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Abstract
The impacts of major climatic events on urban vegetation cover are not well understood. We used
Landsat 8 ETM + derived land cover in Google Earth Engine (GEE) to determine damage to urban
vegetation, and Optimized Hotspot and Outlier Analyses to identify signi�cant spatial clusters of hotspots
and cold spots from Hurricane Michael in Panama City and Panama City Beach, Florida. We used two
vegetation indices (Normalized Difference Water Index-NDWI and Enhanced Vegetation Index-EVI) to
assess the impact of Hurricane Michael on urban vegetation cover. Results show that more than 30.07%
of the land cover changed after two months of the hurricane landfall, including a rapid increase of
19.64% in water bodies. Overall, we observed a 4.91% decrease in vegetation cover, out of which 34.44%
were coastal woody wetlands. NDWI showed a rapid increase due to an increase in water coverage in the
study area, whereas EVI decreased due to vegetation loss by strong winds and intense precipitation. After
Hurricane Michael, hotspots for high water content in sustained vegetation (NDWI) and overall vegetation
condition (EVI) were discovered in Panama City Beach, Southport, and Youngstown CCD (census county
division). Statistically signi�cant (≥ 95% con�dence, z ≥ 1.96) increases in NDWI hotspots (76.11% of the
total area) were observed post-hurricane due to an increase in water bodies. EVI showed a decrease of
about 9.21% in hotspot areas (≥ 95% con�dence, z ≥ 1.96) due to defoliation caused by hurricane force
winds. Our results highlight the advantages of using spatial statistical methods that could aid the
development of natural hazard mitigation plans and risk reduction strategies by characterizing urban
vegetation status in the Gulf Coast from previous hurricane occurrences spatiotemporally.

1. Introduction
Hurricanes are major natural threats to the Gulf Coast states (The Atlantic 2017). In their 2022 Atlantic
Hurricane Season Outlook, the National Hurricane Center (NHC) anticipates a likely range of 14 to 21
storms, of which 6 to 10 could develop into hurricanes (winds of 74 mph or higher), including 3 to 6
signi�cant hurricanes (category 3, 4 or 5; with winds of 111 mph or higher) (NOAA 2022). The total
approximate cost of damages from tropical cyclones and hurricanes on the Gulf Coast from 1980 to
2020 has been about $790 billion (NOAA 2021a; NCEI 2022). In addition to the economic loss, hurricanes
take several lives every year. Hurricanes have claimed about 3,163 lives since 1980, and the devastating
hurricane Katrina alone in 2005 left more than 2,000 people dead along the Gulf Coast (Fig. 1).

In addition to devastating casualties and �nancial losses, hurricanes also seriously harm the coastal
ecology, changing the land cover (NOAA 2018, 2020, 2021b). For example, about 320 million large trees
were severely damaged by Hurricane Katrina (Chambers et al. 2007; NASA 2007), and Hurricane Laura
destroyed 900,000 acres of forested land along the Gulf Coast, resulting in an overall $63 million in
economic loss (USDA 2020). Hurricane Ike (2008) resulted in the removal of 4.3% of all trees measured in
Houston, Texas. Approximately 1,000 square miles of coastal woody wetland were lost or changed to
other land cover types between 1996 and 2010 due to catastrophic hurricanes and tropical cyclones on
the Gulf Coast (NOAA 2018). Louisiana alone lost more than 160 square miles of wetland area to water
after Hurricane Katrina (NOAA 2005, 2021b).
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Some studies have quanti�ed the effects of hurricanes on forest ecosystems using advanced geospatial
techniques. Ramsey et al. (1997) used AVHRR 250m multi-temporal images to analyze the effects of
1992 Hurricane Andrew on forests. They found that regional averaged NDVI (Normalized Difference
Vegetation Index) change followed damage severity but did not provide a quantitative relationship
between NDVI change and damage severity. Ayala-Silva and Twumasi (2004) used the standardized
change of NDVI produced from AVHRR data to assess forest damage brought on by Hurricane Georges in
1998. They inferred the linear relationship between regional averaged NDVI and the length of the
hurricane track. Using local scale data from the Advanced Spaceborne Thermal Emission and Re�ection
Radiometer (ASTER) satellite, Aosier et al. (2007) investigated the effects of 2004 Typhoon Songda on
vegetation cover. They discovered that the change in adjusted NDII (Normalized Difference Infrared Index)
was smaller than the change in NDVI (Normalized Difference Vegetation Index) for damaged trees. Their
results were at odds with earlier research, which found that NIR-SWIR (Near Infrared-Short wave Infrared)-
based vegetation indices were more effective in detecting vegetation alterations than NIR-Red-based
vegetation indices (Wilson and Sader 2002).

The majority of existing studies to date have used passive optical remote sensing, in which the change or
standardized change of different vegetation indices are adopted as damage indicators with little effort to
assess their quantitative relationship with forest damage at the pixel level and with little comparative
analysis on the performance of these vegetation indices (Hanssen et al. 2021; Lacerda et al. 2021; Landry
et al. 2021; Moody et al. 2021). Due to the data volume of pixel-based analysis and continuous Earth
observation, studies require continuous time series data with highly con�gured computer platforms and
storage (Gorelick et al. 2017; Kumar and Mutanga 2018; Salcedo-Sanz et al. 2020). For instance, to create
a global land cover map for any particular time point, almost 10,000 Landsat scenes or 3 TBs of storage
are needed (Giri et al. 2013). High-performance cloud computing platforms have made it possible to
store, process, and analyze geographic data at a massive scale on the cloud at a low cost and effectively
(Hansen et al. 2013; Giri et al. 2013). In 2010, Google introduced Google Earth Engine (GEE) platform with
more than forty years of satellite imagery at no cost (USGS 2014; Dong et al. 2016). Amazon Web Service
(AWS) also now provides access to the Landsat data archive, enabling analysis of this dataset on the
cloud (Amazon 2015; USGS 2015). Recently NASA (National Aeronautics and Space Administration)
launched NASA Earth Exchange Program (NEX), which allows the processing and analysis of NASA Earth
observation data (NASA 2021).

With the aid of cloud computing, in this study, we aim to bridge the gap left by earlier research utilizing
the land cover change technique and calculate possible hotspots while considering the existence of water
bodies and greenness following a catastrophic storm event. Using geospatial computing methods, we
estimate the urban vegetation damage and land cover change caused by a signi�cant hurricane along
the Gulf Coast. The speci�c objectives of this study are to estimate land cover changes after a major
hurricane landfall on the Gulf Coast, and identify hotspots for rapid post-hurricane urban vegetation
assessment.
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2. Materials And Methods

2.1. Study area
The Gulf Coast has a history of experiencing hurricanes and tropical storms landfall in the Summer-Fall
season. Since 1900, the Gulf Coast has been devastated by 46 hurricanes, and since 1990, the frequency
of hurricanes in this area has grown by 70% (NOAA, 2020). Recent years (since 2017) show an early start
of hurricane season and NOAA’s Climate Prediction Center (CPC) alarms of no respite in terms of a
signi�cant decrease in Categories 3, 4 and 5 hurricanes in the Gulf Coast (NOAA, 2021b). Panama City
and Panama City Beach are located in the southeastern United States in the area of northwest Florida
known as the Panhandle, greatly affected by Hurricane Michael in 2018 (Fig. 2). More than 3 million
tourists visit Panama City every year, and this number is likely to increase to more than 5 million by the
end of 2050 (Panama City Beach 2022). Around 0.90 million people live in surrounding census county
divisions (CCD), and it is estimated to be more than 1.6 million by 2050 (U.S Census Bureau, 2021).
Panama City and Panama City Beach are dominated by forestland (21.14%) and woody wetlands
(35.54%), which are signi�cantly affected by catastrophic hurricanes. However, urban lands (5.30%)
comprise a small portion of the total land use in Panama City and Panama City Beach (MRLC, 2017).

2.2. Image Preprocessing
Figure 3 shows the overall methodology of our study. We used LANDSAT derived multi-spectral data
products on the open-source GEE Platform. Considering the track of Hurricane Michael with landfall time
(October 10, 2018), we selected Landsat 8 cloud-free satellite images, including vegetation indices on
GEE within 90 days prior to the landfall date (Table 1). To �nd the ideal cloud-free (< 10%) image on the
event day, we employed the object-based "CFmask" technique in GEE. “CFmask” is a C programming
based function of mask, which is a translation of “Fmask” developed by USGS Earth Resources
Observation and Science (EROS) (Zhu and Woodcock 2012; Zhu et al. 2015; Foga et al. 2017). After
employing “CFmask”, cloud-masked photos were saved in GEE Assets via "Asset Manager" for eventual
replication. 
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Table 1
Description of spatial data requirements for land use change analysis

Data Layer Source Scale/Spatial
Resolution

Date/Year

Panama City
Boundary

Bay County, Florida Website Scale
1:12880
(meter)

2017

Hurricane Michael
(AL142018)

National Hurricane Center (NHC), Florida Scale
1:12880
(meter)

October 10,
2018; 0735
Central Daylight
Time

Landsat 8 Surface
Re�ectance (SR)

Google earth engine (GEE) data provided
by U.S. Geological Survey (USGS)

30 Pre: May 1,
2018

Post: January
28, 2019

National
Agriculture Imagery
Program (NAIP)

Google earth engine (GEE) data provided
by U.S. Department of Agriculture (USDA)

1 2019

Digital Elevation
Model (DEM)

Google earth engine (GEE) data provided
by NASA/USGS/Jet Propulsion
Laboratory-Caltech

30 2000

Enhanced
Vegetation Index
(EVI)

Google earth engine (GEE) data provided
by U.S. Geological Survey (USGS)

30 Pre: May 1,
2018

Post: January
28, 2019

Normalized
Difference Water
Index (NDWI)

Google earth engine (GEE) data provided
by U.S. Geological Survey (USGS)

30 Pre: May 1,
2018

Post: January
28, 2019

2.3. Land cover categories and reference data
Along with the requirements of image processing, land cover analysis also needs reference datasets, land
cover classi�cation, indices evaluation, and statistical analysis for pre and post hurricane events. Land
cover change detection technique applied and evaluated on GEE platform using Random Forest (RF)
classi�er algorithm. Random Forest (RF) classi�er has been widely used in land cover change studies
over the years (Pelletier et al. 2016; Rwanga and Ndambuki 2017; Pimple et al. 2018; Oliphant et al. 2019;
Qu et al. 2021). The RF classi�er has been effective in the classi�cation accuracy when applied to
analyze data with stronger noise (Breiman 2001; Schmidt et al. 2016; Tian et al. 2016). The RF is an
ensemble classi�cation approach that creates an ensemble of classi�cation (using multiple decision
trees) by employing bootstrap aggregating, or "bagging," where each tree trains on a different subset of
the whole training data (Breiman 2001; Waske and Braun 2009).
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Classifying heterogeneous land cover from satellite images is a challenging task (Sidhu et al. 2018;
Zurqani et al. 2018). Considering the size and scale, we identi�ed four major land covers for Panama City;
1) vegetation, 2) impervious layer, 3) water body, and 4) barren land. For the accuracy assessment of the
land cover classi�cation, reference dataset is an important element (Rodriguez-Galiano et al. 2012;
Zurqani et al. 2018). We delineated 305 reference points on NAIP images (2019) by visual inspection in
the GEE platform randomly using Eq. (1) adopted from (Cochran 1977).

where N = number of units in the study area, S(O) is the standard error of the estimated overall accuracy
that we would like to achieve, Wi is the mapped proportion of the area of class i, and Si is the standard
deviation of stratum i, Si is the standard deviation of the stratum I, Si= √(Ui(1-Ui) (Cochran 1977).

A training dataset that consisted of 70% randomly selected observations was created; the remaining 30%
of the observations were used in the validation data set (Olofsson et al. 2014). The training dataset was
used to improve the supervised classi�er algorithm, while the validation dataset was used in the accuracy
assessment of the produced land cover classi�cation maps.

2.4. Accuracy assessments and change detection
The purpose of accuracy assessment is to estimate the error and uncertainty of the output classi�cation,
to either choose the most appropriate mapping procedure or to inform the interpretation of the output
(Olofsson et al. 2014; Lyons et al. 2018). The produced land cover maps were validated using �eld-
veri�ed GPS point data in Panama City and Panama City Beach. One-third (~ 100) of �eld locations were
veri�ed using handheld precision GPS, Google Spreadsheet using mobile hotspots and Google Maps.
Finally, a confusion matrix of land cover maps was calculated to evaluate the accuracy of the outputs
using producer’s accuracy, user’s accuracy, and kappa statistics.

Change detection of land cover is the �nal step to demonstrate change analysis that designates
differences between images of the same scene at different times (You et al. 2017; ESRI 2022). Mosaic
plot method of GEE was used to represent the gain and loss of the land cover change. The mosaic plot
provides a statistical summary of losses and gains over time (Google Earth Engine 2019). Our study used
Change Detection Technique in ArcGIS Pro and Image Difference Technique in GEE to see the difference
between the two different images taken before the hurricane event and after the hurricane event.

To produce the greenness and wetness of the components for validating land cover change, we used EVI
and NDWI for each image scene (before and after the hurricane) using at-sensor re�ectance values and
stacked them for later classi�cation. We used EVI instead of NDVI because of its additional correction
capability for some atmospheric and canopy background noise, and EVI is also more sensitive in areas
with dense vegetation (USGS 2016; Vermote et al. 2016). On the other hand, NDWI is used to highlight
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open water features in a satellite image, allowing a water body to “stand out” against the soil and
vegetation (EOS 2019; Oliphant et al. 2019). We used EVI and NDWI in the GEE platform to process the
normalized index values for greenness and wetness in Panama City and Panama City Beach after the
hurricane event. GEE JavaScript for this analysis is available in the supplementary �le.

2.5. Optimized Hot Spot Analysis (OHS) and Optimized
Outlier Analysis (OOA)
We used Optimized Hot Spot Analysis (Getis-Ord Gi*) tool in ArcGIS Pro platform to determine the
observed hotspots and coldspots using indices (EVI and NDWI) derived from our input data and Eq. (2).
The resultant z-scores and p-values indicate where features with either high or low values cluster
spatially. This tool looks at each feature within the context of neighboring features (Getis and Ord 1992;
Xiao et al. 2016; Hakim et al. 2021). A feature with a high value is interesting but may not be a
statistically signi�cant hotspot. To be a statistically signi�cant hotspot, a feature will have to have a high
value and be surrounded by other features with high values as well.

where xi is the attribute value for feature j, wij is the spatial weight between feature i and j, n is equal to the
total number of features.

We used optimized outlier analysis to evaluate the characteristics of the input NDWI and EVI values. This
analysis interrogates input data to determine settings that will produce optimal cluster and outlier
analysis results. The tool calculates a local Moran's I value, a z-score, a pseudo p-value, and a code
representing the cluster type for each statistically signi�cant feature. The z-scores and pseudo p-values
represent the statistical signi�cance of the computed index values and are measures of statistical
signi�cance that tell us whether or not to reject the null hypothesis, pixel by pixel (Anselin 1995; ESRI
2019a). The Local Moran’s I statistic of spatial association is given as:

where xi is an attribute for feature i, X is the mean of the corresponding attribute, wi,j is the spatial weight
between feature i and j, and;



Page 8/27

The cluster/outlier type (COType) �eld in the output table distinguishes between a statistically signi�cant
cluster of high values (HH), cluster of low values (LL), outlier in which a high value is surrounded
primarily by low values (HL), and outlier in which a low value is surrounded primarily by high values (LH).
A high positive z-score ( + + quadrants) for pixels indicates that the surrounding pixels have similar values
(either high values or low values) and a low negative z-score (-- quadrants) for pixels indicates a
statistically signi�cant spatial data outlier. Statistical signi�cance is set at the 95% con�dence level.
When no FDR (False Discovery Rate) correction is applied, features with p-values smaller than 0.05 are
considered statistically signi�cant (Columbi Public Health 2019; ESRI 2019b). The FDR correction
reduces this p-value threshold from 0.05 to a value that better re�ects the 95% con�dence level given
multiple testing. (ESRI 2019c).

3. Results

3.1. Land use change and distribution
Figure 4 shows the signi�cant land cover transition before and after Hurricane Michael in the
southwestern part of Panama City Beach. Table 2 shows the land cover transition matrix before and after
the hurricane. Over the study period for pre- and post-hurricane, 69.93% of the total study area remained
unchanged, while 30.07% changed. The barren land area declined by 20.50% after the hurricane. The
abrupt change from barren land to impervious layer and vegetation cover shows how our supervised
classi�cation correctly detected this type of land cover transition. Since the post-hurricane image was
taken on January 2019, some regeneration was identi�ed in the southwestern part of Panama City
Beach. Inland water inundation after the hurricane increased by 19.64%, which infers heavy rainfall and
�ooding on the shoreline and inland of Panama City and Panama City Beach during the event. The
overall accuracies of the supervised images (Table 3) were 81.44% (pre-hurricane) and 80.01% (post-
hurricane), respectively. It is likely that classi�cation accuracy was reduced by the variation in the
availability of high-resolution imagery from the NAIP that was not always available for the same time
period as the Landsat scenes.

After land cover consolidation (Table 4), i.e., vegetation and non-vegetation, intensive rainfall (122 mm ~ 
6 hours), and wind speed (252 km/h) on the landfall day (National Weather Service 2018) resulted in
vegetation loss of 4.91%. As the hurricane track passed through Panama City Beach, our study found
coastal vegetation and woody wetlands loss was about 34.44% of the total vegetation loss (Figures S1 &
S2). 
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Table 2
Land cover transition matrix of Panama City and Panama City Beach. Units are in hectares.

    Post-Michael

Pre-Michael Land Class Barren Land Impervious Layer Vegetation Water Body

Barren Land 0 530.01 701.37 89.73

Impervious Layer 314.19 0 198.27 35.73

Vegetation 677.43 440.64 0 58.59

Water Body 71.46 42.21 42.21 0

Figure 5 illustrates the standard error of the land cover classes before and after the hurricane event. Error
bars provide the accuracy of the land cover classi�cation by measuring the pixel as sample variability.
Data are more variable for the impervious layer, and our analysis shows standard error for water bodies is
negligible before and after the event, even though more areas were inundated by the hurricane induced
storm surge. 

 
Table 3

Accuracy assessment of land cover transition after
Hurricane Michael.

  Pre-Michael Post-Michael

Training Accuracy 99.23% 99.85%

Validation Accuracy 81.44% 80.01%

Producers Accuracy 78.29% 81.57%

Kappa coe�cient 0.69 0.72

 

 
Table 4

Vegetation cover change (in hectares) after Hurricane Michael. Percentage in
the parenthesis shows the share of total land use of vegetation and non-

vegetation.

  Pre-Michael Post-Michael Relative Change

Vegetation 37753 (24.63%) 35987 (23.48%) -4.91%

Non-vegetation 115543 (75.37%) 117309 (76.52%) 1.51%

3.2. NDWI and EVI change detection
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NDWI positive threshold has been increased in the southwestern part of Panama City Beach and
northeastern part of Panama City after the hurricane event. While limiting the low re�ectance of water
characteristics, the near-infrared wavelengths maximize the high re�ectivity of terrestrial vegetation and
soil components. Water and moisture content (> 0.2) are identi�ed after Hurricane Michael re�ects the
intensity of heavy rainfall during the event (Fig. 6). The loss of green foliage, which should be directly
connected with a fall in EVI and indirectly correlated with a reduction in total chlorophyll and water
content at the canopy level, is the most recognizable aspect of sudden canopy alteration that can be
detected by optical remote sensing. The hurricane impact identi�ed by EVI than NDWI was consistent
with damage severity assessed by the USDA Forest Service, Forest Inventory and Analysis (Clark et al.,
2006). The impacted area detected by NDWI was smaller (< 11%) than EVI, while NDWI underestimated
the impacted area and did not differentiate the damage level as well as EVI. Based on the analysis, we
discovered that, to a certain extent, both NDWI and EVI could identify post-hurricane vegetation damage.
Therefore, we further analyzed only the statistical properties of pixel-based NDWI and EVI hotspot
analysis.

The Southwestern part of Panama City Beach and the northeastern part of Panama City were identi�ed
with more green cover loss than the surrounding inland area. Figures 6 and 7 show mixed characteristics
after the hurricane, since the image was taken in January – analysis found some of the canopy and
wetland regeneration in the affected area. More water content (> 7.6%) was found in the affected area by
the NDWI analysis, which re�ects the non-seasonality effect of hurricane season. NDWI seasonality can
be found in the supplementary Figure S5 for the years 2014–2018. The histogram distribution (Figures
S3 & S4) shows the increment mean shift after the hurricane, re�ecting the water intrusion in the study
area during the hurricane. However, EVI shows different scenarios than NDWI as the overall mean values
(Figure S5 and S6) for EVI increased after the hurricane event. The restoration of the green canopies and
green grasslands following the incident was one factor in the increase in EVI values. Histogram of the EVI
values (Figure S4) shows the regenration of the green canopies in Panama City and Panama City Beach.
Average values of EVI in the previous years during hurricane season (June-October) were 9.31% higher
than that of 2018.

3.2. Optimized hotspot and outlier analysis
Using the Getis-Ord Gi* statistic (Eq. 2), optimized hotspot (OHS) analysis evaluated the characteristics of
the input feature class (EVI and NDWI) to produce optimal results. OHS automatically aggregated the
NDWI and EVI point data by pixel, identi�ed an appropriate scale of analysis for Panama City and
Panama City Beach, and corrected for both multiple testing and spatial dependence. When we set the
scale of analysis to the pixel level (30x30m), the optimal �xed distance band is based on the average
distance to 30 nearest neighbors – 114 to 148 meters depending on the indices value inside our study
area boundary.

OHS results are shown in Fig. 8 (NDWI) and Fig. 9 (EVI) according to bin values which identify
statistically signi�cant hotspots and coldspots. Valid features and outliers of NDWI and EVI changed
after the hurricane because of the indices value transformation. Before the hurricane, the total number of
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statistically signi�cant NDWI hotspots (≥ 95% con�dence, z ≥ 1.96) covered 61.02% of Panama City and
Panama City Beach. Pixels with water bodies were observed to be stable through the time since the last
major weather event. Statistically signi�cant hotspots of NDWI increased to 76% after the hurricane as
more water inundated the study area. Statistically signi�cant hotspots of EVI increased from 58.78–
69.82%, which infers vegetation loss occurred in the southwestern and northeastern parts of Panama City
and Panama City Beach respectively. OOA shows hotspots area clustered with 84.01% of the study area,
which increased to 91.34% after the hurricane. It indicates more lands are inundated and more and urban
vegetation are enriched with the water content by the heavy precipitation and storm surge in the
southwestern part of Panama City and Panama City Beach (Figs. 8 and 9). On the other hand, OHS and
OOA analysis show vegetation loss due to hurricane, which is represented by the lower number of
statistically signi�cant (≥ 95% con�dence, z ≥ 1.96) EVI clusters. 65.46% area was clustered, considering
the greenness of the vegetation before the hurricane, which decreased to 56.29% after the event (Fig. 10).
Figure S7 and S8 illustrated the spatial cluster and outlier of the indices NDWI and EVI before and after
the hurricane event.

Our output feature class in ArcGIS Pro created Local Moran’s I Index, z score, p-value and cluster/outlier
types. Using Eq. (3), we showed the Moran’I cluster and outlier distribution (Figs. 11 & 12). OOA uses
spatial lag as a variable to transform z scores which averaged the neighboring values of locations. The
transformed z-score values when using a 95% con�dence level are con�ned in -1.96 and + 1.96 standard
deviations. Accounting for 66% of the pixels values before the event, our observed p-value was smaller
than 0.05, rejecting our null hypothesis because the pattern exhibited could very likely be the result of
random spatial processes. Our post-event NDWI scenario observed a similar distribution but with a higher
number of point locations. Transformed z values (≥ 95% con�dence, z ≥ 1.96) of the outliers for NDWI
after the hurricane event decreased to 8.66%, which inferred more similar pixel values in the clustered
pattern. Outliers of EVI show relatively static change, increasing to 8.91% from 7.56%, which suggests
that more green areas (i.e. small herbs, shrubs, etc.) transformed to barren land or open space.

Figure 13 shows the area of the local sum for each pixel and its neighbors in the affected CCDs (Census
County Divisions). This area is then compared proportionally to the sum of all other pixels, leading to a
high-high and low-low clustering pattern when signi�cant Z score (≥ 95% con�dence, z ≥ 1.96) and
vegetation indices are taken into account. Less water content on urban vegetation was found in Panama
City than the Panama City Beach because of proximate location near the shoreline. Vegetation cover in
Southport and Youngstown was highly affected due to high wind speed (> 250 km/h) as these CCD’s are
dominated by highly densed coastal woody wetlands. Panama City and Lynn Haven experienced less
vegetation damage because of the availability of greater impervious layer. Our analysis found Panama
City Beach, Southport and Youngstown CCD as hotspots in terms of high water content in sustained
vegetation (NDWI) and overall vegetation condition (EVI) after the Hurricane Micheal.

4. Discussion
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Our �ndings demonstrate the effectiveness of applying optimized hotspot analysis and optimized outlier
analysis to identify groups of changes in urban green cover that are connected to water content
enrichment. Optimized hotspot analysis and Optimized outlier analysis have the ability to identify spatial
patterns in low and high density areas. We demonstrated that location, land use, and vegetation indices,
such as NDWI and EVI, can be used to assess how a devastating hurricane will affect built environments
and human activities. We discovered various hotspot applications in earth observation, even though
optimal hotspot and outlier analysis uses parameters obtained from input data features to conduct the
Hot Spot Analysis (Getis-Ord Gi*) tool. For instance, responders employed GIS-based hotspot analysis
during Hurricane Harvey (2017) to assist hurricane victims in isolated parts of Texas (Kotak et al. 2018).
Hauser et al. (2015) used hotspot technique to assess the wetland degradation pattern after Hurricane
Sandy. Van Coppenolle and Temmerman (2020) identi�ed global hotspots for wetland conservation with
a global scale GIS hotspot model. Shell et al. (2021) created hotspot maps to characterize the structural
diversity of the U.S outer coastal plain mixed forest. Harris et al. (2017) used ArcGIS hotspot analysis to
identify the emerging hotspots of forest loss in Brazil.

Our �ndings from the study and the literatures cited in the study showed hotspot analysis as a good
starting point for those interested in understanding where future adverse climate effects i.e. storm surge,
sea level rise, drought etc. may occur. However, our study executed an initial data assessment of the input
features including data outliers. Since each pixel's neighborhood is de�ned using pixel-based analysis in
order to determine statistical signi�cance, the relative increase in hotspots in our optimized hotspot
analysis as time changes makes obvious sense. This research did not account for any changes in the
scale of analysis by comparing the pixel sizes of all data layers before and after the event. The pixel's
intrinsic value provided the transformation of the changes in land cover brought on by the vegetation
indices. The signi�cant changes in hotspot placement under the different neighborhood distances also
represent the need for multiscale hotspot analysis that has been identi�ed in the scienti�c literature to
help decision-making at numerous scales across a variety of social challenges (Liu et al. 2017; Guo et al.
2021; Lv et al. 2022).

Water, tree, and wind damage from hurricanes are particularly important in the coastal area with relatively
high concentrations of materials and people, whereas wind effects are likely most important in
generating tree damage from hurricanes (i.e., defoliation, broken stems, and branches, and uprooted or
toppled trees). From the satellite imagery and other ground observations after the hurricane event,
changes in water bodies along with the coastal wetlands are evident in the study area. When compared to
the long-term impact of the hurricane, impermeable land surface and grasslands exhibit relatively bigger
changes. The natural resurfacing of water bodies, slow development of small plants and trees, and
regeneration of coastal wetlands all assist in adjusting the shift in land use. Though land cover change is
a relatively static process; altercation of natural land use changes due to hurricanes brings about rapid
changes. Wind speed is likely to be the most important determinant of tree losses, and numerous factors
in�uence a stand’s resistance to wind loading. Although some factors typically cannot be modi�ed by
land use management (e.g., climate, topography, soil conditions), numerous tree management activities
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can in�uence factors that affect a stand’s resistance to wind loading. These factors relate to tree species,
stand con�guration, and silvicultural treatments (Cole et al. 2021).

More coastal communities are vulnerable to the damaging effects of hurricanes as a result of climate
change, which has become more apparent in recent years (C2ES 2017; IPCC 2020; Knutson et al. 2020). It
is possible that the hotspots we identi�ed could expand geographically and/or increase in intensity under
continued climate change. Such expansion or intensi�cation could further complicate hazard mitigation
decision-making in hot spot areas, particularly for areas that are not currently considered a hotspot but
may become so in the future, including areas in the southeast and paci�c northwest. In order to
accurately anticipate future climatic events in our study area, it is necessary to go beyond simply
characterizing the sites of previous hurricanes and add information on the factors that in�uence storm
activity, such as climate and human activities. Our results can have wide implications on hazard
mitigation planning. On the Gulf Coast, hurricanes are a common occurrence, and they are having an
increasing impact on progressively larger areas, necessitating greater research (Blake et al. 2005;
Rappaport 2014; NOAA 2017). Since there are so few studies that deal with the immediate assessment of
hurricane damage on urban vegetation cover, our work may aid professionals and academics in their
ongoing research and initiatives. Land use change was prompted by hurricane risk, and our �ndings offer
important information on hazard vulnerability. Although it can be challenging to spot small-scale
changes in land use brought on by hurricanes, our research looked for land use transitions and losses of
green cover within a short period of time. Findings from our study will assist state policymakers, and this
information may also be used at the local jurisdiction level to alert communities of the risk involved in
adhering to the Federal Emergency Management Agency's (FEMA) Hazard Mitigation Plan and its
recommended procedures (FEMA 2018).

5. Conclusion
It is evident from our research that green cover loss and the presence of water vapor turned the land cover
into a different one once a major hurricane hit. Hurricanes can cause signi�cant damage to coastal
states, and the current rise in storm frequency is concerning. The �ndings of our study should be used to
help determine where hurricane hazard mitigation techniques should be prioritized and concentrated
throughout the Gulf Coast. Although our primary focus is on the effect of hurricanes on the cities on the
Gulf Coast, it is possible to use similar methods to characterize other natural disasters in other regions.
We analyzed the impact of hurricane in a mid size urban area in the Gulf Coast. Future research could
investigate the regional scale (i.e. entire Gulf Coast urban areas) analysis using smaller pixel sizes and
�ner-scale aggregation patterns, such as those gained from using satellite-based land use changes.

By examining the scale of analysis setting on the ArcGIS Pro platform to characterize the unique land
cover type throughout the study area, further research could enhance our techniques. This study worked
only on one major hurricane event, more analysis could be done on different intensities of hurricanes and
on different cities representing a variety of land use patterns. For the regions that have historically had
frequent visits from large hurricanes, a comparison of various intensities is essential. Analyzing the land
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use change pattern is important for the Gulf Coast to oversee some land use types, especially wetlands,
grasslands, and barren lands. Future research could examine additional, more in-depth land cover
transitions besides vegetation in compliance with the NLCD (National Land Cover Database) land use
classes.

The statistical analysis used in this study presents a method for evaluating how a natural hazard
changed land cover types over time. In the realm of hazard mitigation, this knowledge can play an
important role for planners and decision-makers, especially given how climate change is affecting the
frequency, intensity, and seasonality of many natural hazards. In essence, climate change is making
historical patterns of hazard occurrences less reliable as indicators of future occurrences, which will
require hazard mitigation planners to use different techniques for determining probabilities of future
occurrence and risk mapping. Planners for risk mitigation should endeavor to include more advanced
methods in their risk analyses to represent the complexity of naturally occurring risks in�uenced by
climate. Understanding the spatiotemporal variation in hazard occurrence is one of many things that can
help determine where mitigation projects are most needed, give a quantitative check on long-held beliefs
about where hazards are most likely to occur, and lay the groundwork for future research to �nd out why
hazards occur where they do and what might be causing the spatiotemporal variation.
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Figures

Figure 1

Death and damage costs occurred by tropical cyclones in the Gulf states from 1980 to 2021 (NCEI 2022).
Yellow bar in 2005 represents catastrophic Hurricane Katrina.
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Figure 2

Track of Hurricane Michael (October 10, 2018; 0735 CDT) over Panama City and Panama City Beach,
Florida (red dotted line). Key map shows the geographic location of the landfall near Panama City and
Panama City Beach (Panama City Beach 2022).
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Figure 3

Methodological �owchart of land use change analysis and impact assessment on urban vegetation after
a major hurricane.

Figure 4

Land cover transition before and after hurricane Michael. (a) supervised land cover on May 1, 2018 (b)
supervised land cover on January 1, 2019 (c) NAIP DOQQ, 2015 (d) NAIP DOQQ, 2019
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Figure 5

Standard error of land cover classes before and after the hurricane event. Error bars before and after the
event overlap, indicating that there is no statistically signi�cant difference between the two time series.

Figure 6

Change of NDWI after Hurricane Michael. Higher values approaching +1 usually appear blue and
correspond to either a high-water content or a water surface, while lower values all the way to 0 are the
tell-tale signs of drought conditions unless the area of interest is a non-aqueous surface.
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Figure 7

Change of EVI after Hurricane Michael. Negative values are omitted because it corresponds to areas with
water surfaces, manmade structures, rocks, clouds, and snow; bare soil usually falls within 0.1- 0.2 range;
and plants will always have positive values between 0.2 and 1. Healthy, dense vegetation canopy should
be above 0.5, and sparse vegetation will most likely fall within 0.2 to 0.5.

Figure 8

Hotspot and coldspot changes after Hurricane Michael. Red dots are illustrated as hot spots (99%
con�dence intervals) and blue dots are illustrated as coldspots (99% con�dence intervals). Increased
NDWI values after the hurricane accumulated in the southwestern part of Panama City Beach.
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Figure 9

Hotspot and coldspot changes after Hurricane Michael. Red dots are illustrated as hotspots (99%
con�dence intervals) and yellow dots are illustrated as coldspots (99% con�dence intervals). Increased
EVI values after the hurricane accumulated in the southwestern part of Panama City Beach.
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Figure 10

Distribution of statistically signi�cant (≥ 95% con�dence, z ≥ 1.96) pixels (cluster and outlier) from OHS
and OOA based on the indices before and after Hurricane Michael.

Figure 11

Optimal clusters and outliers based on NDWI before and after Hurricane Michael. Positive-Positive
quadrants (++) NDWI values illustrate High-High cluster and Negative-Negative quadrants (--) NDWI
values illustrate Low-Low cluster. Positive-Negative (+-) quadrant NDWI values show high-low outliers and
Negative-Positive (-+) quadrant NDWI values show low-high outliers.

Figure 12

Optimal clusters and outliers based on EVI before and after Hurricane Michael. Positive-Positive
quadrants (++) EVI values illustrate High-High cluster and Negative-Negative quadrants (--) EVI values
illustrate Low-Low cluster. Positive-Negative (+-) quadrant EVI values show high-low outliers and
Negative-Positive (-+) quadrant EVI values show low-high outliers.
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Figure 13

Total area (in hectares) of hotspots in CCD’s after the Hurricane Micheal considering NDWI and EVI. Local
Moran’s I analysis shows High-High clustering pattern observed in Panama City Beach, Southport and
Youngstown CCD.
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