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 34 

Abstract 35 

The Congo Basin hosts the largest continuous tract of forest in Africa, regulating global climate while 36 

providing essential resources and livelihoods for humans, while harbouring extensive biodiversity. 37 

The threats to these forests are expected to increase. A regional collaborative effort has produced 38 

the first systematically validated remote sensing assessment of deforestation and degradation in six 39 

central African countries for 2015-2020 period, along with a quantification of associated direct 40 

drivers of change. Deforestation and degradation (DD) are not observed to be increasing since 2017 41 

are occurring primarily in already fragmented corridor forests. We assess multiple, overlapping 42 

drivers and show that the rural complex, a combination of small-scale agriculture, villages, and roads 43 

contributes to the majority of DD. Industrial drivers such as mining and forestry are far less common, 44 

although their impacts on carbon and biodiversity could be more permanent and significant than 45 
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informal activities. Artisanal forestry is the only driver that is observed to be consistently increasing 46 

over time. Our assessment produces information relevant for climate change mitigation which 47 

require detailed information on multiple direct drivers to target activities and investments. 48 

Introduction 49 

Forests and climate 50 

Central African forests play a major role in mitigating anthropogenic climate change, acting as an 51 

important carbon sink1–4. Deforestation, through forest conversion to other land uses is the second 52 

largest source of carbon emissions after fossil fuel combustion5–8, while the emissions associated 53 

with forest degradation remain uncertain and mostly unaccounted for or underestimated9. These 54 

forests are also providing important natural resources to populations around the world, supporting 55 

food security and livelihoods for local communities, and are home to a large proportion of the 56 

world’s terrestrial biodiversity10. The ecosystem services provided by intact tropical forests which are 57 

relatively free from human influence and disturbance, are even larger11. Despite the intrinsic link to 58 

human activities and economies, forests remain under constant threat of conversion and 59 

disturbance. Climate change threatens forest goods and services, as well as the relationships 60 

between humans and forests including traditional ones, affecting all stakeholders who expect 61 

ecosystem services of forests into the future12,13. 62 

There have been many targeted efforts in the last decade to accurately estimate deforestation and 63 

forest degradation over time using earth observation data and help countries meet their climate 64 

targets and engagements. These datasets provide unprecedented, up-to-date information on various 65 

aspects of forest change for global or tropical forests. While there is a great scientific interest in 66 

providing wall-to-wall global forest data products and analysis, these data alone are often not 67 

sufficient for robust, accurate deforestation estimates and trends14 and are often not relevant to 68 

decision making at national or subnational scales. Countries are more likely to use, understand and 69 

value data they produce and update themselves, and can apply to national forest monitoring systems 70 

for decision making and implementation of policies. Given the release of freely available satellite 71 

data and the need for comprehensive forest monitoring, there has been an associated increase in 72 

interoperable, open source and cloud-based platforms to provide toolkits for remote sensing, land 73 

cover mapping and forest monitoring15, including Google Earth Engine (GEE) and SEPAL 74 

(https://sepal.io). 75 

The Congo Basin 76 

The six countries of the Congo Basin are home to the largest continuous tract of tropical forest in 77 

Africa, a crucial biome supporting global climate, rainfall and water cycles16,17. The region is known 78 

for its largely intact forests18,19 globally significant carbon stocks4,20,21 and unique biodiversity22. Low 79 

access to infrastructure, notably electricity23, high reliance on natural resources, and rapid 80 

population growth, coupled with vulnerability to climate change are expected to place additional 81 

pressures on these forests. The region scores relatively low on the human development index24, 82 

signalling the potential for rapid economic growth that can significantly increase existing pressures 83 

on natural ecosystems25,26 – creating a complex situation to meet the needs for sustainable 84 

development investments, global climate targets all while ensuring food security 27.  85 

 86 
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 87 

Figure 1. The study area covers six countries of the Congo Basin (Cameroun, Central African Republic, Equatorial 88 
Guinea, Gabon, Republic of Congo and The Democratic Republic of Congo)  cover more than 4.04 million km2 in 89 
Central Africa comprising various forest types and savannas (data source: MODIS MCD12Q1 Land Cover 28).  90 

This study assesses forest cover change in the six central African countries (Figure 1) supported by 91 

the Central African Forest Initiative (CAFI), a coalition of donor and partner countries aiming to 92 

reduce deforestation and degradation in a globally important carbon sink21,29. Despite being such an 93 

important resource for the planet, the Congo Basin is relatively understudied and receives 94 

significantly less funding than countries on other continents30,31. New carbon finance opportunities 95 

supporting High Forest Low Deforestation (HFLD) countries could help fill some of these gaps, when 96 

sufficient information is available to target interventions and investments.    97 

Direct Drivers of Forest Disturbance 98 

Monitoring forest change, and disturbance is one aspect of monitoring, whereas the understanding 99 

of the direct drivers of forest change is critically important for implementing required mitigation 100 

activities and policies, for example to tackle forest disturbances associated with activities by large 101 

companies or individual smallholders for local subsistence activities32–34. There are many claims of 102 

large potential threats to Central African forests from infrastructure development27,35–38, industrial 103 

mining and extractive industries39–41, industrial agriculture42,43 and large-scale forestry44. More 104 

recently, oil exploration is expected to begin in the heart of the Congo basin’s vast swamp 105 

forests29,45,46. Most studies identify expanding small-scale agriculture as the primary cause of forest 106 

loss41,47,48 while others cite forestry activities as having the greatest impact on forest areas2. It is 107 

important to comprehensively assess drivers because not all will have the same impact on carbon 108 

stocks, biodiversity49,50 or communities51,52.  109 



This study addresses the proximate or direct drivers of Deforestation and Degradation (DD), defined 110 

as the immediate human actions that directly affect forest cover and biomass49,53,54 which is different 111 

from post-deforestation land use. As explained above, we assess multiple overlapping direct drivers 112 

on both deforestation and degradation as this reflects the realities of local processes, stakeholders 113 

and decisions that result in DD33. The effect of scale is also very important. Many studies have only 114 

identified one possible direct driver47,48,55, whereas direct drivers are multiple, and more significantly 115 

correlated to changes in forest cover at smaller scales56, providing contextual information to properly 116 

define and focus interventions and mitigations. 117 

Operational Definitions of Deforestation and Degradation 118 

The Food and Agriculture Organization of the United Nations (FAO) provides a generally accepted 119 

definition of deforestation as “a conversion of forest to other land use, or a permanent reduction in 120 

tree cover below an established forest definition threshold”57. Meanwhile, forest degradation 121 

definitions vary widely, and there is an urgent need for standard operational definitions to support 122 

monitoring, decision making and restoration efforts58.  Many definitions for degradation, such as the 123 

reduction of ecosystem services delivery are very broad and difficult to quantify. We define forest 124 

degradation for the purposes of this research, and in contrast to deforestation, as “a permanent or 125 

temporary change in forest cover that does not fall below the established forest definition 126 

threshold”. Operational definitions enable the assessment of deforestation separately from 127 

degradation through remote sensing and visual interpretation approaches.  128 

Objectives 129 

This study provides an open-source, statistically validated DD assessment at the regional scale 130 

covering six countries of the Congo Basin over the 2015-2020 time period. A dedicated approach was 131 

developed to make best use of all available global datasets and dense satellite time series to quantify 132 

forest cover disturbance and discriminate deforestation from degradation. The derived products 133 

were validated by a team of regional experts to enhance the validity to central African conditions. 134 

The relative contribution of multiple anthropogenic direct drivers in relation to deforestation and 135 

degradation were determined, and the impacts of changes within fragmentation classes, forest 136 

types, and their associated biomass were quantified. The methodology is globally applicable, 137 

replicable, and open access to support decision making activities such as land use planning. 138 



Results 139 

Regional Forest Cover 140 

We mapped land cover types and forest to provide baseline information on the study area and limit 141 

change detection analysis to forested areas. In order to apply national forest definitions, a percent 142 

tree cover product was derived. The resulting forest mask (Figure 2) includes all forest types 143 

(including woodland savannas, dry open types) derived from supervised classification, validated with 144 

12,260 visually interpreted points and an estimated overall area-weighted accuracy of 71.14%. The 145 

classification tends to overestimate forest area (commission errors 28.6%), particularly in the 146 

woodland and shrubland savannas in northern Cameroon.  147 

 148 

Figure 2. Percent tree cover (left) and forest cover (right) in 149 
the Congo Basin countries integrate four different national 150 
definitions, which may result in border effects, notably between the Democratic Republic of Congo and Central African 151 
Republic 152 

The sampling-based area estimates a total of 247.8 ±3.65 million ha of forest cover over the Congo 153 

Basin, or about 61.2% of total land area. Of these, 52% are core, intact forests, while 4.2% and 13% 154 

are inner and outer edge respectively, 27.4% corridor forests and 3.4% in small patches or islands 155 

(Figure 3). A large intact forest block extends throughout the tropical forest zone in southeast 156 

Cameroun, Gabon, Republic of Congo and Democratic Republic of Congo, with several large contact 157 

patches in central Cameroun and the Central African Republic.  158 



 159 

Figure 3. Forest fragmentation (2015) derived from Morphological Spatial Pattern Analysis (MSPA).  160 

Forest Cover Trends 161 

The forest change detection analysis from Landsat imagery over the 2015-2020 monitoring period 162 

included the processing of up to 1,222 Landsat observations per location. The sample-based area 163 

estimates for each type of change are shown in Table 1. Deforestation is estimated to affect about 164 

50% more area than degradation.  165 

Table 1. Sample-based area estimates of deforestation, degradation, stable forest and non-forest in the study region 166 

 167 

The sample-based area assessment provides an estimate of forest disturbance area per year, with 168 

derived confidence intervals59–61.  Our results indicate no increase in the rate of forest disturbance 169 

area since 2017, with a small increase in degradation during the 2019-2020 period (Figure 4). This is 170 

similar to assessments using global products, such as the Global Forest Change and the Tropical 171 

Moist Forest (TMF) dataset62, which both show a similar trend from 2017, until an increase in 172 

disturbances observed in 2020. The FAO Forest Resources Assessment (FRA) Remote Sensing Survey 173 

also observed a general reduction in rates of forest conversion in central and western Africa in the 174 

2010-2018 time period, compared to 2000-201063.  175 

Our analysis estimates a smaller area is affected by deforestation than degradation, with the 176 

exception of 2020. According to accuracy statistics in Table 1, our map tends to overestimate 177 

deforestation and while underestimating degradation.   178 

 179 



 180 

Figure 4. Forest disturbance estimated through sample-based area assessments. More than 2.2 million hectares 181 
of forest were lost during 2015-2020, and more than 1.5 million hectares of forest affected by degradation.  182 

The spatially explicit map of deforestation and degradation shows DD in all forest types, and reveal 183 

some associated drivers (Figure 5). 184 



 185 

Figure 5. Patterns of detected deforestation and degradation, from top left: infrastructure development in Equatorial 186 
Guinea; industrial plantations in Cameroon; forest disturbance around a village in Central African Republic; industrial mining 187 
in Republic of Congo; Impacts on gallery forests in the Democratic Republic of Congo.  188 

Disturbances by forest type 189 

We evaluate the trends of annual DD associated with each type of forest and its estimated above-190 

ground biomass (Figure 6). DD are largely occurring in dense forests, which are also the most 191 

common, followed by dry open and secondary forests. A majority of forests are identified as dense 192 

humid evergreen (59%), but we observe a relatively smaller proportion of disturbances in this class, 193 

meaning DD is occurring primarily outside of these forest types. The dry open and secondary forests 194 

store relatively low above ground biomass, while higher carbon density ecosystems make up a lower 195 

proportion of changes.  The proportion of annual deforestation is increasing in dry open forests over 196 

time, while degradation is decreasing. We observe an opposite trend in dense dry forests. 197 



 198 

Figure 6. Proportion of annual deforestation (left bars in red) and degradation (right bars in orange) by forest type. The 199 
proportion of each forest type as a percentage of forest area is shown in parentheses, and the mean and standard deviation 200 
of above-ground biomass derived from the ESA Biomass product64 for 2010 is shown in Mg/ha.   201 

Forest Disturbance and Fragmentation 202 

The assessment of fragmentation classes for annual forest cover maps allows the identification of 203 

fragmentation transitions65,66. During the study period, 6% of forests underwent a change to a more 204 

fragmented class. More than 11% of regional deforestation, or about 650,000 ha were first 205 

fragmented before being deforested, and of these areas, 18% (119,000 ha) were core, intact forests 206 

in 2015.  207 

Forest disturbances are disproportionately occurring in corridor forests (Figure 7), which are about 208 

27% of all forest area but comprise over 60% of annual deforestation and degradation. These forests 209 

have relatively low above-ground biomass compared to intact core forests. While over half of the 210 

region’s forests are intact, only a small percentage of disturbances are occurring in these areas. Both 211 

deforestation and degradation are increasing in small patch forests, the most fragmented class with 212 

the least biomass.  213 



 214 

Figure 7.Proportion of annual disturbance by fragmentation class, shown with the proportion of forest in each 215 

class and average biomass estimated from ESA Biomass 2010 64.  216 

Direct Drivers of Disturbance 217 

We confirm that most of our detections of DD are anthropogenic by assessing forest disturbances 218 

with respect to human presence and infrastructure. We observe that about 80% of all deforestation 219 

is located within 3 km of the nearest road or settlement (Figure 8). In contrast, degradation generally 220 

extends slightly further, with 80% of degradation occurring within 4 km of the nearest road or 221 

settlement.  222 

 223 



Figure 8. Cumulative proportion of deforestation and degradation relative to distance to nearest road or 224 
settlement 225 

Next, we quantify the presence of one or more direct drivers in plots located around areas of DD. 226 

Eight unique drivers associated with deforestation or degradation were identified through their 227 

characteristics in high resolution satellite imagery and are described in Table 2. 228 

Table 2. A total of eight direct drivers were defined by their specific characteristics identifiable in high resolution 229 
satellite imagery   230 

Driver Characteristics 

Artisanal agriculture Small irregular fields, generally less than 5 ha 

Industrial agriculture Large regular fields of homogenous crops 

Infrastructure Roads or paths suitable for vehicular traffic 

Settlements Presence of houses, buildings, huts or other built-up features  

Artisanal forestry Forest with small canopy gaps or perforations and felled trees 

Industrial forestry Large consistent cuts (>5ha) and felled trees 

Artisanal mine Small muddy clearings, often along waterways with turbid water 

Industrial mine Extensive infrastructure, open pits and exposed soils 

 231 

Of all plots with identified forest disturbance (N=3,811), the most commonly observed driver was 232 

artisanal agriculture, followed by infrastructure, artisanal forestry and settlements (Figure 9). A 233 

majority of plots have more than one driver observed, with only 20% of all change plots with a single 234 

driver identified. The most common number of drivers is 2 (N=1,018), followed closely by 3 235 

(N=1,006).  236 

The four most common drivers are also commonly observed together, while certain drivers never 237 

overlap, for example industrial mining is only found with few of the other drivers and is never found 238 

with industrial agriculture.  239 

 240 

 241 



 242 

Figure 9. Representation of overlapping drivers in the Congo Basin. The size of the circle indicates the 243 
observation frequency of each driver in the validation data set. Grey shading shows how many drivers are 244 
observed in one plot, and overlapping circles indicate which drivers are commonly found together and which 245 
never overlap.  246 

Representative Driver Archetypes 247 

To address the overlap of drivers and derive local context, we identify archetypes, or common driver 248 

combinations which represent realities and processes on the ground.  Common driver combinations 249 

were grouped according to drivers with the most permanent potential impact (for example, 250 

industrial activities such as mining), and frequent occurrence with other drivers (e.g. mining activities 251 

are associated with infrastructure and agriculture for local workers). The overlapping drivers were 252 

grouped according to their combinations shown in Table 3. Due to the wide definition of the “other” 253 

driver category, it was not included in the grouping (and it was never observed alone). 254 

The most common archetype consists of at least three drivers, which include artisanal agriculture, 255 

roads and settlements, and is representative of the agricultural mosaic, or so-called “rural complex” 256 

which is a particular feature of the study region66–69.  257 

Table 3. The observed combinations of drivers were grouped into thematic classes or archetypes based on 258 
specific criteria 259 

Archetype Drivers # of plots 

Rural complex Artisanal agriculture with roads and settlements, with or without 

artisanal forestry, and no presence of industrial drivers 

2,607 

Artisanal forestry Artisanal forestry with or without “other” driver, or with settlements 
or roads without any artisanal agriculture 

187 

Industrial Agriculture Industrial agriculture and other drivers 253 

Industrial forestry Industrial forestry and other drivers 223 



Industrial Forestry and 

Agriculture 

Industrial Forestry and Agriculture identified together 84 

Industrial mining Presence of industrial mining with or without other drivers 59 

Artisanal mining No more than 2 drivers, including artisanal mining, no industrial 

drivers present  

37 

Human infrastructure Roads and settlements observed alone or together 56 

Infrastructure related 

agriculture 

Infrastructure and artisanal agriculture observed together 237 

 260 

We assess these archetypes in space and time (Figure 10). The rural complex has the largest 261 

contribution to DD in all years and is decreasing before increasing in relation to deforestation, and 262 

relatively stable with regards to degradation. The presence of artisanal forestry (observed alone), and 263 

agriculture associated with infrastructure are increasing over time. There are similar trends for 264 

degradation, of which artisanal forestry has a greater contribution than for deforestation. Industrial 265 

drivers related to forestry, agriculture and mining are generally observed to be stable or decrease.  266 

 267 

Figure 10. Grouped drivers over time shown by proportion of annual deforestation and degradation (2015-2020).  268 

Each archetype was observed in relation to fragmentation class. Figure 11 shows the overall 269 

distribution of fragmentation classes over the entire study region, and the proportion of each class 270 

associated with each archetype. Although most forests are in the intact core class, and over a quarter 271 

are corridors, drivers are disproportionately affecting fragmented forests albeit differently. Industrial 272 

activities such as forestry, forestry and agriculture affect core forests more than other drivers, along 273 

with artisanal mining and forestry. 274 



 275 

Figure 11. Distribution of fragmentation classes in all forests of the study region (left); the proportion 276 

of fragmentation classes affected by disturbances associated with each driver archetype. The 277 

proportions are estimated by the number of visually interpreted points.  278 

Discussion 279 

Mapping all of Central Africa’s Forests 280 

We assess forest cover of the entire area of the study region, integrating four unique forest 281 

definitions enabling a comprehensive forest monitoring of both tropical and seasonal, dry forests, 282 

particularly those in northern Central African Republic. The wide diversity of vegetation types in 283 

Central Africa presents significant challenges for mapping forest with EO due to interannual dynamics 284 

and heterogeneity, and as a result many efforts are often focused on tropical dense forest despite 285 

being technically considered forest according to some national definitions70,71. The ecosystems 286 

outside the tropical zone are nevertheless widely present in Africa, important to global carbon cycles, 287 

local livelihoods and biodiversity hotspots72,73 and expected to rapidly expand as a result of climate 288 

change making them important to currently assess74. We overcome the obstacles to mapping dry and 289 

open forest via specific national forest definitions that are applied to high-resolution imagery with 290 

visual interpretation, and sensor fusion classification approaches. 291 

Trends in Forest Disturbance (2015-2020) 292 

In comparison with existing global datasets on forest disturbances, we observe similar trends in the 293 

2015-2020 time period for Congo Basin countries. Data from Global Forest Change (GFC)75 and 294 

Tropical Moist Forests (TMF)62,76 report higher rates of forest disturbance after 2015, which decrease 295 

from 2017 until an increase in disturbances in 2020 in contrast to our study, which observes a smaller 296 

area of deforestation in 2020, with an increase in degradation. Estimated burned area has also been 297 

observed to be generally decreasing since 200177 which could be associated with the trends we are 298 

observing, particularly related to the drivers of change (see below). The FAO Forest Resources 299 

Assessment Remote Sensing survey also observed an overall slowing of deforestation in 2010-2018 in 300 

comparison to 2000-2010, which diverges from the Global Forest Resources Assessment (2020) 301 

which identifies an increase in rates of loss between 1990 and 202071 which demonstrates how 302 



different methodologies may not reach consensus, and that assessments should be tailored to 303 

regional or national scales.  304 

While disturbances may appear to be declining, it is important to also evaluate the trends in the 305 

context of a longer time period, as we could be potentially observing a return to 2015 levels of 306 

disturbance after a significant spike in 2017. Several studies report relatively stable rates of 307 

deforestation before and after 2015, but an overall higher rate of deforestation in the region after 308 

201562,76. The estimation of deforestation trends before and after this date may be unreliable due to 309 

updated algorithms applied by global analyses, and biases due to an increased data availability since 310 

201578. One hypothesis for the increase in forest disturbance in 2017 is the unusually warm year 311 

after an El Niño in 2016, incurring additional deforestation and degradation from forest fires, storms, 312 

climate-related mortality or associated further deforestation79. Extreme heat and drought can 313 

increase deforestation associated with slash and burn practices80 or cause an expansion of 314 

agriculture as a result of reduced yields81.  315 

As for decreases in disturbances post-2017 there are several reasons contributing to this trend. 316 

Small-scale agricultural activities are generally spatially limited around inhabited areas due to 317 

practical reasons –minimal travel time to fields is more efficient, and secondary forests and fallow 318 

areas are preferred to primary forests, meaning that the agricultural expansion is not endless. 319 

Political instability, conflicts and insecurity have long driven migration patterns in the region, which 320 

could force people away from forests50,82,83. In the Central African Republic, civil war, combined with 321 

a lack of infrastructure, low population density has driven many people from rural areas to cities, and 322 

limited the expansion of industrial agriculture which could potentially deforest large areas once 323 

stability returns84,85. This pattern of urbanisation, with decreasing population in impoverished and 324 

economically deteriorating areas has been documented in the region for many decades, and the 325 

growth of cities in African countries largely outpaces the rest of the developing world, and can be 326 

further fuelled by insecurity and climate change86. In the Democratic Republic of Congo a long-327 

standing moratorium on new logging concessions could have slowed extraction since 2002, while a 328 

presidential decree in 2016 provided new opportunities for indigenous and local communities to 329 

govern concessions, which has shown to be successful in reducing deforestation87. 330 

Our area estimates of disturbance are generally more conservative than global products, with an 331 

overall loss of 2.2 million ha of forest over five years, and degradation in nearly half that area. This 332 

total area of disturbance is not insignificant, and justifies climate concerns from the international 333 

community88. There are differences in rates of disturbance within the large study area - while 334 

countries might be classified as HFLD, some sub-jurisdictions are hotspots of change with higher 335 

rates of forest disturbance than the region18,33,89,90. We refrain from direct comparison between 336 

sample-based area assessments from our study with pixel counts from global products as it is 337 

fundamentally flawed. Global data have not been statistically validated, and the omission and 338 

commission errors are simply unknown, making direct comparisons impossible. Additionally, areas of 339 

forest loss reported by Global Forest Watch (GFW) from the Hansen dataset may overestimate forest 340 

disturbances relative to other datasets, as this product identifies tree cover loss, which is not 341 

necessarily deforestation14,78.  342 

The estimates of deforestation and degradation provided by our study were robustly evaluated by 343 

experts, where a statistically representative sample of disturbance events were validated by visual 344 

interpretation. The inaccuracies of the maps could be due to incompatible spatial and temporal 345 

resolutions between validation and processing data. This difference in degradation estimates, 346 

notably that we observe a smaller area of degradation than deforestation in all years of the study 347 

with the exception of 2020, agrees with some studies91 but is in contrast to other research62,65,92.  Our 348 

method relies heavily on visual interpretation of high-resolution imagery to validate results, which 349 



can provide very detailed and accurate information and contributes to capacity development. But 350 

this validation can be affected by user bias, and image quality and clouds. We overcome user bias 351 

through training and calibration of users and methodological guides, along with independent cross 352 

validation93. Degradation is a subtle process which can occur over short or long time periods, and as a 353 

result could be difficult to accurately identify visually in imagery, as images vary in quality or 354 

brightness over time which could appear as degradation; while the use of higher resolution may in 355 

fact reveal more degradation than is detected by coarser resolution analysis. In summary, 356 

degradation remains extremely difficult to validate.   357 

Fragmented forests 358 

The fragmentation analysis identified more than half of the region’s forest as intact, including swamp 359 

forests which are also known store the largest carbon stocks94. We identify several large patches of 360 

core forests observed in the Central African Republic and central Cameroun which are not identified 361 

as Intact Forest Landscapes (IFLs)95,96 but nevertheless are large, continuous and not significantly 362 

affected by anthropogenic activities19. DD were found to occur in already fragmented forests, which 363 

are more likely to contain smaller trees, open canopies and lower biomass which are easier to access 364 

and clear and as a result may have lower species diversity97,98. More specifically, the most affected 365 

forests are corridors which are significant functional components of the forest ecosystem spatial 366 

structure99 indicating the need to promote conservation activities outside of intact forests through 367 

what are known as “integrated landscape approaches” incorporating multiple land uses that balance 368 

human activities with conservation100. DD were also found to be increasing over time in small forest 369 

patches, which follows published observations of greater forest loss in small fragments with non-370 

primary forest, as larger fragments are more difficult to clear101. From these assessments we can see 371 

how human encroachments on forests are typical of the agricultural frontier at forest edges, and we 372 

can identify several such fronts in the region102. 373 

Evaluation of carbon stock per fragmentation class and forest type indicate that disturbances are 374 

occurring disproportionately in open, secondary and shrubland forests, which represent a small area 375 

of overall forests, and low carbon stocks - but are twice as likely to be deforested or degraded. Dense 376 

tropical forest types, meanwhile, which contain the greatest above-ground carbon per hectare, and 377 

comprise 60% of all forests, but encompass less than 30% of all deforestation and degradation. This 378 

shows how the large intact and carbon rich ecosystems are potentially less affected by human 379 

disturbances, which can be a result of inaccessibility, lack of machinery required to clear dense 380 

forests with large trees, preference for secondary forests67, or management - most forest 381 

concessions in the region are located within these intact forest blocks. Effective and inclusive forest 382 

management could be a pathway to securing carbon in these commercially exploited forests103. 383 

Direct Drivers of Change 384 

We provide the first assessment of direct drivers in the Congo Basin which addresses deforestation 385 

and degradation separately, and also over time – essential for targeting management and 386 

interventions104. A majority of DD are found within walking distance of settlements or roads, which is 387 

expected as accessible forests are easier and more available to clear101,105. Other studies have 388 

explored the role of roads and settlements on deforestation inside forest concessions, an effect 389 

which can be counteracted with effective management plans103.  390 

The dominant direct driver associated with deforestation and degradation is observed to be artisanal 391 

agriculture, more specifically subsistence activities which have a long history and tradition41,47,54. The 392 

rural complex archetype, which is a combination of artisanal agriculture, forestry, roads and 393 

settlements without the presence of industrial activities is also the most commonly reported in other 394 

studies106 is targeting fragmented forests, while industrial activities such as mining, forestry and 395 



agriculture are observed far fewer overall, and do not currently appear to be increasing, despite 396 

numerous reports and predictions41. The dominance of the rural complex is not surprising given the 397 

significant dependency of rural populations on agriculture and its long history, and links to culture 398 

and economy107,108. While this archetype is the most common throughout the region, its potential 399 

impacts on carbon, biodiversity are likely much lower and less permanent due to fallow periods 400 

which can allow for natural regeneration of vegetation109 and its presence in corridor and 401 

fragmented forests. Subsistence agricultural activities tend to be localized around settlements and 402 

existing clearings67, limiting the spatial extent of impact, which is what we observe in the context of 403 

fragmentation. In contrast, the impacts of industrial drivers are present in core forests, and more 404 

permanent or can extend beyond concession boundaries with additional impacts that may not be 405 

entirely visible with EO106,110. The contribution of this archetype to forest disturbance is potentially 406 

increasing with unsustainable agricultural practices, and expected to expand with increasing 407 

population which leads to reduced fallow times106. There is a need for the improvement of rural 408 

agricultural practices, which are particularly vulnerable to climate change which can subsequently 409 

affect food security, health and livelihoods108,111,112.  410 

The central premise of our approach is the identification of multiple overlapping drivers, which is 411 

representative of DD occurring at national and sub-national scales50,56,82,113 and the result of the 412 

actions of multiple actors, multiple processes and motivations33,104,114. Global assessments, or post-413 

disturbance land use cannot adequately discern multiple drivers56,104 and are not relevant for 414 

decision making which requires national context41. Furthermore, drivers need to be considered 415 

beyond their spatial footprint: any direct driver of forest disturbance does not solely affect the direct 416 

area it covers, but inevitably influences what is around it which is particularly true for linear 417 

infrastructure such as roads37,115,  or industrial activities which inevitably incur changes outside 418 

permit boundaries, through connecting infrastructure or land clearing to support the livelihoods of 419 

local communities drawn to these areas110. Agriculture that is not associated with infrastructure will 420 

tend to be subsistence activities whereas agriculture along roads is better connected to markets, 421 

which increases the potential to produce for sale106.  422 

One specific driver absent from our conclusions is the extraction of fuelwood and harvesting for 423 

charcoal, which is being reported as a significant cause of deforestation and degradation in Congo 424 

Basin countries and has the potential to increase116–118. Access to electrical infrastructure is very 425 

limited in the study region, making populations entirely dependent on charcoal for preparing 426 

food116,119. Large-scale harvesting of fuelwood is mostly driven by demand from urban centres, and is 427 

mostly informal and uncontrolled, although demand, the importance of meeting energy needs and 428 

increasing  prices are driving larger, more industrial forms of fuelwood collection in some 429 

countries118.  Within our methodology we lack specific information to be able identify the scope and 430 

impact of such practices110. The artisanal forestry driver definition includes the harvesting of such 431 

forest products, and we observe a consistent increase over the time period, particularly associated 432 

with degradation, but we cannot discern from satellite for what purpose forests are being degraded. 433 

The 5m resolution of Planet imagery, which is the only high-resolution source consistently available 434 

throughout the study period limits the collection of specific and robust evidence to identify charcoal 435 

production such as the presence of kilns. Given the increasing scale of these activities as explained 436 

above, they could in fact be large enough to be identified as industrial forestry according to our 437 

definitions120. Additional research, including socio-economic surveys, which are currently underway 438 

are necessary to understand the scale of this driver in more detail.   439 

Responses for Climate Change Mitigation 440 

In Sub-Saharan Africa and more specifically in the Congo Basin, an overwhelming majority of the 441 

predominantly rural communities depend on agricultural and forest-related activities for their basic 442 



needs12,121 and meeting the requirements for food and livelihoods are inevitably associated with 443 

forest disturbance. A large majority of crops in Central Africa are rainfed, with citizens largely 444 

employed in agriculture, making the population particularly vulnerable to climate change, which is 445 

already reducing yields and slowing growth of the agricultural sector122. Therefore, climate change 446 

adaptation should be mainstreamed into national planning mechanisms, with development 447 

uncoupled from deforestation. By identifying small-scale agriculture and related activities as the 448 

main drivers of deforestation in the Congo Basin, the study highlights the importance of 449 

decarbonizing the food system in Central Africa. The information provided here on direct drivers is 450 

directly relevant to improving policies that meet the needs of local communities through sustainable 451 

development, land use and agricultural planning which can be supported by international climate 452 

mitigation efforts.  453 

Conclusions 454 

For public and private finance to be successful, they need to be focused towards targeting relevant 455 

direct and indirect drivers of deforestation. This research can provide for a better understanding of 456 

recent areas of forest loss, degradation, the different rates of disturbance and the dynamics, 457 

interactions of direct drivers on carbon stocks to help countries fulfil their commitments to meeting 458 

climate change mitigation targets123. The current study also supports crucial institutional capacity 459 

development of partner nations to derive information that will be useful in the monitoring, reporting 460 

and verification efforts, through transparent methods and approaches, while providing specific 461 

information to focus mitigation activities, and respond to specific drivers of change and define 462 

development pathways to avoid further climate degradation. 463 

Nevertheless, a five-year time period is likely too short to realistically observe dynamics and trends, 464 

therefore an update is urgently needed to validate these assessments. Over a longer study period, 465 

we could validate these trends and potentially observe forest regrowth or regeneration, which is not 466 

yet considered here. Also, the evaluation of potential impacts on biodiversity, in addition to standing 467 

carbon stocks to determine relative emissions will complement this effort.  468 

Methods 469 

An overview of the methods is provided in Figure 12 .  470 



 471 

Figure 12. Methodological approach for image processing and validation for sample-base area assessment.   472 

Image Composites 473 

Best pixel image composites were developed to provide cloud-free imagery for the 2015 baseline 474 

year.  In some locations, up to three years of data (as early as 2012) were needed to fill gaps from 475 

clouds. The SEPAL optical mosaic module was used to develop medoid composites from all Landsat 476 

satellites, applying BRDF correction and excluding pixels in the 50% percentile of NDVI values. A radar 477 

composite was created from ALOS Palsar 2015 backscatter data, with a layover/shadow mask 478 

applied, with a quegan filter124 and an additional band for the radar forest deforestation index 479 

(RFDI)125. 480 

Percent Tree Cover 481 

For the integration of national forest definitions, a percent tree cover product(0-100% at 30m 482 

resolution) for the year 2015 was created by classifying samples of cloud-free PlanetScope images 483 

(5m resolution) from 2015 in each country using 824 manually digitised points and a Random Forest 484 

classifier in Google Earth Engine126. These sample forest/non-forest masks were upscaled to percent 485 

tree cover at 30m resolution, from which 5139 random tree cover samples were collected as training 486 

data. These were input into a Random Forest regression model applied to an image stack of Landsat, 487 

Sentinel-1 and ALOS Palsar composites and an additional 19 derived spectral indices.   488 

Regional Land Cover Classification  489 

We developed a regional land cover achieved by synthesising vegetation classifications from each of 490 

the six countries and harmonising them using the universal Land Cover Classification System (LCCS) 491 



framework127. The integration of four different national forest definitions was performed by assigning 492 

the specific percent tree cover thresholds from each country’s definition (Table 4).  493 

Table 4. Regional Land cover classification system. * In Central African Republic and Cameroon, shrub savannas with >10% 494 
tree cover were identified as forest, in adherence to the national forest definitions 495 

Code 

DDD 

Forest/non-

Forest 

English Description 

1 Forest Dense Forest Dense humid primary evergreen forest on terra firme, >60% tree 
cover 

2 Forest Dense Dry Forest Dense dry forest, >60% tree cover, with dry seasons 

3 Forest Secondary Forest Open forest, 30-60% tree cover, degraded or secondary 

4 Forest Dry Open Forest Dry open forest, 30-60% tree cover, with dry seasons 

5 Forest Sub-Montane Forest Forest >30% tree cover, 1100-1750m altitude 

6 Forest Montane Forest Forest >30% tree cover  >1750m altitude 

7 Forest Mangrove Forest >30% tree cover on saline waterlogged soils 

8 Forest Swamp Forest Swamp mixed forest, >30% tree cover, flooded > 9 months 

9 Forest Gallery Forest Riparian forest in valleys or along river edges 

10 Forest Mature Forest Plantation Tree cover >15%, cultivated or managed 

11 Forest Woodland Savanna Woodland savanna 15-30%, tree cover > national forest 
definition 

12 Forest* Shrubland Savanna Shrubland savanna >15% shrub cover > national forest definition 

13 Non-Forest Herbaceous Savanna Grassland savanna <15% tree cover 

14 Non-Forest Aquatic grassland Grassland regularly flooded 

15 Non-Forest Bare Land <15% vegetation cover 

16 Non-Forest Cultivated Areas Cultivated vegetation >15% vegetation cover 

17 Non-Forest Developed Areas Human dominated and artificial surfaces 

18 Non-Forest Water Water > 50% 

19 Non-Forest Shrubland Savanna Shrubland savanna >15% tree cover < national forest definition 

 496 

Next the satellite image composites along with auxiliary information on elevation128, the percent tree 497 

cover dataset, and water sources129, were classified into the defined 19 land cover classes. A 498 

supervised training algorithm was executed in SEPAL using the random forest machine learning 499 

approach, calibrated with 2,190 training points provided by partners and derived from visual 500 

interpretation of 5m resolution image mosaics for 2015-2020 provided by Planet, through a program 501 

financed by the Norwegian Government (NICFI), along with other high-resolution images using 502 

Collect Earth Online, a tool provided by the Open Foris Initiative of the FAO130. Additional cleaning 503 

steps were applied, including defining montane and sub-montane forests according to elevation 504 

criteria; removing mangroves that were mapped inland or above 35m elevation; data on seasonal 505 

and permanent water areas129 were used to identify aquatic grasslands and water bodies, while the 506 



Global Human Settlement Layer (GHSL)131 was used to correct the developed areas class. We 507 

integrated the official 2015 national land cover data for Gabon132.   These classes were recoded into 508 

forest/non-forest based on the appropriate national forest definition (% tree cover) to effectively 509 

mask and target the analysis area. 510 

Fragmentation 511 

We apply the Multi-Spatial Pattern Analysis (MSPA) tool in Guidos Toolbox133 to the forest mask to 512 

define core, inner and outer edge, corridor and patch forests (table 5), using an edge size of 9 513 

pixels65. The process was executed in Guidos Work Bench version 1.8.8 on Ubuntu 22.04 LTS.  514 

Table 5. Forest fragmentation classes ordered from intact to most fragmented 515 

class description fragmentation 

core interior forest area; pixels surrounded by other 

forest 

low 

 

 

 

 

 

 

 

 

high 

inner edge forest bordering non-forest perforation inside 

core forest 

outer edge forest bordering exterior non-forest 

corridor forest pixels connecting core areas 

patch forest islands too small to contain core forest 

 516 

Using outputs from the annual deforestation analysis (following section), we can also determine 517 

fragmentation classes for each annual forest cover layers and identify the transitions between classes 518 

to identify stable fragmented areas (the same fragmentation class over all years), areas that are 519 

progressively fragmented (change from a lower to higher fragmentation class), as well as those which 520 

are fragmented and then deforested65,134. 521 

Biomass assessment 522 

We calculate the average and standard deviation of 2010 above-ground biomass from the ESA 523 

BIOMASS mission64 for each vegetation type and fragmentation class using the zonal statistics tool in 524 

arcGIS Pro (version 2.9.3)135.  525 

Time series analysis 526 

The Breaks for Additive Seasonal and Trend (BFAST) is a change detection algorithm designed to 527 

detect and characterise changes in spectral values over time while decomposing seasonal 528 

dynamics136. BFAST is an iterative process which estimates the timing, magnitude and direction of 529 

change of an index or a decimal value over a monitoring period compared to a historical time period. 530 

The normalised difference forest index (NDFI) was selected for assessment in BFAST, as it is a 531 

composite of fraction images which are sensitive to canopy disturbance in tropical forests137. Landsat 532 

time series were compiled from January 1, 2012 to December 31, 2020 to encompass a 3 year 533 

historical time period to calibrate seasonal dynamics, and a monitoring period from January 1, 2015 534 

to December 31, 2020.  535 



BFAST demands large processing resources. In order to effectively analyse the entire study area, the 536 

study region was divided into 508 100km square blocks, which were then grouped into 103 batches 537 

comprising 4-6 connected blocks and distributed among the project partners to process in their 538 

SEPAL accounts. The results were then re-assembled for the region after processing.  539 

The raw outputs from the BFAST module in SEPAL consist of a 2-band image for each tile, which 540 

include the magnitude of change (positive or negative) at the estimated date of the detected break. 541 

The simplest approach to determine changes from magnitudes and breaks was applied using the 542 

mean and standard deviation of magnitudes by forest class. BFAST date and magnitude outputs were 543 

post-processed by forest type to separate stable areas from change, with more extreme negative 544 

magnitudes (mean + 2 standard deviations of magnitude for specific forest type) classified as 545 

deforestation, and smaller magnitudes (mean + 1 standard deviation of the magnitude for specific 546 

forest type) as degradation136,138. This output contains 139 unique classes identifying stable land 547 

cover types (19), and the year of detected deforestation or degradation for each forest type. This 548 

layer was used as the stratification for random sampling point selection for validation and sample-549 

based area assessments. 550 

The stratified BFAST magnitudes were observed to include many artefacts from cloud cover and 551 

Landsat data gaps. A spatial model was developed to classify magnitudes and auxiliary data layers 552 

into an improved map of deforestation and degradation139. The boosted regression trees model was 553 

developed in Google Earth Engine126 using 10% of the manually validated training data (see below) 554 

input into a boosted regression trees model, masked by negative BFAST magnitudes. Twelve auxiliary 555 

data layers, including altitude, slope, aspect, distance to nearest roads, distance to nearest non-556 

forest, forest type, which are known variables influencing deforestation and degradation, along with 557 

the band ratio and RFDI index from a 2021 Sentinel-1 composite were stacked with the BFAST 558 

outputs for the classification. The output produced a thematic map of forest types and stable land 559 

cover classes with annual deforestation, which was assessed using sampling-based area assessment 560 

to estimate areas and associated uncertainty. 561 

In addition, the cumulative spatial sum (CUSUM)140 approach was used to provide a second source of 562 

change detection information, albeit only for deforestation. This algorithm was designed for 563 

synthetic aperture radar (SAR) data. We applied it to the NDFI index to produce a magnitude, date of 564 

break similar to the BFAST output, with an additional derived confidence estimate.   565 

Sample-Based Area Assessment 566 

Land cover change maps have inherent errors that, when used alone to make area estimates, can 567 

prevent the characterisation of land cover or land use changes to the standards required by the 568 

international community60. Sample based area estimation, in particular the practice of using a 569 

classified map to support the design a reference sample, is  widely recognized as a good practice for 570 

producing area statistics of land cover change78,153. We followed the recommendations provided by 571 

the Group on Earth Observations (GFOI) for international reporting of emissions and removals of 572 

greenhouse gases in forests to estimate areas and confidence intervals of estimates from the derived 573 

maps142. 574 

Validation 575 

Validation data points were visually interpreted to identify forest type, change (deforestation, 576 

degradation or stable), the date of change and presence of direct drivers was performed using 577 

OpenForis Collect Earth Online, and in particular, the high-resolution optical image mosaics provided 578 

by Planet since 2015. A stratified random sampling scheme was developed to select spatially 579 

balanced samples that are proportional to map classes61. Random samples were selected from the 580 



BFAST stratification layer with enough samples to achieve the desired confidence interval of 0.05 and 581 

at least 150 points per class. This resulted in 359,978 random points distributed according to map 582 

class area (Table 5). However, as actual forest changes are rare, this results in a very large number of 583 

points that are potentially stable, which would be inefficient for visual interpretation assessments. 584 

Therefore, only points that were identified as potential change (N=11,078), along with a random 585 

sample of stable points (N=1,182) were selected for visual interpretation using Collect Earth Online. 586 

The remaining points (N= 347,718) were automatically assigned as change or stable based on 587 

consensus between available information from Global Forest Change (GFC)4, Tropical Moist Forests 588 

(TMF)62 and the outputs from CUSUM.  589 

Table 5. Distribution of random samples for sampling-based area assessment and validation  590 

Land Cover stable 2016 2017 2018 2019 2020 TOTAL 

Dense Forest 147820 715 239 150 150 150 149224 

Dense Dry Forest 32985 604 290 165 150 150 34344 

Secondary Forest 14949 319 165 150 150 150 15883 

Dry Open Forest 1239 162 150 150 150 150 2001 

Sub-Montane Forest 3329 150 150 150 150 150 4079 

Montane Forest 703 150 150 150 150 150 1453 

Mangrove 298 150 150 150 150 150 1048 

Swamp Forest 21190 150 150 150 150 150 21940 

Gallery Forest 6780 154 150 150 150 150 7534 

Mature Forest Plantation 15488 227 150 150 150 150 16315 

Woodland Savanna 37885 1046 472 220 150 150 39923 

Shrubland Savanna 40819      40819 

Grassland Savanna 4959      4959 

Aquatic Grassland 11258      11258 

Bare Land and Sparse 

Vegetation 4497      4497 

Cultivated Areas 433      433 

Built-up Areas 4268      4268 

TOTAL 348900 3827 2216 1735 1650 1650 359978 

  591 

In Collect Earth Online, each point was validated by three independent users to avoid user bias, and 592 

the final labelling was determined by the agreement of 2 or more users.  593 

Direct drivers 594 

We first evaluate the location of disturbances with respect to roads and settlements, using available 595 

vector road data37 converted to raster with the same resolution as the forest cover and change 596 

products (30m). Best available settlement data143 were scaled to the same resolution combined with 597 

the roads to create a combined layer. Euclidean distance was calculated in QGIS (version 3.22.7)144 598 

and classified into 500m buffer rings, and the area of deforestation and degradation for each year 599 

was summed in each distance class.   600 

The identification of multiple drivers allow the understanding of the local context. Eight observable 601 

drivers were defined according to their visibility in high resolution satellite imagery available In 602 

Collect Earth Online. One or more drivers were observed within a 2km plot around all sample points. 603 

Drivers that could not be categorised into the defined categories (flooding, natural fires, or no visible 604 

cause) were labelled “other.”  605 



All validation points with observed drivers were also assessed according to forest type, 606 

fragmentation class and assessed according to their relative contribution to annual deforestation or 607 

degradation.  608 

Data Availability 609 

all spatial and tabular data developed by the project is accessible via the online database as Google 610 

Earth Engine Assets and via arcGIS Online: https://congo.dddafrica.info/resultats/base_donnees, and 611 

also available in the Central Africa Forest Observatory (OFAC) library : https://www.observatoire-612 

comifac.net/library 613 

Code Availability 614 

all modules used and developed in SEPAL are available via https://sepal.io and in the GitHub 615 

repository: https://github.com/aurelgrooves/sepal_DDD 616 

 617 
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