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Abstract
Methylmercury is a high bioaccumulated pollutant persistent in the aquatic environment, that
biomagni�es in the food web reaching concerning levels in predator �sh. Mining is one of the most
important economic activities of Latin America and the Caribbean, and a relevant global anthropogenic
mercury emission. Studies have correlated high �sh consumption with higher levels of MeHg in humans
along with neurotoxic effects. Latin America occupies one of the top 3 regions with the highest �shery
exploitation and aquaculture production, and simultaneously, it has been reported in several Latin
American and the Caribbean country’s high levels of mercury in marine and freshwater �shes, and in
human hair associated with �sh consumption. Therefore, this review seeks to assess the risk of mercury
exposure and consequently health hazard due to �sh consumption in Latin America and the Caribbean.
The data of mercury levels in �sh and �sh consumption rates was searched from all countries in Latin
America and the Caribbean. A large data set was created evidencing a concerning presence of
methylmercury in �sh that are widely consumed. The 6.1% of the total �sh species studied were found to
have concentrations of MeHg ≥ 1.5 µg g− 1 dw, independently of the water habitat these were mainly
carnivore species, which is recommended to not consume. Furthermore, high risk values (HQ ≥ 1) were
estimated in Peru and Venezuela, and even higher-risk values (HQ ≥ 10) were estimated in some �sh
species inhabiting watersheds in Trinidad. The recommendation is to lower the consumption of this kind
of �sh species or to avoid mercury pollution.

Introduction
The metallic element mercury (Hg) in its different chemical forms is widely distributed in the environment.
It is found in all kinds of ecosystems due to its many natural sources such as volcanic emission, soil and
rocks erosion, wild�re, but also due to anthropogenic activities such as fossil fuel burning and mining
extraction (Pirrone et al., 2010). Aquatic ecosystems are one of the most relevant for the Hg cycling from
the atmosphere due to its methylation carried out by microorganisms in aquatic sediments, giving rise to
methylmercury (MeHg), an organic form of Hg with higher toxicity

MeHg is persistent in the environment, reaching between 10–30% of the total Hg (THg) in the aquatic
environment(Mason et al. 2000) and its bioaccumulation occurs through the food chain. In fact, more
than 85–90% of the Hg in �sh is MeHg and its concentration has shown to be correlated with the trophic
position, age, and size (Grieb et al. 1990; Southworth et al. 1995). Therefore, humans are susceptible to
MeHg´s harmful effects by the intake of MeHg through �sh (Rice et al. 2014; Lee et al. 2020; Guzzi et al.
2021), particularly those predator species with the highest trophic position in the food chain (Langeland
et al. 2017).

Top predator �sh are found to have very high THg levels (EPA’s contamination level 0.46 µg g− 1 wet
weight or 1.5 µg g− 1 dry weight) (Lasut et al. 2010; Esdaile and Chalker 2018). Latin American and the
Caribbean produced 18% of global anthropogenic Hg emissions, of which small scale gold mining
contributed 70% (340 t out of 2,220 t). In 2015, South America alone accounted for 53% of the estimated
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1,220 t of Hg released globally from small scale gold mining to aquatic and terrestrial environments (UN
Environment 2019; Canham et al. 2021).

In addition, Latin American and the Caribbean occupies one of the top 3 regions with the highest �shery
exploitation and aquaculture production (FAO 2020). Indeed, it has been reported signi�cant mercury
concentrations in marine and freshwater �sh, and in human hair associated with �sh consumption in
several Latin American and the Caribbean countries (Langeland et al. 2017; Bravo et al. 2019;
Valdelamar-Villegas and Olivero-Verbel 2020).

Neurotoxic and motor skill effects in humans have been related to high MeHg concentration
accumulation (≥ 1 µg g− 1 dry weight; dw) (ATSDR 1999; Guzzi et al. 2021). One of the most well-known
cases is the Minamata disaster in the 50’s at Minamata Bay in Japan, where there was a high scale
poisoning with �sh and sea food contaminated with MeHg. This compound was generated as a by-
product in reaction chambers for manufacturing acetaldehyde and discharged directly to the bay
accumulating in �sh and seafood that later was consumed by the local inhabitants. The intake of
contaminated marine products produced a syndrome called Minamata Disease, consisting in sensory
disturbance in the extremities, ataxia, disequilibrium, bilateral concentric constriction of the visual �elds,
impairment of gait and speech, muscle weakness, tremor, abnormal eye movement, and hearing
impairment. Mental disorder and disturbances of taste and smell are also present occasionally (Eto 2000;
Hachiya 2006). Besides this high exposure levels to MeHg, chronic exposure to lower levels can cause
hepatic diseases and reproductive toxicity (Tan et al. 2009; Rice et al. 2014). In 2013 the Minamata
Convention was created and adopted by 137 countries until today, of which 20 are countries from Latin
America and the Caribbean (Hachiya, 2006). Therefore, it is of major importance to implement a risk
assessment method that can be applied in decision making and in the generation of environmental
regulations in vulnerable countries such as those of Latin-American and the Caribbean. This literature
review and meta-analysis seeks to assess the risk of Hg exposure and consequently health hazard due to
�sh consumption in Latin America and the Caribbean by collecting available data from these countries
regarding Hg levels in �sh and �sh consumption rates in each country.

Methods
Literature review

A literature search on peer-reviewed journal articles and published reports documenting Hg
concentrations in �sh in Latin America and the Caribbean countries was conducted. Studies published
from 2010 until 2022 were selected, with some exceptions of countries where the data were only before
2010. The search was performed in Web of Science and Google Scholar using all combinations of the
following keywords: “mercury,” “�sh” AND “Latin America”; “mercury”, “human” AND “Latin America”;
“mercury”, “�sh” AND “country” (every Latin American and the Caribbean country separately)”; and
“mercury”, “human” AND “country” (every Latin American and the Caribbean country separately)”.
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Data was classi�ed by country, site (GPS), habitat (marine or freshwater environment) and �sh diet
(Supplementary Table S1) by �sh species. In addition, the Hg species measured (THg and/or MeHg) and
the analytical methods used were also considered in the classi�cation.

Mercury risk assessment
The data was �ltered by (1) �sh species that are consumed by humans, and (2) Hg concentration
quanti�ed in muscle that corresponds to the most consumed �sh tissue.

Additional data was necessary to determine the level of health risk in the population of each country.
Average body weight for adult females (BWF) and males (BWM) from each country was obtained from
Eglitis dataset (Eglitis 2021) and average �sh consumption per country and per day (FCR) was obtained
from the FAO report (FAO 2020) (Supplementary Table S1).

The Target hazard quotient (THQ) is a non-carcinogenic index that assesses the health risk from food
consumption by residents and is calculated by equation (Formula 1) (Felix et al. 2022).

 (Formula 1)

Where EF is the exposure frequency (365 days/year). The factor ED is the total duration of �sh
consumption (average human life 70 years), FCR is the �sh consumption rate (g per day), CHg is the

mercury concentration expressed as (µg g− 1 wet weight), BW is human body weight (Kg), AT is the
average time of food consumption (EF x 70 years), and RfD is the oral reference doses as (0.001 mg per
Kg per day) (EPA 2011).

Recommendations for �sh consumption (avoid, keep and encourage consuming) were based on the work
done by Vieira et al. 2021, and the following equation (Formula 2):

 (Formula 2)

For the size of the �sh meal the 2015–2020 Dietary Guidelines for Americans who recommend at least
226.8 g of �sh per week based on a 2000 cal diet was used (Dietary Guidelines Advisory Committee
2015), and a body weight (BW) was based on the adult population average speci�c by country and
human sex (BWF: female and BWM; male).

Data analysis
The data are presented as MeHg concentration mean ± SD (µg g− 1 dw). Due to Shapiro-Wilk’s test
determined a non-normal distribution of the data, non- parametric statistical tests were used to estimate
statistical differences (p = 0.05). Kruskal-Wallis and Dwass-Steel-Critchlow-Fligner pairwise comparison
tests were employed to determine the mean differences in MeHg concentrations among trophic levels,
habitat type (marine or freshwater), and countries (Supplementary Table S2).

THQ = × 10−3EF×ED×FCR×CHg

RfD×BW×AT

MPW =
(RfD×BW )×7days

(Fishmealsize(g)×CHg)/1000
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A subsample corresponding to the highest quartile of distribution based on the mercury content was used
to visualize the frequencies of habitat type (marine or freshwater) and diet preferences (carnivores,
detritivores, herbivores, or omnivores) within the �sh species. With these classi�cations a Sankey plot
was built (Fig. 1) using the Sankey Network function from the networkD3 R-package (Allaire et al. 2017).

To compare the risk (HQ) differences between human sex (female and male population), a Mann-Whitney
test was performed (Supplementary Table S3). To observe the geographic distribution of the Hg exposure
risk by �sh consumption among inhabitants of Latin America and the Caribbean countries, the obtained
risk values for women and men were mapped using the geographic coordinates reported in the respective
paper of origin. For this, the rgdal (Bivand et al. 2021) and ggplot2 (Wickam 2016) R-packages (R Core
Team 2021) were used.

All plots resulting from the information gathered were created with ggplot2 (Wickam 2016) and R-
packages (R version 4.1.2).

Results

Mercury concentration on �sh
Studies concerning Hg bioaccumulation in �sh consumed by humans were found around 30% of Latin-
American and the Caribbean countries including, from north to south: Jamaica, Suriname, Anguilla,
Trinidad & Tobago, Cuba, Mexico, Nicaragua, Costa Rica, Venezuela, Colombia, Peru, Brazil, Bolivia,
Argentina, and Chile. Brazil and Chile lead in investigation around Hg bioaccumulation in �sh. Most of the
�sh species studied belong to freshwater ecosystems, with no data available for marine �sh in Bolivia,
Cuba, Peru, and Venezuela. A total of 278 species were analyzed for THg or MeHg in muscle, where
61.2% belong to freshwater ecosystems and 38.8% are from marine ecosystems. Most of the data belong
to wild capture �shes.

Freshwater �sh MeHg concentrations range goes from 0.02 to 2.1 µg g− 1dw; meanwhile marine �sh
range goes from 0.01 to 10.7 µg g− 1dw (Table 1), the tests showed no signi�cant differences between the
bioaccumulated MeHg between habitats (p-value = 0.585; Supplementary Table S2). Although marine
�shing is an important economic activity, there is less information about mercury pollution on marine
�sh.

Higher MeHg concentrations (≥ 1.5 µg g− 1dw of MeHg) were found in mostly carnivore species, except
for M. acanthogaster (1.5 µg g− 1dw) an herbivore specie from Venezuela. The highest MeHg
concentrations are found in the marine species C. pororus (11.1 µg g− 1dw) and S. lewini (6.3 µg g− 1dw)
from Trinidad. Meanwhile the freshwater species with the highest MeHg levels are the predator O. mykiss
(2.1 µg g− 1dw) from Chungara catchment in Chile and C. monoculus (1.8 µg g− 1dw) from Brazil
(Table 1). These concentrations are considered highly hazardous to health by the FAO regulations (FAO
and WHO 1995).
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The Sankey plot (Fig. 1) shows a subsample of those �sh species from the highest 20% MeHg
concentration. This includes 57 �sh species with a MeHg concentration ≥ 0.5 µg g− 1dw. The remaining
80% is considered to have concentrations that are not harmful and are safe to be consumed in a
moderated diet. Various species are repeated in the list because: a) same species were found in different
countries, and b) same species were sampled in different sites within the same country. The MeHg
concentration is represented by the width of grey ribbons. Dark or light blue bars indicate the distribution
between water habitats (marine or freshwater). Food preferences (carnivorous, omnivorous or herbivore
are indicated by colored bars to the right. The plot showed that carnivorous species present the largest
range and highest concentrations of MeHg (0.01 to 10.7 µg g− 1dw), independently of the water habitat.
However, one omnivorous (C. gariepinus, 1.1 µg g− 1dw MeHg) and one herbivore specie (M.
acanthogaster 1.5 µg g− 1dw MeHg) also displayed MeHg concentrations that might deserve attention
since most of the food intake recommendation are below 1.5 µg g− 1dw of Hg.

Health risk of MeHg bioaccumulation in �sh from Latin
America
The Venn diagram (Fig. 2) summarizes the distribution of MeHg concentration and its interaction with
THQ values in the total species assessed in this study. The 93.9% of the total species present MeHg
concentrations < 1.5 µg g− 1 dw, from which 8.6% contributed to THQ values ≥ 1. The remaining 6.1% of
the species with MeHg levels ≥ 1.5 µg g− 1 dw contributed in its totally to the THQ values ≥ 1, 1.4% to
THQ ≥ 5 and a 0.7% to THQ ≥ 10. This group of �sh species with MeHg concentrations above the
FDA/EPA recommended levels (≥ 1.5 µg g− 1 dw) are found in Trinidad, Colombia, Chile, Brazil and
Venezuela, and would not to be recommended for frequent human consumption.

The geolocation of the health risk estimation is presented in Fig. 3. The level of human �sh consumption
is indicated by color, where high consumption �sh are those consumed locally and of highly commercial
interest (orange), while the low consumption �sh are consumed only locally (green). Additionally,
considering that a THQ ≥ 1 is considered hazardous for human health, the frequency plot shows that
most studied �sh species have no risk for human consumption (85% for female and 86% for male).

In summary, �sh species showing MeHg concentrations ≥ 1.5 µg g− 1dw and express THQ ≥ 1; are those
corresponds to �sh species from Anguilla, Brazil, Chile, Colombia, Jamaica, Nicaragua, Paraguay, Peru,
Venezuela, and Trinidad. Yet, �shes with lower MeHg concentrations (< 1.5 µg g− 1dw) also show to have
an HQ ≥ 1 in almost every country (Supplementary Table S1). All species studied from Argentina (20),
Bolivia (18), Nicaragua (18), Costa Rica (7), Cuba (7), Ecuador (2) and Mexico (24) show an HQ < 1.

There is a slight trend difference in the risk estimation regarding human female and male population,
being the female population the one with the higher THQ values, however no statistical difference
between both groups was found (Fig. 3, p-value = 0.268, mean difference 0.07, Supplementary Table S3).



Page 7/16

The countries estimated to have the greater health risk were Peru and Venezuela due to more than 50% of
the species studied from these countries present a THQ ≥ 1. Fewer species contributed to very high THQ
values (THQ < 10) as C. porosus (HQF = 32.1; HQM = 29.9) and S. lewini (HQF = 18.3; HQM = 17.1).

Discussion
There is a lack of information regarding bioaccumulation of Hg in wildlife and aquaculture �sh. Most
countries considered in this research do not have an actualized survey of the state of contamination of
their �sh species. This is a matter of concern since mining is one of the most important economic
activities in the history of Latin America (Alimonda 2015) and one of the most relevant Hg contamination
sources (Esdaile and Chalker 2018). In spite that most of the global �shery and aquaculture activities are
centered in marine species (FAO 2020) there is lack of information of Hg amounts in these species, i.e.,
83% of Chilean �shery exports comes from marine �sheries whose main export species are Trachurus
murphyi, Engraulis ringens, and Strangomera bentincki and only one of them is mentioned in the studies
(SUBPESCA 2020; OECD 2021)

One of the regions responsible for Hg emissions, east and southeast Asia, also characterize for a high
mining and industry economy (UN Environment 2019; Soe et al. 2022) studies from these countries have
shown a lower average Hg bioaccumulation in �sh that some found in Latin America and the Caribbeans
(Hajeb et al. 2009; Park et al. 2011; Jeevanaraj et al. 2019; Shalini et al. 2021; Soe et al. 2022).

The risk index THQ values obtained in this study (HQF = 0.02–32.1; HQM = 0.01–29.9) show to have a
wider range and extremely high THQ values compared to other studies such as the one done by
Bonsignore et al. (2013) in Augusta Bay in southern Italy (THQ = 0.31–15.8); also, Azore archipelago THQ 
= 0.1–8.6 and THQ = 0.2–8.5 on the Northwest Portuguese (Felix et al. 2022). The higher MeHg level were
dominated by Carnivore species which is consistent with previous studies (Chiang et al. 2021), due to
MeHg biomagni�cation through trophic levels and carnivores are on the top of the trophic web
accumulating more MeHg than lower levels. These same species were found to have a signi�cant
contribution in the estimation of risk �nding a relation between high MeHg concentrations and THQ ≥ 1
value. Nevertheless, in some cases high MeHg levels were not necessarily the cause for high HQ values.
This was observed in Peru where all species were found to have safe MeHg concentrations (< 1.5 µg g− 

1dw), although the THQ values were ≥ 1. Particularly in Peru, they have a high �sh consumption rate
(68.6 g day− 1) of this country due to its gastronomic preferences, compared for example to Argentina a
country whose �sh species have similar MeHg levels to Peru’s, but its �sh consumption rate is between
the lowest in Latin America and the Caribbeans (15.6 g day− 1) therefor Argentina THQ values are safe.
Meanwhile, in countries like Trinidad and Jamaica most of their �sh species have acceptable MeHg
levels, still they have HQ values ≥ 1. This exempli�es that regardless of having safe MeHg
concentrations, the �sh consumption rates (> 65 g day− 1), and body weight (> 76 Kg per females’ adult
and > 80 kg per male adult) are important factors to determine the safety of �sh for human consumption.
Therefore, it would be advisable to consider demographics and cultural behavior factors in the design of
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the regulations and health safety guidelines and not only on the concentrations of Hg found in the �shes’
muscle.

For which in Table 2 there is a recommendation chart for those species to avoid consuming, keep
consuming with moderation and to encourage their consumption based on their MeHg levels and THQ
values obtained during this study. This classi�cation is based on the MPW (meals per week) index, where
< 1 MWP is recommended to avoid, 1 > 2 MPW to keep consuming with moderation and < 2 MPW to
encourage their consumption, this is speci�ed by country.

Conclusion
As a result of this study, it is possible to conclude from the total species studied in this research 47% are
considered safe and non-risky to consume at the same rate that they are being consumed. Likewise, it is
recommended to avoid consuming �shes from some genus such as Thunnus and Epinephelus due to the
high MeHg concentrations, and in the case of �shes with concentration below 1.5 µg g− 1dw to reduce the
consumption of them to minimize the health risk.

As a suggestion, because of the level of mining activity developed in Latin America and the Caribbeans,
these countries must improve environmental regulations to help to prevent population health issues. It is
not possible to regulate under other countries' standards due to the differences in distribution of Hg
emission, population behavior and demographic characteristics.
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Tables
Table 1 and 2 are available in the Supplementary Files section.

Figures

Figure 1
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Sankey diagram representing the highest 20% of MeHg levels in �sh muscle from Latin-America and the
Caribbean. In red are highlighted those species most consumed. Species with MeHg concentrations
above the FDA/EPA recommended levels (≥ 1.5 µg g-1 dw) are highlighted with the country of origin’s
�ag.

Figure 2

Percentage of MeHg and THQ values, and their association within the species assessed.
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Figure 3

Estimated risk map for human population related to MeHg contaminated �sh consumption from Latin
American and the Caribbeans. Circles sizes indicate the average THQ value. The color indicates if the
specie is highly consumed (orange) or locally consumed (green). The bar graphs illustrate the frequency
of THQ for human male population (THQM, up) and female population (THQF, down). Also, THQ > 1 (red
bar) and < 1 (blue bar).
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