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Abstract 

Software Cost Estimation (SCE) is an integral part of pre-development stage of software project 

with a target to accomplish a better visibility towards possible risk while gaining more information 

towards reaching success rate to meet the deadline of delivery. Irrespective of multiple research 

contribution model towards SCE, the problem and challenges towards accurate cost estimation in 

presence of dynamicity and uncertainty is yet not reported to be accomplished. Apart from this, 

learning-based models are slowly gaining pace in almost every field and yet it is still in nascent 

stage of progress in software engineering. Therefore, the proposed manuscript introduces 

Optimized Learning-based Cost Estimation (OLCE) which is a novel learning-based model 

capable of accurate prediction considering global and large scale software project. The proposed 

system harnesses the learning potential from artificial neural network integrated with novel search-

based approach for optimizing the learning method considering the benchmarked COCOMO 

NASA 2 dataset. The study outcome shows OLCE offers 50% faster response time with 

approximately 73% of accuracy compared to existing models that are reportedly found to be 



adopted for SCE. Hence, OLCE is found to offer a balance between accuracy and computational 

efficiency during SCE.  

 

Keywords: Artificial Neural Network, COCOMO, Learning-based model, Prediction, Risk, 

Software Cost Estimation, Software Project, Software Engineering.  

 

 

1. Introduction  

Software Cost Estimation (SCE) is one of the most essential involved process in software 

engineering which can perform predictive analysis of cumulative effort required to construct a new 

software project [1]. In this process, the cost factor is associated with all the human, computational, 

and organizational resources being involved towards developing and dispatching the final result 

of software project at a given time bound [2][3]. The standard techniques involved in cost 

estimation are cosmic [4], user-point story [5], COCOMO [6], functional point [7], Line of Code 

[8], etc. Out of all existing standard SCE, COCOMO is highly preferred among the community of 

software engineer [9]. The other standard models are Software Life Cycle Model (SLIM) [10], 

ESTIMACS [11], SEER-SEM [12]. Different from other industry, computation of software cost 

is quite a complex process as usually its is accomplished using either inappropriate set of 

information or incomplete data [13][14]. Hence, majority of the underlying techniques are based 

on just an assumption construction by the estimator. Some of the critical challenges encountered 

by an estimators are i) frequent adoption of standardized approach, which may not be applicable 

for all software projects, ii) issue in collaboration with the team and predicting their vitals, which 

are quite impractical and stochastic in nature, iii) identifying possible risk, and iv) insufficient 

timescale of project delivery [15]-[20]. A quick look into conventional research contribution 

highlights that adoption of artificial intelligence-based scheme is constantly on rise to solve all the 

critical problems [21]. This trend of adoption is more towards other computational modelling and 

less towards software engineering and hence this adoption is slowly increasing in its pace to 

explore possibilities. This inclination towards adoption of learning-based approaches derived from 

artificial intelligence is quite essential as majority of the conventional SCE schemes are already 

reported with the pitfalls [22]-[25]. However, adoption of artificial intelligence is too shrouded 

with challenge associated with reliability of the accomplished predictive accuracy score. Further, 



various techniques of artificial intelligence itself has beneficial and limiting characteristics and yet 

this adoption is quite in nascent stage of development. Therefore, the proposed scheme introduces 

a novel learning-based SCE method which is meant for overcoming the estimation loopholes in 

existing scheme as well as to address the computational efficiency while deploying learning 

schemes. The novelty as well as contribution of proposed scheme are as follows:  

i. The proposed scheme introduces a computational framework of SCE which allows an 

estimator to perform a simplified predictive cost estimation for their target software project. 

ii. The study model develops a predictive model using artificial neural network and search-based 

optimization discretely towards building framework of learning and optimization. 

iii. The involved learning scheme is capable of considering multiple factors towards representation 

followed by indexing and optimized adaptation of learning feature weight 

iv. The complete analysis is carried out over benchmarked dataset considering standard 

performance metric to showcase a better computational efficiency and accuracy in contrast to 

existing models. 

The organization of the paper is as follows: Section 2 briefly discusses about the essentials of 

Software Cost Estimation with respect to taxonomy and challenges in existing methods, Section 3 

discusses about related work, Section 4 discusses about problem identification, Section 5 discusses 

about research methodology, while elaborated discussion of proposed learning model is carried 

out in Section 6. Section 7 discusses about result analysis while conclusive remarks of paper is 

given in Section 8. 

2. Software Cost Estimation 

The core target of Software Cost Estimation (SCE) is to perform a predictive assessment of the 

cost involved in the development of software projects even before initiating the phases of 

development. The standard term cost is usually represented in the form of resources engaged in 

the development, time consumed in development, and all cumulative approximated effort to 

accomplish the complete development stage. A typical cost estimation practice is shown in Fig.1, 

where the project manager defines the target software cost. At the same time, this process is 

followed up by manipulation of various attributes and sizes until the cost of the target software is 

found justified. 
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Figure 1 Typical Process of Software Cost Estimation 

The process exhibited in Fig.1 is highly essential to perform analysis and forecasting of all possible 

risks involved in costing and realize various trade-offs and sensitivities associated with it. This 

process lets the project manager scrutinize the software project and filter out the evaluated risk 

possibilities to accomplish the cost of the target software. It should be noted that the process 

mentioned above of software cost estimation is carried out by the project manager and equally 

contributed by different teams working for testing, development, and architecture. Further, it can 

be seen from Fig.1 that there are varied inputs for cost estimation, viz. cost driver, constraints, risk, 

opinion, trade-off, and alternatives. On the other hand, the outcome of the cost estimation is 

assessed concerning effort, duration, loading, and contingency. Hence, it can be seen that multiple 

attributes are involved in software cost estimation. This section further briefs on different 

taxonomies and challenges associated with software cost estimation. 

 

2.1 Taxonomies  

Currently, various software models are available to enable the process of SCE, e.g., Knowledge 

Plan, SLIM, ESTIMACS, Checkpoint, COCOMO model, etc. Out of all these models, the 

community of software engineering is witnessed frequent adoption of the COCOMO model owing 

to its highly structured estimation techniques for software cost. It was also noted that bottom-up 

model usage is more frequent compared to the top-down model in software costing. Apart from 

this frequently adopted SCE model, the standard taxonomy of the SCE is classified into three 

types: 



 Empirical Cost Estimation Method [26]: In this cost estimation method, the data required 

to be predicted is subjected to formulas derived empirically. This estimation technique's 

prime basis is certain assumptions and data from previous software projects of similar 

form. The estimation of an effort is carried out on the basis of the size of the software to 

be used. Although this technique entirely runs on various assumptions, it is still formalized 

by industries. An example of such a cost estimation technique would depend on numerous 

approaches for formalizing, e.g., Expert judgment and the Delphi method. 

 Heuristic Method of Cost Estimation [27]: The prime basis of this cost estimation technique 

is related to the process of discovery. This model is used for discovery from practical 

approaches for accomplishing goals and a plan of learning and solving the problem. Apart 

from this, the model also facilitates higher flexibility and various enriched calculations and 

shortcuts for making faster decisions. However, these traits are applicable for only 

simplified forms of data; however, the technique demands a higher degree of optimal 

decision for this purpose. Mathematical expressions are used for constructing relationships 

among multiple parameters of software projects. One robust example of this technique is 

the Constructive Cost Model, also known as COCOMO, deployed for accelerating the 

decision-making and analytical speed. 

 Analytical Cost Estimation Method [28]: This cost estimation technique is used for 

measuring the task initially decomposed to smaller operational components for better 

analysis. In this case, if the availability of the standard time is ascertained from specific 

sources, then they are applied to all components of the task. In case of unavailability of 

such time, work estimation is carried out based on professional work experience. This 

method uses fundamental assumptions to derive the outcome of software projects. One 

example of this technique is Halstead’s software.  

Apart from the above-mentioned standard taxonomies, various scientific kinds of literature offer 

more insight into the taxonomies of SCE [29][30]. According to such studies, the SCE techniques 

are further classified into algorithmic, non-algorithmic, and learning-based methods. Examples of 

Algorithmic methods in SCE are the SLIM/Putnam Model, Function Point Analysis, and 

COCOMO. Methods used for non-algorithmic-based approaches are analogy-based, price to win, 

bottom-up estimation, top-down estimation, and expert judgment. Learning-based techniques 

adopted in SCE are Regression tree, support vector regression, Bayesian network, fuzzy logic, 



genetic algorithm, and artificial neural network. The following section outlines the challenges in 

SCE methods. 

 

2.2 Challenges of Existing Methods 

Irrespective of the availability of the standard techniques of SCE, as briefed in the prior section, it 

is noted that various challenges are yet to be addressed while using them. Some of the critical 

challenges associated with existing methods are as follows: 

 Cost Quantification: It is quite challenging to correctly identify a quantified cost by an 

engineer who would target to minimize the cost by a specific value. Assume that a 

mathematical relationship to define cost is used using various dependable parameters, e.g., 

physical characteristics, operation features, and performance. Such a mathematical 

relationship could be highly sensitive towards a different set of components’ weights while 

the target is to assess software cost with various materials characterized by discrete 

weights. In such a case, the weight of the mathematical relationship of cost could be non-

sensitive towards alternatives on the strength factor. This condition calls for assessing the 

cost of such alternatives and finding its possible response. There is a need to determine the 

impact of the cost associated with intangible new approaches or products. Hence, 

quantifying software cost in the presence of such dynamics is still a challenging task. 

 Undefined Constraints: There are various evolving constraints during the software 

development cycle. While some constraints are easier to find out, there are some which are 

quite sophisticated to trace. One essential constraint is the temporal factor, i.e., time, which 

introduces a potential influence on the process of cost estimation, aggregation of the data, 

validation of the evaluation process, and maintaining a higher quality of data with higher 

consistency. There is always a demand for enriched data by the data analyst that takes 

considerable resources and consumes time. 

 Data Quality: The quantity and quality of data are significantly affected by the constraints 

of resources in software engineering. In case of less time available, the alternative data 

sources are accessed by an estimator that is amended from the original data source. 

However, the extent of usefulness associated with secondary data is quite restricted. 

 Massive Organization Involvement: For a practical cost computation, an estimator must 

gain complete information that can be derived from the massive organizational structure as 



well as multiple sources of data. For this purpose, there is a need for comprehensive 

accessibility of data for the estimators. The estimator may also require to go through 

various non-disclosure agreements to cater to the requirements of all the organization. In 

such a case, time constraint acts as a significant impediment. The quality of the estimation 

process is highly affected in case of its non-accessibility. 

 Consistency: For an effective SCE, it is necessary to incorporate consistency as they are 

aggregated from multiple sources. All the collected data must carry consistencies; however, 

it is another computationally complex task. With the massive size of data, there are also 

higher possibilities of inconsistencies and discrepancies. In order to address this problem, 

a sophisticated database management system is built by investing more significant capital 

and time capable of handling highly consistent data from multiple sources [31][32]. 

However, this is in the very nascent stage of development, and more exhaustive 

frameworks for solving this consistency problem are demanded. 

It is to be noted that the challenges mentioned above are potentially associated with the majority 

of the existing standard SCE techniques where there is no full-proof mechanism yet to control 

them. However, there are various dedicated attempts among the scientific community to evolve 

with more solution-based strategies to mitigate the such challenge. The following section discusses 

existing research contributions toward improving SCE techniques concerning its strength and 

weakness. 

3. Related work 

To date, various approaches have been evolving toward improving SCE methods. Multiple use-

cases were considered for addressing a specific set of problems solved by adopting different 

techniques.  

The most commonly designed software development applications are in the form of mobile apps 

in the current era, as noted in the study of Autili et al. [33]. According to this study, mobile 

application tools and development platforms are quite platform-specific, often posing challenges 

in existing development. The author has also advocated the static analysis method for predicting 

the performance of such mobile apps. This study's contribution is designing a classification model 

to assess the static analysis of mobile applications.  

Many recent studies have emphasized considering the linkage between allocating human resources 

and SCE to decide on outsourcing the projects for faster delivery. The solution to this problem is 



seen in the work of Chiang and Lin et al. [34], where an integer-based programming methodology 

has been used for formulating a decision process. The mechanism also introduces a framework for 

combinatorial optimization used for forming development teams and allocating human resources. 

From the viewpoint of SCE, effort estimation toward testing operation is highly challenging, 

especially in defense projects. A study towards this direction has been carried out by Cibir and 

Ayyildiz [35] that has introduced the adoption of unique software test metrics, viz. quantity of 

defective scenarios of testing, number of meetings, time to construct a test environment, review 

period, time to construct test plan, number of methods. The study's outcome assessed over defense 

industry projects shows that adopting linear regression offers better estimation performance. Apart 

from this, it is also noted that agile methodology is highly adopted for effort estimation. A notable 

work by Diego et al. [36] has addressed the problems of SCE associated with cross-company data, 

which poses a significant challenge towards an effort estimation irrespective of various existing 

deployable models. The outcome of the study exhibited an increasing range of improvement. A 

survey of agile methodologies and their associated risk (budget overrun and project failures) is 

carried out by Lunesu et al. [37]. The presented model considers temporal factors associated with 

software project duration and completion time using Monte-Carlo simulation. 

Further, it was also noticed that improving functional point analysis offers better estimation 

modeling for handling complexity weight management (Hai et al. [38]). Although this study has 

discussed various factors in modeling, they are mainly generalized to use cases. This phenomenon 

calls for more exploration towards identifying the more elaborated number of factors influencing 

cost estimation (Khan et al. [39][40]). According to this recent work, it was noted that there are 

non-inclusion of essential cost drivers in conventional SCE techniques, which cannot retain better 

accuracy standards. Different optimization techniques have also experimented with better SCE 

methods. Work in this direction has been carried out by Fadhil et al. [41], where the dolphin 

algorithm is considered for accomplishing higher accuracy in SCE. The estimation is optimized 

over the COCOMO-II model, where the primary model is subjected to a dolphin algorithm. The 

second model is subjected to an algorithm combining a bat algorithm and a dolphin algorithm. The 

outcome exhibited a lower error score than conventional optimization algorithms and models. 

Another optimization technique was discussed in the work of Nhung et al. [42], where a parametric 

approach toward effort estimation is applied. This work predominantly focuses on numerous 

regression models to control the errors in estimation using least squared regression towards all the 



elements in points of use cases. The presented algorithm contributes to algorithmic optimization 

statistically by adopting efficient correction factors.  

In the line of exploration towards software engineering techniques adopted in SCE, it was noted 

that Artificial Intelligence (AI) had played a significant role. The scope of AI is relatively high in 

software engineering as it can potentially assist in the automation of tedious jobs involved in 

software development and can also be utilized for exploring data poot of big data (Barenkamp et 

al. [43]). The outcome of the study concludes that adopting AI could significantly speed up the 

process of software development and increase efficiency. The utilization of AI has been reported 

in the existing system concerning its different variants under its standard taxonomies of the 

learning-based approach. Existing SCE schemes are often said to adopt learning-based techniques 

to estimate effort. Carvalho et al.[44] have used an extreme learning machine to identify all the 

essential parameters that potentially influence the SCE technique. The study has used multiple 

machine learning approaches for this purpose which finally exhibited reliable effort estimation 

where the outcome showed better estimation performance in comparison to Multi-Layer 

Perceptron (MLP), Logistic Regression (LR), Support Vector Machine (SVM), K-Nearest 

Neighboring (KNN). Machine learning is reportedly deployed in SCE to gain control over the 

excessive consumption of time during the testing cycle, resulting in the identification of a lesser 

number of bugs present in the program. Chen et al. [45] presented the solution model to this 

problem. Machine learning has been used to predict the statical coverage of testing operation 

towards the complier, followed by the clustering scheme for prioritizing the test program. With 

approximately 68% of the accelerated testing speed, this scheme offers a robust platform for 

compiler testing. The summarized version of existing approaches towards improving SCE is 

tabulated in Table 1 with respect to issues being considered, adopted methodology with its 

dataset/tool, and its associated beneficial and limiting factors. 

 

 

 

 

 

 

 



Table 1 Essential Findings of Existing SCE 

Authors Problems Methodology Dataset/Tools Advantages Limitation 

Autili et al. 

[33] 

Assessing 

the 

effectiveness 

of static 

analysis in 

mobile apps 

Classification 

framework 

Assessment of 

261 studies 

A clear 

understanding 

of the 

applicability  

Restricted to 

mobile apps 

Chiang and 

Lin et al. 

[34] 

Allocation of 

human 

resource 

Integer 

programming 

Data from the 

case study 

Better cost 

evaluation 

It doesn’t 

consider 

dynamic 

constraints 

Cibir and 

Ayyildiz 

[35] 

Effort 

estimation 

for testing 

Linear 

regression, 

new software 

metric 

15 projects of 

different size 

Higher scope 

of new metric 

towards effort 

estimation 

Study not 

benchmarked. 

Diego et al. 

[36] 

Agile-based 

effort 

estimation 

Review work 61 research 

papers 

A 

comprehensive 

discussion of 

Agile methods 

No disclosure 

of research 

gap 

Lunesu et 

al. [37] 

Addressing 

risk in Agile  

Monte-Carlo 

Simulation 

JIRA tool Effective time 

evaluation 

Study yet to 

benchmark 

Hai et al. 

[38] 

Complex 

weight 

management 

Functional 

point analysis 

ISBSG 

dataset 

Improved 

accuracy 

It doesn’t 

consider local 

constraints 

associated 

with use 

cases 

Khan et al. 

[39][40] 

Higher 

accuracy in 

SCE 

Statistical 

Model, 

Expert 

ISBSG 

dataset 

Identified lack 

of formal 

models in 

Narrowed 

scope of 



opinion, 

COCOMO-II 

Global 

software 

development 

empirical 

assessment 

Fadhil et al. 

[41] 

Optimizing 

SCE 

Integrated bat 

and dolphin 

algorithm 

NASA-60 

data 

Reduced error 

score  

Involves 

higher 

processing 

time 

Nhung et al. 

[42] 

Estimation 

accuracy 

Least 

Squared 

Regression, 

multiple 

linear 

regression 

Industry 

dataset 

Reduced 

prediction 

error 

Works on the 

static timeline 

of project 

development 

Barenkamp 

et al. [43] 

Assessing 

the 

applicability 

of AI 

Theoretical 

Framework  

Assessment of 

87 studies 

Significant 

highlights of 

AI scope 

Lack of 

extensive 

evaluation of 

AI 

Carvalho et 

al.[44] 

Reliable 

effort 

estimation 

Extreme 

machine 

learning 

NASA 

dataset, 

COCOMO, 

ISBSG 

Excel better 

performance 

compared to 

MLP, SVM, 

LR, KNN 

Highly 

iterative 

scheme 

Chen et al. 

[45] 

Longer 

testing time 

Test coverage 

prediction 

C-Compilers 

(GCC, 

LLVM) 

68% of speedy 

response 

No 

comparison 

with another 

learning 

scheme 

Apart from the studies mentioned above in Table 1, various other studies also underwent a rigorous 

reviewing process to have insights into their methodology, viz. neural network-based effort 

estimation (Rankovic et al. [46]), Artificial bee-colony-based predictive model toward SCE (Shah 

et al. [47]), Stacked ensemble approach using random forest-based effort estimation (Varshini et 



al. [48]), dynamic programming based model (Wang et al. [49]), sequential optimization of the 

model (Xia et al. [50]), Function point-based estimation (Zhang et al. [51]). These methods offer 

unique contributions toward improving SCE by adopting various case studies. The following 

section highlights the problems being explored in due course of review of related work. 

4. Problem Identification  

From the prior sections, it is noted that there is various availability of SCE techniques where the 

prime inclination of methods is mainly machine learning based as well as metaheuristic based 

approaches. Most existing studies on SCE have been carried out over standard datasets and tools, 

overlooking the challenges associated with nonlinearity and complexity. Apart from this, various 

intrinsic factors are required to be adopted to improve the accuracy of SCE techniques. In contrast, 

most existing learning-based methods don’t seem to consider these essential factors, e.g., feature 

engineering, data modeling, and inclusion of network parameters. Hence, accuracy is 

accomplished by deploying sophisticated learning models at the cost of computational complexity, 

which is not evaluated in performance analysis. Based on this, it is almost challenging to confirm 

if the existing learning-based approach will maintain its consistency as theoretically proven in the 

literature. Another observation in the current learning-based SCE scheme is that it doesn’t 

emphasize much possible linkage among various nodes before training. Hence, the evolution of an 

ideal learning network is questionable. From the context of effort estimation, human resources are 

included in constructing the learning model followed by training it; however, this fact is not 

considered in constraint modeling. Apart from this, existing approaches are carried out considering 

a specific contextual scenario, applicable when the system could alter with the progress of an 

unknown time. Hence, when such a temporal parameter is subjected to minor changes, it can also 

affect the outcome of the training model in existing temporal-based modeling approaches. Existing 

approaches using mathematical-based methods towards effort estimation are highly dependent on 

varied attributes of software projects. They are not feasible; hence, their applicability and cost 

effectiveness of modeling are not identified with concrete justification. It is also noted that non-

algorithmic-based approaches are increasing in their adoption towards improving SCE 

performance with promising accuracy outcomes using its learning-based schemes. However, aside 

from the accuracy, the computational complexity factor is not emphasized much, which should be 

considered for any part of the problem solution space. It was also noted that adoption of expert 

judgment is relatively frequent; however, their estimation is required to be trained to minimize the 



possibilities of inconsistencies. The scope of non-algorithmic based approaches is somewhat 

higher owing to its better possibility towards modeling and fine-tuning of network parameters. 

Therefore, the identified research problems are: 

 Non-Inclusion of Dynamicity in Dataset: Adopting the dataset, be it standard or industry, 

is always a better way to justify proof of concept; however, it is necessary to include 

specific ranges of dynamic parameters to ensure the sustainability of the model when 

exposed to a real-world environment. Most existing studies do not include uncertainty-

based constraint modeling in their data management before / during training, which 

narrows down the scope of applicability in reliable SCE. 

 Processing Complexity: Irrespective of knowing that learning-based schemes could offer 

better error reduction control with increasing iteration, the prime emphasis was only on 

accomplishing predictive error reduction in SCE and not much on reducing the processing 

complexity of learning-based schemes. If the complexity is not controlled, then its 

subjectivity towards error reduction is also questionable. 

 Less Emphasis on Consistency: Irrespective of any form of adoption of existing SCE 

techniques, there is non-availability of any standard SCE technique that confirms 

consistency even for software projects of similar structure. Software projects of a similar 

domain will inevitably have timely revision for either inclusion or exclusion design entities 

to suit the final product requirement. Moreover, the human-resource-based factor is another 

attribute that could lead to a reduction in consistency apart from autonomous SCE models.  

 Narrowed Evaluation Scope: Most existing techniques are evaluated on individual datasets 

using less varied test environments. This reduces the applicability of presented methods 

irrespective of claimed accuracy. Apart from this, fewer reported benchmarked studies on 

SCE techniques could not comprehensively reflect its effectiveness from a global software 

development perspective. The presented scheme needs to be under a rigorous test scenario 

with varied datasets and compared with maximum standard approaches to claim the SCE 

methodology's applicability. 

The following section presents a solution to addressing the above-identified research problem 

through research methodology. 

 

 



5. Research Methodology 

The prime aim of the proposed system is to introduce a novel and yet simplified computational 

framework for SCE considering global software project development using machine learning 

approach. With availability of various forms of machine learning approaches, the proposed system 

considers neural network-based learning approach which offers an intensive processing 

capabilities of nonlinear information associated with various attributes of cost estimation in 

software engineering. From the perspective of estimating cost associated with global software 

development, the existing system shows adoption of activation function and learning techniques 

e.g. sigmoid function, back-propagation algorithm, multi-layer perceptron, and feed forward. 

However, from the prior section, it was noted that adoption of learning-based approaches has 

inclusion of various challenges irrespective of its beneficial aspect. Similarly, it was noted that 

suitability of neural network is more towards solving categorization and classification problem 

whereas in reality, the demand of generalization is more in cost estimation towards global software 

development in contrast to emphasize on classification-based issues. Apart from this, it is also 

noted that there is inclusion of various non-linear attributes towards SCE process e.g. duration, 

number of human resources, availability of enabling technologies, degree of utilization of varied 

organizational resources, target budget to comply with, etc. All this information, in the form of 

dataset, finally formulates a non-linear and complex form of dataset in software engineering, which 

when subjected to neural network has higher possibility to yield maximized computational 

complexity as well as minimal accuracy of predictive score of SCE. Therefore, this research 

challenge is identified to be addressed using search-based optimization approach by harnessing 

the process of selecting the unique feature that can assists in optimizing the class selection of global 

software project. Different from any existing learning scheme towards SCE, the proposed system 

introduces a novel approach where search-based optimization approach is developed in order to 

balance the predictive accuracy performance as well as computational complexity while 

performing SCE operations.  
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Figure 2 Proposed Architecture of Optimized SCE 

The above Fig.2 highlights the architecture that is constructed in other to implement the proposed 

concept named as Optimized Learning-based Cost Estimation (OLCE) in global software projects. 

A closer look into the above architecture shows a highly interconnected set of block-operation 

which are mainly classified into 5 types viz. i) front end operation, ii) dataset handling operation, 

iii) learning-operation, iv) optimized operation, and v) cost estimation operation. All the classified 

blocks are meant to carry out a discrete set of operation in order to achieve a common goal of SCE 

performance. The briefing of the involved block operations are as follows: 

 Front End Operation: This is basically a user-defined interface that is meant for the 

stakeholder to select the design of the upcoming project which is subjected for SCE. The 

block of select new problem pertains to selection of software project design related to 

specific software domain whereas the block of attribute input is related to all possible 

anticipated attributes considered by stakeholder e.g. duration of development, duration of 

testing, number of software resources, number of human resources, assigned probability of 

uncertainty score associated with risk, possible overall development cost etc. The block of 



perform cost estimation is meant to execute the proposed scheme where estimation of 

software cost is carried out considering the taken software project and its selected 

attributes. This interface also offers a stakeholder a greater deal of flexibility to edit the 

inclusion / exclusion of number of attribute input for clearly evaluating the cost. 

 Dataset Handling Operation: This is the second main block of operation which retains 

COCOMO NASA-2 dataset as well as it also enables the evaluator to add new fields or 

values in the existing dataset in order to perform extensive assessment of given dataset. 

 Learning-Operation: The third essential block of operation which carry out a series of 

operation in order to carry out learning operation. Different from any existing learning-

based schemes, the proposed scheme performs new set of operation prior to performing 

actual learning in order to boost up accuracy along with equal emphasis towards 

computational efficient. The block of representation is responsible for depicting the 

identification number of a use-case of software project along with discrete set of problems 

from input attributes and its anticipated solution. The representation is carried out with 

respect to technical problem as well as human related errors. The block of indexing is 

responsible for discrete allocating identification number for both technical and human-

related representation which is further followed by block operation of adaptation. The 

prime task of adaptation block is towards fine-tuning the cost of development (Fc) as 

follows: 

Fc=Dc x Rc      (1) 

In the above expression (1), the variable Dc and Rc represents proportional dimension of 

new case and revised cost of development. This empirical expression is further amended 

as follows: 

     Fc1=(α/αi). Fc      (2) 

In the above expression, Fc1 represents final evaluated cost of new development whereas 

the variable α and αi represents correlated value of software project use case with ith 

identification number. The above expression, thereby, represent that proposed scheme 

performs finetuning of the cost of development of new use case considering two 

dimensional attributes of Dc and Rc while the first component (α/αi) represents the mean 

weight obtained from revised cost of development connected with retrieved case of 

proximity of anticipated target of SCE on the basis of correlation. Further the minimization 



of error block carries out using artificial neural network followed by reaching the 

terminating stage of learning to yield primary outcome of prediction.  

 Optimized Operation: The proposed learning operation contributes towards inclusion of 

series of operation in order to optimize the learning performance using this block of 

operation. For this purpose, a block of primary assessment captures the input from 

COCOMO NASA-2 dataset and constructs use cases which will be used for both learning 

as well as validation in order to find out the difference in cost of software development. 

The core idea is to find out the proportionate cost of new development and also finding the 

use-case which doesn’t demand any new development using correlation analysis. This 

difference in the use-case values are the subjected to search optimized algorithm adopted 

for finding solution towards multiple set of constrained as well as unconstrained problems 

by iteratively amending the population of individual values using expression (1). The 

outcomes are further used for learning features of weight using component (α/αi) in 

expression (2) which basically act as an input for adaptation block in learning operational 

block. The core contribution of this block is to reduce the effort of learning by selecting 

optimal features from the dataset. 

 Cost Estimation Operation: It can be noted that majority of the operation towards yield 

learning outcome and optimization is already carried out in learning block and optimization 

block, but still they are carried out for all the local values of OLCE. The local values pertain 

to best feature selected for all individual use cases that are found to be considered for newly 

development. Therefore, in order to simplify the operation, the proposed system introduce 

a final block of cost estimation which is responsible for evaluating the effectiveness of 

proposed learning model. For this purpose, a block identify best learning scheme executes 

a series of available learning scheme considering global attributes of new use cases of 

software while it also facilitates the stakeholder to opt for their self-selected predictors by 

using choose prediction block. It should be noted that the output of this block is not meant 

for final user and is just meant to give a second window of validation of adopted learning 

model for benchmarking while the final predictive score is evaluated at the end of learning 

block operation itself. However, in case, of encountering a less satisfactory predictive 

performance score, it is now feasible for an evaluator to alter the attribute input in front-

end block operation and assess the final predictive score of SCE.  



Therefore, on the basis of above block operation associated with Fig.2, it can be noted that novelty 

of proposed research methodology is that it offers a simple user-defined interface that runs a 

sophisticated series of machine learning operation, which is not only novel but also less iterative 

and more progression, targeting towards computationally cost effective SCE model. 

 

6. Optimized Learning-based Cost Estimation (OLCE) 

This section elaborates about the internal operation being carried out in learning block and 

optimization block in prior Fig.2. The prime purpose of OLCE is to incorporate an automation 

towards software development as well as performing training operation for neural network 

frameworks using search-based optimization scheme. This scheme is meant for evolving the units 

of neural network along with its structure and parameters of learning in order to perform predictive 

evaluation of the stability of computing SCE. According to the proposed search-based optimization 

scheme, the scheme constructs initial set of population followed by scoring and scaling it. It further 

retains the best outcome while parents are selected in order to generate an outcome that is further 

used for scoring and scaling population. In all the above mentioned steps of operation, the scheme 

adopts three core rules in order to finetune the outcome of population viz.  

 Rule for Selection: This is the primary rule which is responsible for choosing the individual 

termed as parent that yields a revised set of population in consecutive rounds of operation. 

 Rule for Aggregation: This is the secondary rule which is responsible for generating a 

revised population by integrating two parent information. 

 Rule for transformation: This is the ternary rule which is responsible for transforming the 

single parent in order to generate a revised set of single population arbitrarily.  

The novelty of OLCE scheme are as follows: i) this scheme is capable of yielding multiple 

outcomes of population over every computation where the stopping point of iteration is confirmed 

after obtaining optimal score based on fitness function, ii) the scheme uses arbitrarily selected 

number in order to choose the next cycle of population thereby making the system quite fast 

responsive, and iii) it is capable of processing multiple evaluation function directing towards 

converging rate. In order to understand the novelty of proposed scheme, Fig.2 elaborates the 

operation of it in comparison to conventional technique. 



  

(a) Conventional Learning   (b) OLCE Learning 

Figure 3 Difference between conventional learning and OLCE 

Fig.3(a) highlights the difference between conventional learning approach using neural network 

while Fig.2(b) highlights the amended learning scheme using OLCE. A closer look into the 

topological difference in Fig.3(b) highlights that they are augmented from the conventional one 

where neural network is integrated with search-based optimization scheme. Fig.2 also represents 

an initial topology of neural network (Fig.3(a)) which after several rounds of initial iteration yields 

a final topology of OLCE that uses neural network with search-based optimization scheme 

(Fig.3(b)). The internal operation carried out towards amending the conventional topology in 

OLCE is shown in Fig.3. For this purpose, the OLCE considers loss function and network 

hyperparameter for initializing the variables for undergoing the process of amening the neural 

network training. The study considers number of neuron and rate of learning as the 

hyperparameter variable, whose initialization is considered as highly significant operation step in 

order to evaluate the performance of network during the training stage especially during applying 

rules of aggregation and rule of transformation involved in OLCE. Similarly, the optimality factor 

associated with the weight involved in learning phase and bias is determined using loss function, 

where the study consider weight as synapse genes and bias as neuron gene. It is to be noted that 

proposed OLCE scheme considers its fitness function to be this loss function while the genomes 

are considered to be synapse genes and neuron genes.  



 

Figure 4 Internal Operational flow for proposed OLCE Scheme 

After the process of initializing possible set of candidate solution, the scheme considers single 

layer of input and output when the genome is generated by the OLCE operation.  This is the prime 

reason where the genomes are found to slightly vary with respect to its bias and weight; however, 

the network topology remains all the same in initial generation of genome. Upon reaching the 

termination criterion, the system framework stops the algorithm upon evaluating the fitness value 

linked with all the genomes. In case the termination criterion is not met than the novel set of 

candidate solutions are generate using rule of aggregation among the genomes followed by rule of 

transformation among the generated population from primary implementation in prior step. All the 

above mentioned process are performed arbitrarily. An evolutionary distance between biases and 

all the set of neuron weights are computed followed by splitting the candidate solution in specific 

classes that bears certain common characteristic. This process is carried out before computation of 

fitness of synapse genes and neuron genes. An empirical expression towards computation of 

evolutionary distance Edis can be mathematically expressed as follows: 

Edis = dis1 + dis2      (3) 

In the above expression (3), the variable dis1 and dis2 represents bias and weight respectively. The 

implementation of the proposed OLCE is carried out in python environment by splitting the dataset 



into training data (80%) and testing data (20%). OLCE uses neural evolution method in order to 

perform design configuration which carries out evaluation of biases and weights from the features 

extracted from the input observation. An evolutionary scheme is used for determining the 

optimality of neural network architecture via augmentation of topology in this process. The system 

further constructs neural network using following parameters of configuration e.g. set of transfer 

function, hidden layers, and neurons at each hidden layers. For an effective analysis of proposed 

OLCE scheme, multiple transfer functions e.g. non-linear sigmoid, relu, and linear functions has 

been used in the form of transfer function. The evaluation of the fitness function is carried out 

considering reduced error rate by considering mean squared error. Further the optimization of 

fitness function is carried out using inverse roulette selection. Fig.4 highlights the augmentation in 

the considered topology for performing both the internal essential operation of neural network as 

well as its associated process of training. By initializing the set of candidate solution, the system 

begins with the augmentation of the topology using a pool of arbitrary neural network. Upon 

multiple levels of iterations (also known as generation), the proposed scheme selects an optimal 

neural network on the ground of value of fitness function, which is further subjected to rule of 

aggregation in the line of selection or decision making process. Continuation of this process leads 

to generation of neural network that upon implication of rule of transformation yields an evolved 

topology of neural network. This evolved topology is further subjected to training process. The 

complete process is iterated until the system meets the termination condition. 
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Figure 5 Yield of an Optimal Neural Network 

It should be noted that the termination criterion is essentially dependent upon the designated 

number of generation while the evaluation of a training model is carried out on each generation 

followed by performing selection of best topology in order to arrive to predicted outcome. The 

steps of implementation of the OLCE training operation are highlighted as follows: 

 Constructing a Pool of Population: This is the primary step of OLCE which is responsible 

for generating a pool of population along with a yield of arbitrary activation function and 

a set of an arbitrary neural network with neurons and arbitrary layers. The neurons as well 

as definitive number of layers are considered as an input for this process in this step along 

with set of activation function. The proposed scheme uses sigmoid, relu, and linear as 

activation function. 

 Evaluation of Population Fitness: The scheme uses mean squared error in order to measure 

the population fitness where the mean squared error of input data is considered with the 

outcome linked with set of training. 

 Choosing the Fittest Individual: The proposed scheme implements an inverse Russian 

roulette process in order to choose the individual for the purpose of repopulating. The 

probability of the selection is considered to be higher if the value of the fitness function is 



minimal. The computation of the probability of selection Probsel is carried out by following 

process: 𝑃𝑟𝑜𝑏𝑠𝑒𝑙 = 1 − 𝐸𝑖∑ 𝐸𝑖𝑛𝑖=1      (4) 

In the above empirical expression (4), the variable Ei represents mean squared error for n 

number of population. 

 Fittest network for Repopulation: This step is responsible for performing repopulation 

considering the available scores of fittest networks. The selection of the maximum fit 

individuals is carried out for all available selected population that is considered for further 

processing. The rule of aggregation is applied on these individuals followed by applying 

rule of transformation depending upon its probability. 

 Updating Network Weights: This is the final step of OLCE process where the normally 

distributed rules of transformation are used towards the network weights. This step also 

finalizes the process of generation of optimal topology of neural network while the newly 

generates networks are finally introduced to the pool of population as the updating process. 

Therefore, it can be seen that proposed OLCE scheme adopts more of conditional assessment 

towards reaching optimal state of network in order to facilitate an effective SCE, unlike iterative 

and sophisticated form of conventional learning approach. The next section discusses about the 

outcome obtained from proposed OLCE implementation. 

7. Result Analysis 

This section elaborates about the proposed scheme of SCE on the basis of neural network 

framework using OLCE approach in prior section. The evaluation process of proposed model is 

based on predicting Kilo Lines of Code (KLOC) for investigating the regression problem 

associated with cost estimation of large software projects. 

 

7.1 Strategy of Implementation 

One of the essential strategy towards implementing the proposed OLCE scheme is to perform an 

extraction of an appropriate input as well as task of feature engineering. This is accomplished using 

preprocessing operation which mainly uses normalization of data as well as correlation analysis. 

From the perspective of correlation analysis, a simplified mathematical approach is used to explore 

the linkage among numerous variables in order to find similarity among multiple cost drivers in 

SCE. The mathematical formulation of correlation Cp, q this purpose is represented as following: 



𝐶𝑝,𝑞 = ∑∆𝑝.∆𝑞√∑∆𝑝2.∆𝑞2      (5) 

In the above expression (5), the variable Δp and Δq represents (pi-p`) and (qi-q`) respectively, 

where the cost drivers are represented by variables pi and qi and mean value of cost driver is 

represented as p` and q`. The numerical score of Cp,q is considered to be within the range of [-1, 

+1]. From the above mathematical formulation, it can be noted that if the variable p is directly 

proportional to variable q than p=θ.q, where θ is a constant. In such case, the expression (5) can 

be further modified as following: 𝐶𝑝,𝑞 = ∑∆𝑝.𝜃∆𝑞√∑∆𝑝2.𝜃2∆𝑞2      (6) 𝐶𝑝,𝑞 = ∑𝜃.Δ𝑝2𝜃√(∑∆𝑝2)2      (7) 𝐶𝑝,𝑞 = 𝜃∑.Δ𝑝2𝜃∑∆𝑝2      (8) 𝐶𝑝,𝑞 = 1      (9) 

In the above expression (12), it can be seen that final value of correlation is always found to be 

unity when there is a presence of proportional cost drivers to each other. Equivalently, decreasing 

of one cost driver will lead to increase of another cost driver and in such condition the correlation 

can be stated to be -1. This is considered to be an ideal environment with two cost drivers to be 

having a perfectly linear relationship. In case there is a zero correlation than this state will depict 

its total randomness with absence of any link between two cost drivers. The plot of the same is 

shown in Fig.6. 

 

Figure 6 Plot of Correlation between cost driver and KLOC 



Further, the proposed OLCE scheme converts the input data in vector form in order to make its 

suitable towards acting as input for learning process. The usable vectors are obtained by converting 

the rows of values using feature vectorization. The scheme uses scaling method using min-max 

for carrying out the normalization of the data. Finally, the transposition of rows is carried out 

following by subjecting it to neural network. It is empirically expressed as, 𝑑𝑛𝑜𝑟𝑚 = 𝑑1𝑑2      (10) 

In the above expression (10), the variable dnorm represents normalized data while the variable d1 

and d2 represents (d-min(d)) and (max(d)-min(d) respectively, where variable d represents input 

data, which represents original cost driver rescaled in range of [0, 1] 

7.2 Dataset Adoption 

The assessment of the proposed study is carried out considering COCOMO NASA-2 dataset [52]. 

The dataset is acquired in the form of raff form consisting of multiple essential segments viz i) 

title, ii) prior usage, iii) pertinent information, iv) quantity of instances, v) quantity of attributes 

vi) information of attributes, vii) missing attributes, viii) distribution of class, and ix) data. This 

data is finally stored in .csv form. The imported dataset is now characterized by 124 entries in the 

range of [0, 123] structured within a 24 columns for both numeric and categorical form. Executed 

over conventional windows machine the scheme consumed closer to 25 KB of memory in order to 

upload the data. The study considers 25 predictors from the dataset with no missing values. The 

preliminary analysis of the dataset shows the difference between reference pairs are not always 

lower than the computed standard deviation thereby representing presence of artifacts within the 

data. Further, it was also noted that decision to rectify the outliers is dataset is considered if the 

numerical score of mean squared error and root mean squared error is quite higher than mean value 

of KLOC. It was also noted that there is prevalence of particular correlation, either positive or 

negative, with the effort parameter within observed dataset. With the decrease of parameter values, 

the effort is also found to be decreased in positive correlation while its vice-versa in negative 

correlation. According to the observation, it was found that cost drivers associated with analyst’s 

capability (acap) and programmer’s capability (pcap) are positively correlated while the 

parameters e.g. required software reliability (rely), process complexity (Cplx), data base size 

(data), time constraint for cpu (time), main memory constraint (stor), schedule constraint (sced) 

are negatively correlated. Moreover, it was noticed that effort (or software cost) is potentially 

affected due to minimal value of reusability and site attribute in dataset while performing linear 



regression. Hence, the conclusive remark of the dataset is that data point correlation associated 

with actual efforts bears the characteristic of non-uniformity. This demands an implication of 

feature engineering using proposed OLCE scheme.  

 

7.3 Result Accomplished 

As the proposed scheme is associated with applying learning approach to perform a predictive 

computation of software cost associated with the proposed scheme, therefore, the analysis of the 

outcome is assessed using 5 standard performance metric e.g. Mean Magnitude of Relative Error 

(MMRE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Predicted Cost (PC), 

and Response Time (RT). Apart from using benchmarked dataset of COCOMO NASA-2, it is 

required that proposed scheme be compared with maximum possible existing scheme in order to 

showcase its sustainability of SCE. A quick look into the historical trend shows various evolving 

approaches for this purpose. The first approach considered as existing system to be compared with 

is Logistic Regression Approach (E1) that usually performs analysis of probability of specific 

event in software engineering considering independent variables present in dataset [53][54][55]. 

The second approach considered for comparative analysis of Support Vector Regression (E2) 

which uses its supervised learning capabilities in order to computed predictive effort estimates for 

a defined case study [56][57][58]. The third approach considered is genetic algorithm (E3) which 

is basically a conventional search-based optimization algorithm which arrives to final result from 

a set of population on the basis of fitness function [59][60][61]. The fourth approach for 

comparison is the most frequently used bat algorithm (E4) which is basically a metaheuristic 

method capable of fulfilling demands of global optimization for large software global project 

[62][63][64]. The fifth and sixth approach considered in analysis is another most frequently used 

Dolphin algorithm (E5) and hybrid model of Dolphin-Bat algorithm (E6) [41]. The seventh 

approach for performance comparison analysis is currently most adopted practice of artificial 

neural network (E7) that is characterized by multiple processing elements working on predefined 

activation function in order to arrive at an elite outcome [46] 

 

7.3.1 Analysis of MMRE 

This performance metric is used for assessing the effort estimation ideal for global software 

projects which is empirically computed as follows: 



𝑀𝑀𝑅𝐸 = 1𝑁∑ 𝑎𝑒−𝑒𝑒𝑎𝑒𝑛𝑖=1      (11) 

In the above expression (11), MMRE is computed on the basis of N number of software project 

considering actual effort ae and estimated work effort we. The computation of MMRE yields a 

value to reflect the average score of error between actual effort and estimated work effort. Hence, 

lower the value of MMRE, higher is the accuracy of approaches being evaluated on it. The outcome 

of the MMRE is showcased in Fig.7 where it can be seen that proposed OLCE is found better 

comparison to all the existing approaches of SCE (i.e. E1-E7). It can be noted that performance 

for Logistic Regression (E1) as well as Support Vector Regression (E2) showcase higher ranges 

of RMSE exhibiting its unsuitability over larger global project cost estimation. The prime issue is 

associated with impractical dependency on all the variables in Logistic Regression (E1) associated 

with linearity which is never the frequent cases of global software project while the issue of 

Support Vector Regression models (E2) is found highly unsuitable for larger dataset. In contrast, 

the performance of Artificial Neural Network (E7), Dolphin Bat algorithm (E6), Dolphin 

Algorithm (E5), and Genetic Algorithm (E4) has similar performance scale with less significance 

performance difference among them. The prime reason behind this is the capability of learning 

scheme to find out effective features towards training resulting in lesser error. However, the prime 

pitfalls of all the above learning models is that its mechanism of confirming the accuracy is least 

updated and based on static attributes of dataset. On the contrary, proposed OLCE offers two 

distinguished layers of operation i.e. learning and optimization operation, where without using 

much iterative steps, more emphasis is given on feature engineering resulting in evolution of 

progressively higher accuracy score.  

 

Figure 7 Comparative Analysis of MMRE 



7.3.2 Analysis of MSE 

The prime motive of analyzing MSE is to evaluate the proximity of regression line towards 

target set of data points. An empirical formulation considered for this purpose is, 𝑀𝑆𝐸 = 1𝑁∑ (𝑎𝑒 − 𝑤𝑒)2𝑛𝑖=1      (12) 

In the above expression (12), the computation of MSE is carried out on similar variables as that of 

MMRE where the idea of this evaluation is to showcase the effectiveness of optimality of learning 

models. From Fig.8, it can be seen that nearly similar trends of results for both regression approach 

(i.e. E1 and E2) is witnessed. However, MSE for Artificial Neural Network (E7) is found superior 

to that of Genetic Algorithm (E3), bat algorithm (E4), and two variants of dolphin algorithm (i.e. 

E5, E6). Fig.8 eventually showcase that OLCE scheme offers better predictive accuracy by 

harnessing the potential of Artificial Neural Network (E7) and Genetic Algorithm (E3). The 

novelty is that although OLCE retains legacy benefits of E7 and E3 models, but still it incorporates 

a second layer of validation and updating the predictive outcomes after the optimization is 

performed. This is not witnessed in any existing schemes. 

 

Figure 8 Comparative Analysis of MSE 

7.3.3 Analysis of RMSE 

The evaluation of RMSE is carried out in order to furnish more interpretable inference compared 

to MSE. The computation of MSE involves squaring of LOC2 where LOC is lines of codes 

involved in software project, however, the values of MSE is quite challenging to interpret 

sometimes. Empirically, the computation of RMSE is carried out as follows, 𝑅𝑀𝑆𝐸 = √1𝑁∑ (𝑎𝑒 − 𝑤𝑒)2𝑛𝑖=1      (13) 



Similar variables used in computation of MSE is also used here for RMSE evaluation to arrive for 

a graphical trend shown in Fig.9, where more granular information and interpretation can be 

arrived. The graphical outcome shown in Fig.9 exhibits that there is only a slight difference in 

performance of Logistic Regression (E1) and Support Vector Regression (E1) unlikely that of 

MSE with significant difference. This exhibit non-applicability of both these models in SCE 

evaluation. Another obvious trend observed is that of two set of models with distinction. The first 

set of existing models (i.e. Dolphin model (E5), Dolphin bat model (E6), and Artificial Neural 

Network (E7)) shows distinctive difference with the second set of existing models (i.e. bat 

algorithm (E4) and Genetic Algorithm (E3)). It also infers that hybrid version of dolphin model 

i.e. E6 is not much significantly different from legacy version of Dolphin model i.e. E5. Similarly, 

applying conventional genetic algorithm (E3) couldn’t yield to higher accuracy in contrast to 

conventional optimization model of bat algorithm (E4) owing to usage of static assumption in 

formulating fitness function. On the contrary, proposed scheme of OLCE is witnessed to 

significantly score higher accuracy owing to inclusion of progressive optimization steps linked to 

adaptation operation in learning block of proposed architecture. 

 

Figure 9 Comparative Analysis of RMSE 

7.3.4 Analysis of Predictive Cost 

This performance metric is used for analyzing the accuracy of predictive cost model. According 

to this concept of evaluation, the proposed scheme considers a milestone point x, which is well-

defined point of accuracy and the idea of this evaluation is to find out if the predictive accuracy 

falls under the range of x%. Mathematically, the Predictive Cost PC is expressed as follows, 



𝑃𝐶 = 1𝑁∑ |𝑒𝑒−𝑎𝑒𝑎𝑒 | 𝑥%𝑛𝑖=1       (14) 

In the above expression (14), the system considers x% as the percentage of error existing between 

actual effort ae and estimated effort ee while the computation of Predictive Cost (PC) is 

represented in the form of percentage of quantity of software project whose threshold for cost 

overrun and under is considered hypothetically to be 20% and 30% respectively. These values can 

always be amended if the domain of the software project is found to be different. This can be 

carried out through the common interface module constructed in the front end handled by the 

estimator/stakeholder of software projects. Computed values of PC is shown in Fig.10 where it 

can be seen that proposed OLCE has excelled with superior accuracy compared to all existing 

scheme frequently adopted for SCE. A closer look into the trends of model will show the outcome 

in agreement with error computation shown in MMRE, MSE, and RMSE. The unsuitability of 

Logistic Regression (E1), Support Vector Regression (E2) and Genetic Algorithm (E3) is shown 

to be quite higher due to potentially reduced PC values. Whereas, the suitability of remnant 

existing approaches (i.e. E4, E5. E6, and E7) is good enough. However, proposed OLCE 

operational beneficial are potentially more to overcome the limitations of all these approaches with 

respect to accuracy towards predictive evaluation. 

 

 

Figure 10 Comparative Analysis of Predicted Cost 

7.3.5 Analysis of Response Time 

This performance metric of response time is basically responsible for assessing the computational 

burden while performing the predictive operation of OLCE. Lower the response time, the model 



can be stated to perform efficiently without much computational overburden. The mathematical 

expression deployed to compute response time is as follows, 𝑅𝑇 = 1𝑆 [𝑇1 + 𝑇2 + 𝑇3]      (15) 

In the above expression (15), the computation of the response time is carried out considering three 

temporal attributes i.e. i) time consumed for data processing and normalization T1, ii) Time 

required for execution of learning block of operation T2, and iii) Time required for optimizing and 

validating T3. Deployed in conventional 64 bit windows machine, without any external threads 

running, the programmatic computation of overall time shows that proposed OLCE scheme offers 

quite a faster response in seconds while other conventional process is found to consume a higher 

ranges of time. One of the justified reason behind this is almost all the existing approaches has 

inclusion of higher number of iterative steps in order to perform computation of cost estimates 

whereas proposed scheme addresses this computational burden by emphasizing more on feature 

extracting and enhancing them in due course of learning thereby offering better convergence 

performance. Apart from this, proposed scheme has a separate blocks of optimization unlike any 

existing scheme where conditional assessment towards the convergence of target outcome is 

rendered quite faster due to adaptation of learning weights and biases. This offers more balance 

between achieving error minimization over reduced period of time. Hence, the proposed scheme 

excels better response time and is capable of handling large scale and dynamic information 

associated with estimating cost for software projects with consideration of uncertainty in it, unlike 

any existing scheme. 

 

Figure 11 Comparative Analysis of Response Time 



8. Conclusion 

This paper has discussed about the challenges involved in estimating cost of software projects, 

which is found to be yet an unsolved problem irrespective of various archives of solution present 

in literatures. Upon reviewing the existing literatures, it is found that there are open-end issues 

related to the topic viz. non-inclusion of dynamicity in dataset, processing complexity, less 

emphasis on consistency, and narrowed evaluation scope. Apart from this, the most significant 

concern is absence of benchmarked model towards cost drivers and lack of precise and suitable 

system to carry out accurate estimation. This paper contributes towards introducing a novel 

learning-based approach in order to perform predictive computation of SCE associated with large 

global software projects. The contribution of the proposed study are as follows: i) the proposed 

study evaluates the effectiveness of the existing literatures with potential contribution to find that 

machine learning-based approaches have higher scope towards cost estimation whereas other 

research methodology still encounters problems with applicability to complex environment, ii) 

different from existing learning schemes where the dataset is directly applied to learning model, 

the proposed OLCE scheme makes a discrete multiple blocks of operation with defined operation 

which offers higher accountability and transparency towards SCE, iii) The integration of multiple 

block operation (front-end, learning, dataset, optimization, cost estimation) are carried out in such 

a way that they reduces the iterations and becomes more progressive enough to balance both 

accuracy demands as well as computational efficiency, which is overlooked in existing 

approaches, iv) the novelty of proposed scheme is to introduce a hybrid SCE model which 

harnesses the potential of artificial neural network as well as search-based optimization for 

developing adaptable learning scheme as well as optimization scheme respectively, and v) 

benchmarked with standard COCOMO NASA-2 dataset, the quantified outcome of proposed 

scheme revealed that proposed system exhibits 44.80% of lower MMRE, 99.96% of reduced MSE, 

76.15% of reduced RMSE, 49.90% of increased predictive accuracy, and 50% of faster response 

time in contrast to existing scheme. The future direction of work will be carried out towards further 

optimizing the outcome with more emphasis towards constraint modelling. 
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