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Abstract Condorcet-compatible election methods are examined and com-
pared. The Ranked Pairs method proves significantly better than Beatpath;
that both are clone-free, and have other desirable properties, makes them much
better than any alternative.
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1 Introduction

Grant we wish to elect a single candidate out of many, using a ranked-choice
ballot and a Condorcet-compatible election method. What is the best way to
decide the rare election when no Condorcet winner appears?

The most general form of a ranked-choice ballot allows a voter to assign
each of the N candidates any integer rank from 1 to N . The voter is deemed
to prefer any candidate he has given a higher rank to any candidate he has
given a lower. Candidates can have ranks in common; if two candidates have
the same rank, the voter is deemed to prefer neither candidate to the other. A
voter need not rank all the candidates; candidates left unranked are deemed
to have been ranked as equal last.

We say that the voters prefer candidate A to candidate B if the ballots
show that more voters prefer A to B than prefer B to A; when this happens we
say that candidate A has won his contest against candidate B in a competition
for the voters’ regard. As in a round-robin sports tournament, it is natural to
declare that a candidate who wins his contests against each of his rivals is the
overall winner, and should be elected. Such a candidate is called a Condorcet
winner [2][3], and a system of elections that always elects a Condorcet winner
when there is one available is called a Condorcet-compatible method.
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Also as in a round-robin sports tournament, in which no contestant might
defeat each of his fellow competitors, in an election with ranked-choice bal-
lots no candidate might be preferred by the voters to each of his rivals. A
Condorcet-compatible method that in every possible race declares a single
winner needs a tiebreaker to decide such cases.

So rare1 are these cases that there is little practical difference between using
the best possible tiebreaker or any merely adequate tiebreaker; the behavior of
candidates, voters, and factions will not be materially affected by the chance
a case will occur. Rare problems are still problems, however; and the best of
the tiebreakers proves to be Ranked Pairs [11].

When there is no Condorcet winner among three candidates, Condorcet
himself proposed [4] a tiebreaker: elect the candidate who lost a contest by the
smallest margin. Most2 Condorcet-compatible methods, however various their
principles, have for three candidates their tiebreaker reduce to Condorcet’s.

2 Advantages of Ranked Pairs

2.1 Intuitive and easy execution of the method

The rationale of Ranked Pairs is that a contest whose margin is large should
outweigh a contest whose margin is small.

Consider a completely tangled, four-candidate election with no Condorcet
winner, one for example [8] with the ballots

ACDB 3
ADBC 5

BACD 4
BCDA 5

CADB 2
CDAB 5

DABC 2
DBAC 4

Begin by constructing a table of the results of all the different contests,
with the winning margins sorted in order from largest to smallest,

D beat B by 12 C beat D by 8 A beat B by 4
B beat C by 10 A beat C by 6 D beat A by 2

Any ranking of all four candidates must have some losers of these contests
above some winners; Ranked-Pairs makes such an inversion occur only when
its margin is smaller than any that contradict it, and runs as follows.

The largest margin (12) in the table fixes that in the final ranking that D
will rank ahead of B. We write all 24 possible rankings of the candidates,

ABCD ACDB BACD BCAD CABD CBDA DABC DBCA

ABDC ADBC BADC BDAC CADB CDAB DACB DCAB

ACBD ADCB BCAD BDCA CBAD CDBA DBAC DCBA

1 The 300 (mostly municipal) elections in the United States before 2021 in which ranked-
choice ballots have been used, and for which the number of every possible type of ballot
has been recorded, show zero cases. Computer simulations of elections that have been used
to show that such cases should be relatively common have been numerically accurate but
based on the unrealistic hypothesis that voters choose among possible ballots at random;
for a discussion, see Munger 2021, paper C, pp. 25–26; and paper D, pp. 8–19.

2 See Munger 2021, paper C, Tables I and II on p. 2.
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and drop all those where D does not rank ahead of B, leaving

· · · ACDB · · · · · · · · · · · · DABC DBCA

· · · ADBC · · · · · · CADB CDAB DACB DCAB

· · · ADCB · · · · · · · · · CDBA DBAC DCBA

The next largest margin (10) fixes that B will rank ahead of C, and we drop
those remaining where B does not rank ahead of C, leaving

· · · · · · · · · · · · · · · · · · DABC DBCA

· · · ADBC · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · DBAC · · ·

The third largest margin (8) suggests that C should rank ahead of D, but
if we dropped all the remaining rankings where that was so, none would be
left, so we ignore the contest where C beat D, and pass on to the next. Here
is where a smaller margin (8) is not permitted to overturn the earlier larger
margins (of 12 and 10) that it contradicts.

Fixing the results of the next three contests is straightforward, and at the
end only the ranking DABC is left. Candidate D heads it, so D is the Ranked
Pairs winner. Finding the Beatpath rank order (here ADBC) is not as easy3.

2.2 Freedom from influence by clones

In any collection of ranked-choice ballots a set of candidates forms a clone if on
every ballot no candidate outside the set is ever ranked between any members
of the set. Any one candidate belongs to a set forming a clone where that
candidate is that set’s single element.

For any given number of ballots, suppose that whether some candidate or
other within a clone is elected is independent of the number of candidates
who might belong to any clone. In detail, in any election the ballots cast can
be altered to add and subtract candidates to any existing clone, provided the
number of candidates in a clone remains at least 1, and then the election
outcome cannot change except to replace the original winner by one of the
candidates who have been part of his clone. An election system with this
property is free of any influence by clones.

Such a system is highly desirable. Consider an election where all candidates
belong to various political parties, and where voters have strong preferences
about the party to whom the candidate elected should belong, but weak pref-
erences about who within each party should be elected. In such a system, the
party of the candidate who shall be elected is independent of how many can-
didates run to represent each of the parties: then a cause does not founder if
multiple candidates seek to lead it, and no cause gets an advantage if multiple
candidates seek to lead another; and the policy outcome of an election cannot

3 For a comparison see e.g. Munger 2021, paper A, pp. 24–25.
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be manipulated by an individual choosing to run or not run whom the voters
consider essentially fungible with another candidate already in the race.

Of all Condorcet-compatible methods, Ranked Pairs and Beatpath [8] alone
are free of influence by clones. Other tiebreakers falling behind both of these by
this and other criteria4, Beatpath emerges as Ranked Pair’s chief competitor.

2.3 Simple means decide most elections

The outcome of an election should be immediate and comprehensible. A mul-
ticandidate election almost always has a Condorcet winner, and so when a
Condorcet-compatible method is used the answer to the question, “Why was
Mary elected, and not John?” is almost always as simple as, “More voters
preferred Mary to John, than preferred John to Mary.” When there is no Con-
dorcet winner, it is helpful if we can decide an election by applying a method
to a small number of candidates easily identified as potential winners, and not
to all the candidates at once.

The Smith set is the smallest nonempty set of candidates each of whom
wins a contest against any candidate not in the set, and fails to win a contest
against some candidate within the set.

Suppose an election method has a rank order with three properties:
(1) The candidates in the Smith set form the first candidates in the rank

order.
(2) The order of the candidates in the Smith set doesn’t change when all

candidates not in the Smith set are dropped.
(3) The order of the candidates not in the Smith set doesn’t change when

all candidates in the Smith set are dropped.
If only (1) and (2) are true, then we can find the election winner just by

applying the method only to the candidates in the Smith set; if that Smith set
has n candidates, we can similarly find the rank order of the first n candidates.

If (3) is also true, we can drop those n candidates from the election, and
what results is a new, smaller election; we can find its Smith set and find where
a few more candidates fall in the rank order behind the ones whose positions
we already know. Repeating this process, we find a succession of Smith sets,
each of which belongs to an election with a smaller number of candidates; if
each successive set is small, we can find the entire rank order easily.

Moreover, if the entire rank order is printed with gaps between the members
of the successive Smith sets, we can immediately tell most of what would
have happened had scattered sets of candidates not run. If a complex rank
order came out ABC·D·E·FGH·I·JKL, then if candidates B, E, H, and J

had not run, we can at once tell that the new rank order would have been
CA·D·FG·I·KL for any method that follows (1) and (2) and uses Condorcet’s
tiebreaker to rank three candidates. When one of the successive Smith sets
has 4 or more candidates and some candidates from it drop, we at worst have

4 For a discussion of these other criteria see Munger 2021, paper C.
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to re-run a method among candidates within that set, paying no attention to
any outside.

Property (2) holds for any system that is independent of Smith-dominated

alternatives, or ISDA; Kemeny-Young [6][14], Ranked Pairs, and Beatpath are
all ISDA [12]. Properties (1) and (3) hold for these systems too5; Kemeny-
Young and Ranked Pairs because they have limited independence from irrel-

evant alternatives, and Beatpath, though it does not, for its own structural
reason.

For these methods if we have 15 candidates running, and inspection of
the victory matrix6 shows there are 3 candidates in the Smith set, we can
correctly decide to find out who wins by examining the election had only the 3
candidates run, not all 15. If the closest any candidate not in the Smith set
came to tying a candidate in the Smith set is to trail by 1000 votes, that
decision need not be revisited unless we later discover at least 1000 votes had
been missing.

Rank orders in these methods can disagree only on the order each imposes
on the candidates within one of the sequence of Smith sets, not about the
relative rank of candidates who belong to different sets in that sequence. Since
the rank orders for the various methods agree for 3 candidates, the rank orders
for the methods can disagree if and only if one of the sequence of Smith sets
has more than 4 candidates. So to explore differences between these methods
we can pay attention to the critical case where there are 4 or more candidates
in the initial Smith set of the sequence, when who will win is in dispute.

We can now discard Kemeny-Young from contention because even in this
case it will not be clone-free7. Ranked Pairs now proves to have a number of
advantages over Beatpath.

2.4 Simple means check all elections

Suppose there are n candidates in the Smith set; we can record all the infor-
mation about these candidates in a victory matrix, where the entry in row A

and column B is the number of ballots on which candidate A is preferred to
candidate B, minus the number of ballots on which B is preferred to A; the di-
agonal elements are meaningless and be omitted. For the election in section 2.1

5 For a proof see [reference to an electronic publication by the Journal of Constitutional
Law].

6 Sorting the candidates in the N ×N victory matrix so that the candidates in the Smith
set are instantly seen by the eye is a process that is at worst O(N2), where N is the number
of candidates [5][13].

7 Also no algorithm is known to find the Kemeny-Young rank order in a Smith set in a
time polynomial in n, so the method can become unworkable for tens or scores of candidates.
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the victory matrix is









A B C D

A · · · 4 6 −2
B −4 · · · 10 −12
C −6 −10 · · · 8
D 2 12 −8 · · ·









This falls into the common case when all the elements above the diagonal
are different and none are zero, the case when the Ranked Pairs algorithm
runs without having to resolve some sort of tie. Consider the two rank or-
ders D>A>B>C, and A>D>B>C, one of which is the Ranked Pairs rank
order. We can tell which is not as follows.

For each rank order, in a copy of the victory matrix mark the element in
row A and column B if in the rank order A is ranked ahead of B. We find for
the respective rank orders









A B C D

A 0 4 6 −2
B −4 0 10 −12
C −6 −10 0 8
D 2 12 −8 0









and









A B C D

A 0 4 6 −2
B −4 0 10 −12
C −6 −10 0 8
D 2 12 −8 0









Now from each copy list the marked elements from high to low; we find

for D>A>B>C [12, 10, 6, 4, 2,−8]

for A>D>B>C [12, 10, 6, 4,−2,−8]

The first position, working left to right, where the lists differ will have one
element less than the other. That rank order, here A>D>B>C, is thereby
proven not to be the rank order for Ranked Pairs.

More generally, this scheme of comparing lists sorts the n! possible rank
orders into an ordered list with the Ranked Pairs rank order at the head of it.
Compare the lists for any two rank orders; the one with the greater element
has the rank order that is closer to the head of the list. The scheme generalizes
to set up an ordered list of all rank orders even in the case that the Ranked
Pairs algorithm does encounter ties8.

In the common case any voter, without doing even one addition, can see if
a proposed rank-order proves some officially announced rank-order wrong—or
vice versa. All he needs is two copies of the victory matrix, a matrix which an
official tasked with the canvas of the ballots and with choosing a winner must
compute anyway, and which the official should therefore be required to make
public; and a copy of whatever rank order is offered in challenge.

A voter relies of course on the election official having correctly scanned
and processed all the ballots to get the elements of the victory matrix. But

8 For proofs in all cases of the sorting of rank orders into an ordered list, see Munger 2021,
paper D, section X, pp. 24–28.
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the element AB is simply the number of votes by which A would lead B in a
two-candidate race decided by simple majority, merely using the ranked-choice
ballots to tell if a given voter would then vote for A, or for B; that number
is not any harder to understand or to audit than under our present system of
election by plurality.

Beatpath is not known to have anything like so simple a structure as sorting
all possible rank orders into a list. Beatpath does have a check-system, but
one has to at least9 search among all possible paths in an n-vertex graph
to find particular directed paths, called chains; and add numbers along each
edge belonging to a chain; and then compare the resulting sums for various
chains. This is not something most voters could do or understand, and becomes
impossible for even sophisticated voters to do on paper at modest values of n.

For a Smith Set of size n the best computer algorithm finds a rank order
under Beatpath in a time, independent of input, proportional to n3. Under
Ranked Pairs the time in the worst case scales as n3 (but still marginally
faster than Beatpath); but on average the time is much less, and empirically
scales as n2 as far out10 as n = 1000. Real elections use values of n so small
that the time to decide an election using either method will overwhelmingly
be dominated by the time to scan paper ballots and to construct the victory
matrix, and not by what either method does with the victory matrix thereafter.

2.5 Informative and sensible rank order of candidates

Elections are not solely about choosing one candidate for office; they are (or
should be) reliable measures of what candidates and causes have risen and
fallen in voters’ esteem: on one election day, and over many. A ranked-choice
election records in its ballots an extraordinary amount of information, but
some way to make it comprehensible must be found. Most systems of election
report not only a single winner but a rank order, a list of all the candidates
from first to last, with the candidate they declare elected at the head.

Plurality too provides such a list; but one cause can lead and another trail
not because the first cause has more support, but because the second cause
had been represented by many candidates. So for a method to provide a list
is easy; making it mean something is hard.

For most elections, those in which each set in the succession of Smith sets
has but one element, any Condorcet-compatible method provides a rank order
that means exactly what it seems to mean: if any set of candidates had not run,
the rank order of the candidates remaining would not change. It is therefore
inevitable that the press and pundits will use the list to draw such inferences;
but it has been proved impossible [1] for any reasonable election method to
have those inferences always be correct. Fortunately methods with the three
properties in section 2.3 come close; for these, dropping a candidate can only

9 See Munger 2021, paper C, pp. 12–15 for an analysis.
10 When the work to sort the pairs ultimately dominates, the time will scale as n2 lnn.
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affect the order within the block of candidates who belong with him in a set
in the sequence of successive Smith sets.

Whence does the candidate who was placed first in a rank order by a given
method derive the moral authority to be declared elected? If he is deemed
to be the best, even by a narrow margin, on some absolute scale, then it
should follow that if every voter’s preferences had been reversed, he would
have to deemed the worst; and the second-best candidate would be deemed
the second worst, and so on. The rank orders given by Ranked Pairs and
Beatpath (and Kemeny-Young) have that property; but not those from all
Condorcet-compatible methods.

True, to find the candidate who is the best on an absolute scale may not
be the goal of every election system; a system might be intended instead to
find the candidate who is the compromise acceptable to diametrically opposed
factions; and in such a system, the same candidate might emerge as the com-
promise if all the voters’ preferences had been reversed and so the factions
in effect switched places. But to abandon finding the best candidate on an
absolute scale, just because an election is nearly tied, is not what I believe
most voters desire.

If the order of candidates is to have something to do with merit, then if the
candidate who placed first had not run, then the candidate who placed second
should have won. Kemeny-Young and Ranked Pairs have that property, but
Beatpath fails it in the worst possible way; the candidate who placed second
can become ranked last of the remaining candidates11.

In Ranked Pairs and Kemeny-Young, by contrast, the deletion of any con-
tinuous block of candidates in the rank order that starts with the first candi-
date (or with the last, or both) would not change the order of the candidates
that remain.

Despite their differences the Ranked Pairs, Beatpath, and Kemeny-Young
methods are intimately related. Ranked Pairs and Beatpath can be viewed
as approximations intended to adhere closely to the Kemeny-Young result
except when in a large fraction of the ballots a set of candidates appears as a
clone12. But Ranked Pairs preserves this useful property of the method that
it is approximating, while Beatpath does not; so the rank order from Ranked
Pairs is not only the more useful but the more natural.

2.6 Short definition that covers all cases

The example of Ranked Pairs in section 2.1 does not settle how to choose a
single rank order if any of the possible exact ties occur. An implementation of
Ranked Pairs that does, declaring a single winner and a single rank order for

11 The victory matrix in section 2.3 represents an election that has the Beatpath rank
order A>B>C>D, yet if A drops, the new rank order is D>B>C.
12 See for example Munger 2021, paper A, pp. 22–26.
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every election even when the most general form of a ranked-choice ballot is in
use, can be described in 320 words13.

3 Conclusions

Of all the Condorcet-compatible methods known, only Ranked Pairs and Beat-
path are clone-free, so only for these is the outcome of an election proof against
being manipulated by the deliberate or accidental running of candidates whom
voters consider fungible compared to a candidate already in a race. Of the two,
Ranked Pairs has the more useful, intelligible, and meaningful rank order; for
small numbers of candidates, its rank order is the one more easily found us-
ing pencil and paper; and for so many candidates that finding a rank order
requires a computer, under Ranked Pairs it remains possible to check with
pencil and paper and no arithmetic which of two proposed rank orders has
to be wrong, while for Beatpath that is not possible. Ranked Pairs therefore
emerges as the best and most practical of the Condorcet-compatible methods.
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4 Appendix: Proof of (1) and (2) from section 2.3

4.1 For Kemeny-Young and Ranked Pairs:

An election system that has limited independence from irrelevant alternatives

has the property (among others) that any continuous block of candidates that
starts at the top of the rank order can be dropped, and the order of the
remaining candidates is unchanged.

Suppose for a system that is ISDA and has that property that (1) were not
true; we shall reach a contradiction. Let there be n candidates in the Smith
set; by assumption, there must be at least one candidate among the first n in
the rank order who is not in the Smith set. Call the first such candidate X.
If X is not at the head of the rank order, then using the property we can drop
a block of as many candidates as we need to get a new election that has X

at the head of the rank order, with the order of all the remaining candidates
unchanged. Since that block must have fewer than n candidates, a set of at
least one of the n candidates from the original Smith set must be part of this
smaller election. A subset of this set must be the Smith set of the new election;
and that Smith set cannot be empty, because there is at least one candidate in
it who wins his contests against all the candidates remaining; and X cannot
be in it, because all the candidates in it win their contest against X. Thus we
have constructed a smaller election where the deletion of X, a candidate not in
the Smith set, changes the winner of the election. No such election can exist for
an election system that is ISDA, so we have reached the desired contradiction.

Now that (1) is known to be true, (3) follows, because the property allows
the n candidates in the Smith set, now known to be the first n in the rank
order, to be dropped without changing the order of the candidates that remain.

4.2 For Beatpath:

The Beatpath method depends on a directed graph of an election; each can-
didate is identified with a vertex, and an arrow connects each candidate with
each other; the arrow points from candidate A to candidate B if A wins his
contest against B, and each arrow is labeled with the margin by which that
contest is won14. A chain between A and B is a path from A to B that follows

14 For a contest that ends in a tie, the direction of the arrow is chosen by some exogenous
mechanism.
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the arrows, visiting each of the other vertices at most once. The strength of
a chain is the smallest margin labeled on any arrow the chain includes. The
strongest chain from A to B is the chain from A to B that has the greatest
strength of all such. Under Beatpath, a unique rank order of the candidates
follows from asserting:

In the rank order of candidates, candidate A will precede candidate B if

the strongest chain from A to B is stronger than the strongest chain from B

to A.

Candidates fall into two groups: those inside the Smith set, and those
outside. No chain exists that connects a candidate outside the Smith set to
any inside; every arrow from a candidate outside to one inside runs in the
wrong direction. So if A is inside, and B is outside, there is always a chain
from A to B, but never a chain from B to A; and so A must precede B in the
rank order. Therefore all the candidates in the Smith set precede in the rank
order all the candidates not in the Smith set, and we have (1).

A chain that starts at a candidate in the Smith set cannot pass through a
candidate not in the Smith set, and return to another candidate in the Smith
set; one arrow on the return must point the wrong way. Similarly a chain
cannot start at a candidate not in the Smith set, pass through a candidate in
the Smith set, and return to another candidate not in the Smith set; one arrow
on the outward pass must point the wrong way. The problems of finding the
rank order of candidates within the Smith set, and of finding the rank order
of candidate outside the Smith set, are therefore disjoint, and can be solved
for separately; and we have (3).


