alignment
Visual odometry
ICP )
Xu et al. (2019) _ Lie algebra Depth matching

Visual odometry + Edge alignment

LiDAR odometry
Park et al. (2020) - Rotation matrix 3D-2D point matching

Visual odometry

3.3.2 3D Structure Estimation Based Methods

Another way for LIDAR-camera calibration based on motion information is to
estimate the 3D structure of the surrounding environment from images, one
of the most commonly used methods is structure from motion (SfM) (Ullman,
1979).

SfM is a technique to estimate the 3D structure of a scene from 2D image
sequences, that has been applied in many occasions, such as 3D modeling, aug-
mented reality, visual SLAM, etc. 3D structure estimation based approaches
use SfM to generate 3D point clouds from a set of images recorded by the
camera on the moving vehicle, which converts the LiDAR-camera calibration
problem into a registration task in the 3D domain.

Swart et al. (2011) described an approach to register panoramic images and
LiDAR point clouds. They generate a sparse 3D point cloud from images and
match it to a dense 3D point cloud from LiDAR using a non-rigid ICP process.
The results were then polished by adding SIFT interest points corresponding
to the framework. Moussa et al. (2012) proposed a bundle block adjustment
method to determine the accurate 3D-3D correspondences.
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Corsini et al. (2012) divided the calibration into coarse and fine-grained
alignment procedures. After obtaining the intermediate results by applying
the ICP algorithm to the LiDAR generated point clouds, they use a global
refinement method based on mutual information to improve the accuracy of
the fine 2D-3D alignment.

Wang et al. (2018) used sequential scene information from the vehicle
motion to obtain the initial extrinsic parameter. The method uses the SfM
algorithm to calculate 3D points from 2D image sequences, and registers the
SfM points with LiDAR points through the ICP algorithm to estimate the
primary result. Then by projecting the 3D LiDAR points to the 2D image
plane, they use feature points of edges with a combined optimization method
to further promote the accuracy of the extrinsic parameter.

However, the ICP algorithm may fail when the density of SfM cloud points
is very different from the LiDAR ones. To address this challenge, Li et al.
(2018) designed an automatic registration method based on semantic features
extracted from panoramic images and point clouds. They use GPS and IMU
aiding the SfM algorithm to obtain rotation parameters, then extract parked
vehicles from two modalities to estimate translation parameters by maximizing
the overlapping area of corresponding target pairs.

Nagy et al. (2019a) proposed an extrinsic calibration method with an
object-level registration. First, they use SfM to generate point clouds from con-
secutive camera images that can be used for alignment and registration, then
they introduce a target-level alignment between the generated and the LiDAR
point clouds base on object detection results. Nagy et al. (2019b) introduced
similar work and used semantic information in the point clouds registration
stage.

Later, Nagy and Benedek (2020) made an extension to their previous
work mainly in terms of optimization for the registration stage. They man-
age to diminish the registration error using the point-level ICP method after
the object-level registration step, then they introduce a curve-based non-rigid
point cloud registration refinement step build on the non-uniform rational basis
spline approximation.

3.3.3 Other Methods

Besides generating 3D point clouds through the motion trajectory of the
sensors and recovering 3D structures from image sequences, there are alter-
native ideas of motion based methods to solve the LiDAR-camera calibration
problem.

Bileschi (2009) made an early attempt to associate video streams with
LiDAR data from a moving vehicle. The initial calibration parameter is
obtained with the help of the IMU motion signal and then is refined by
matching 2D and 3D contours in camera images and LiDAR point clouds.

Chien et al. (2016) developed a LiDAR-engaged visual odometry framework
and embed the ego-motion estimation problem into LiDAR-~camera calibra-
tion. Their idea is based on the idea that the performance of the estimated
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ego-motion is directly related to the quality of extrinsic parameters. Specifi-
cally, if the extrinsic parameter deviates far from the ground truth, then the
ego-motion estimation would also lose effectiveness. Combining the ego-motion
estimation problem with LiDAR-camera calibration will form a bi-level opti-
mization structure, this method introduces data constraints such as intensity
and discontinuity restrictions to solve such a problem.

Under the Gaussian noise assumption, Huang and Stachniss (2017) applied
the Gauss-Helmert model to multi-sensor extrinsic calibration. With con-
straints between the motions of the individual sensors given, they jointly
optimize the extrinsic parameter and reduce the pose observation error using
the Gauss-Helmert paradigm.

Castorena et al. (2020) proposed a motion-guided method for auto-
matic calibration of the two multi-modal sensors. With a sequence of time-
synchronized point clouds from LiDAR and the corresponding images from
the camera, they compute the motion vector for each modality independently,
then estimated the extrinsic parameter.

When using sensor movement information for extrinsic calibration, the
motion must satisfy constraints such as moving in all directions and rotating
around all the axes. If the sensors are mounted on a mobile robot performing
planar motions, some parameters are rendered as unobservable. Zuniga-Noel
et al. (2019) estimated the extrinsic parameter of multiple heterogeneous sen-
sors mounted on a mobile robot subjected to such movements. The method
computes the 2D parameters (z,y, yaw) from sensors’ incremental motions,
and used the observation of the ground plane to estimate the remaining 3
parameters (z, pitch, roll).

Horn et al. (2021) used dual quaternions (DQs) to represent translation and
rotation with fewer parameters. Based on DQs, they confine the optimization
to planar calibration only, and combine a fast local and a global optimization
approach for estimating the result.

3.4 Learning Based Methods

Recently, deep learning has made breakthroughs in automatic feature engi-
neering, and achieved excellent performance on multiple tasks, like detection
tasks in images and LiDAR point clouds, respectively. Learning-based methods
require no artificial definition of features, which can learn useful information
using neural networks. These methods can also be applied in LiDAR-camera
calibration.

3.4.1 End-to-end Methods

End-to-end methods use network models to process input camera images and
LiDAR point clouds, then directly output the extrinsic parameters. These
methods achieve optimal calibration parameters by minimizing corresponding
loss functions.
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End-to-end methods rely heavily on the training data. In the training
phase, pairs of point clouds and images accompanied with ground truth extrin-
sic parameters are fed to the model. However, referring to the ground truth
of hundreds of thousands of different relative positions of laser scanners and
cameras can be bothersome. Therefore, Schneider et al. (2017) reformulated
the problem as determining the mis-calibration ¢;,;s_ca155 between the initial
calibration parameter T3, and the ground truth parameter T,;,. With the mis-
calibrated extrinsic parameter T;,;; and camera matrix K, the LiDAR points
were projected to the camera frame as depth images. The mis-calibration
Omis—calip can be varied randomly to get a huge amount of training data.

For end-to-end methods, their network architectures can be classified into
three categories:

Regression: Methods in this category take RGB pictures and depth
images as inputs. Their networks often have two branches to extract fea-
tures from RGB and depth images respectively. Then the features from both
modalities are fused by the feature matching component. Finally, the global
information extracted from both modalities is regressed to obtain the mis-
calibration parameters. The common architecture of regression methods is
shown in Fig. 7.

RegNet (Schneider et al., 2017) is one of the first deep learning methods
that integrate feature extraction, feature matching, and global regression into a
convolutional neural network, for estimating extrinsic parameters between the
LiDAR and the camera. In RegNet, blocks of Network in Network (NiN) (Lin
et al., 2013) were used to extract and match the features of LiDAR depth
maps and camera RGB images.

Based on RegNet, Liu et al. (2018a) presented an online calibration method
for visual and depth sensors. The depth camera and the LiDAR are first cali-
brated and fused as a virtual depth sensor, then this virtual sensor is calibrated
with the camera.

Iyer et al. (2018) proposed CalibNet, which takes the geometry information
into account and introduces a 3D spatial transformer layer in the model. The
RGB branch is the convolutional layers of a pre-trained ResNet-18 (He et al.,
2016), and the depth branch is a similar network but with the number of filters
halved. The two outputs are then concatenated and passed through the global
aggregation block. CalibNet performs end-to-end training by maximizing the
geometric and photometric consistency between the image and the point cloud.

Yuan et al. (2020) designed RGGNet. This method considers Riemannian
geometry and employs deep generative models to build a tolerance-aware loss
function. RGGNet not only considers the calibration error, but also focuses on
the tolerance within the error bounds.

Shi et al. (2020) created and demonstrated CalibRCNN, which combines
CNN with LSTM. The output features from the two branches were fused then
fed into the LSTM layer to extract temporal features for sequential learning.
CalibRCNN not just added pose constraints between consecutive frames, but
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uses the geometric and photometric loss to refine the calibration accuracy of
the predicted transformation parameters.

Zhao et al. (2021) proposed CalibDNN and applied it to a complex dataset
with diverse scenarios. As a simple system with one model and a single itera-
tion, CalibDNN considers transformation loss and geometric loss to maximize
the consistency of multi-modal data.

Lv et al. (2021a) presented LCCNet for extrinsic calibration of a LiDAR
and a camera. To match the features between depth image and RGB image,
cost volume layer is constructed instead of concatenating the features directly.
In addition to the smooth L1-Loss as supervision for the ground truth, a point
cloud constraint is also added to the loss function.

Calibration Flow: The concept of optical flow refers to the movement of
target pixels in an image due to the behaviors of objects or the motions of the
camera in two consecutive frames. The calibration flow is similar to the optical
flow, which includes two channels and represents the horizontal and vertical
offsets. Methods in this category take 2D pictures and LiDAR depth maps as
inputs. Images from the two modalities are fed into an optical flow network
to predict the flow between mis-calibrated depth map and the RGB image,
then get the correspondence between cloud points and image pixels. Finally,
the initial extrinsic parameters can be optimized by minimizing the projection
€rrors.

Lv et al. (2021b) showcased CFNet, which can generate a refined calibration
flow. A group of accurate 2D-3D correspondences can be constructed and the
EPnP algorithm with the RANSAC scheme is applied to estimate the extrinsic
parameters.

Jing et al. (2022) presented DXQ-Net, which predicts the calibration flow
with uncertainty. The network architecture of DXQ-Net is derived from RAFT
(Teed and Deng, 2021), and a differentiable pose estimation module is used to
compute the extrinsic parameters.

Keypoints: Unlike end-to-end learning methods in the above two cate-
gories, keypoint methods directly point clouds as inputs, along with camera
images. The network extracts feature descriptors from the input data, then
finds the corresponding 2D points on the image for each 3D keypoint. Finally,
the extrinsic parameters between the LIDAR and camera can be estimated.

Ye et al. (2022) offered RGKCNet model, a 2D-3D pose estimation net-
work based on keypoints. This network extracts sparse keypoints and matches
them, then a weighted nonlinear PnP solver is applied to estimate the pose.
RGKCNet uses extrinsic calibration constraints to solve the data association
problem of 2D-3D points. The optimizer in the network is based on geometric
constraints.

3.4.2 Hybrid-learning Methods

Different from end-to-end methods, hybrid-learning methods use neural net-
works only to extract information such as geometric and semantic features,
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===
L5 —_—
Rotation
RGB Image 4 parameter
RGB branch _—
—, Translation
parameter
wxy, T¥ —_— Feature Matching Layer
Regression Layer

Mis-calibrated Depth Image Depth branch
Project with T,;,

Point Cloud

Fig. 7 The common architecture of regression methods for the estimation of the extrinsic
calibration parameters for LIDAR~camera calibration. The point cloud is projected to the
image plane using an initial calibration T;,;+. The two branches extract the features for
matching separately, and then the features are matched in the second part. Lastly, the
regression layer regresses the mis-calibration parameters by gathering global information

while feature association and extrinsic parameter calculation procedures are
still based on non-learning methods.

As introduced in Section 3.2, Wang et al. (2020a) designed SOIC with the
introduction of semantic centroids, to ease the demand for prior knowledge
of initial calibration. In SOIC, 2D and 3D semantic centroids are calculated
based on semantic segmentation of images and LiDAR points. Thus, the
LiDAR-Camera calibration initialization is transformed into a PnP problem.
Furthermore, the optimal calibration parameter was obtained by minimizing
the cost function based on the semantic elements.

Zhu et al. (2020) suggested aligning semantic features instead of edge
features to improve LiDAR-camera calibration robustness, especially for low-
resolution LiDAR and noisy inputs. They extracted cars from both the image
and the point cloud, and the extrinsic calibration was optimized through a
cost function under semantic constraints.

Learning based methods use neural networks to find potential features
of LiDAR and camera data, these methods can obtain suitable features and
achieve good results if there are sufficient data for training. However, existing
learning algorithms for calibration usually require a large number of training
calculations, which results in a great deal of computational cost. Moreover,
they are demanding the conditions of application, which implies that the algo-
rithms need broadly similar scenes for training and validation/test, thus their
generalization performance needs to be improved urgently.

4 Discussion

Today’s autonomous mobile robots are often equipped with composite sensors,
typically a combination of LiDARs and cameras. A LiDAR-camera system
enables the fusion of data from these two distinct modalities to have the best
of both sensor types thus to better perceive the surrounding environment, to
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preferably perform tasks such as object detection, environment perception,
autonomous navigation, etc.

A key pre-step of data fusion between a LiDAR sensor and a camera is to
calibrate the extrinsic parameters for both sensors. Early methods either rely
on specific calibration objects or require manual efforts. In contrast, automatic
targetless methods can extract features online from the environment without
the need for calibration tools and manual assistance. This paper provides a
systematic review of automatic targetless methods for extrinsic calibration
between LiDAR sensors and cameras.

In literature, current targetless LiDAR-camera calibration paradigms can
be divided into four categories, i.e., information theory based methods, fea-
ture based methods, ego-motion based methods, and learning based methods.
Methods in these four categories propose different ideas to solve the extrinsic
calibration problem, which are further distinguished according to the differ-
ent options available for specific implementations. For example, feature based
approaches can be distinguished in the selection of specific feature types such
as geometric features, semantic features, and motion features. In addition, dif-
ferent approaches have different choices in terms of specific feature extraction
algorithms and feature matching strategies.

In specific, information theory methods evaluate the statistical similarity of
data from LiDAR and camera. They calculate precise calibration parameters
by maximizing a similarity measurement. However, the accuracy is suscepti-
ble to some environmental factors, such as occlusion between objects or the
presence of shadows.

Feature based methods extract information from the natural environment
and find correspondence between images and point clouds after the feature
matching phase. Distinguishable features are available in LiDAR data and
optical images. Features can be separated into geometric, semantic, and motion
ones. Geometric features such as points and lines are easy to extract, while
semantic features have more differentiation degrees and are simple to match.
However, LiDAR data and optical images often capture different characteristics
of the environment and feature extraction can be easily affected by random
factors such as noise and occlusion. Some methods use the motion trajectory
of the detected object as a motion feature. This motion feature introduces
dynamic information to allow for temporal calibration, however, this variety
of methods requires lots of moving objects to generate sufficient trajectories
to be tracked.

Comparing the information theory based method with feature based meth-
ods, the former runs on the entire 2D-3D data, which avoids the problem of
unstable feature extraction and matching, and yields alignment information
over the whole data. On the other hand, the latter uses features extracted
from 2D and 3D data, which are more discriminative and lead to a simpler
optimization.



Springer Nature 2021 B TEX template

34 Automatic Targetless LiDAR-Camera Calibration: A Survey

Ego-motion based methods exploit the motion information generated from
the two sensors. These methods can be divided into hand-eye and 3D struc-
ture estimation based methods, in accordance with how motion information
is used to transform calibration into different problems. Using the trajectories
of the LiDAR sensor and the camera, hand-eye methods can proceed with-
out an initial guess for the extrinsic parameters. They require no overlapping
field of view, as they do not need to extract features or compute the statisti-
cal similarity of the corresponding attributes. However, the accuracy of these
algorithms strongly depends on sufficient estimation performance, which usu-
ally needs to be refined by other methods. Since methods based on ego-motion
introduces dynamic information, they also need to solve the problem of time
synchronization.

The most typical learning-based methods are end-to-end methods. End-to-
end approaches transform several calibration steps into single-step methods
using neural network models. They employ such models to learn useful fea-
tures by themselves instead of defining features by hand. With the help of
high-performance neural networks, these methods can achieve satisfactory
calibration results. However, datasets for calibration are difficult to obtain.
End-to-end methods rely heavily on labeled data for training, and their per-
formance often ends up being unstable in unseen environments. There are also
hybrid approaches where that use semantic segmentation networks to extract
more robust features while using classical algorithms for subsequent matching
and optimization.

5 Conclusion

This paper reviews the existing calibration algorithms for automatic targetless
calibration between LiDARs and cameras. Unmanned intelligent perception
systems are usually equipped with a combination of LiDAR sensors and cam-
eras, taking advantage of the two sensors to better perceive the surrounding
environment. A key pre-step of data fusion is to calibrate the extrinsic param-
eters of the sensor. Traditional methods either rely on calibration objects
or require manual interaction. Automatic targetless methods spontaneously
obtain information from the surrounding environments in the data, thus
eliminating the requirements for calibration targets and human efforts.

The current automatic targetless LiDAR-camera calibration methods can
be categorized into four categories, i.e., information theory based, feature-
based, ego-motion based, and learning based methods. Methods in the first
category measure the statistical similarity between the LIDAR data and optical
images. The feature-based methods extract geometric or semantic features of
the environment, instead of running on the entire 2D-3D data as inputs. The
ego-motion based methods exploit the motion of sensors from LiDAR, point and
camera image sequences. At last, learning based methods use neural network
models to learn useful features rather than define features manually.
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