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Abstract
Protein ubiquitylation is an important post-translational modi�cation (PTM), which is considered to be
one of the most important processes regulating cell function and various diseases. Therefore, accurate
prediction of ubiquitylation proteins and their PTM sites is of great signi�cance for the study of basic
biological processes and the development of related drugs. Researchers have developed some large-scale
computational methods to predict ubiquitylation sites, but there is still much room for improvement.
Much of the research related to ubiquitylation is cross-species while the life pattern is diversi�ed, and the
prediction method always shows its speci�city in practical application. This study just aims to the issue
of plants, and has constructed computational methods for identifying ubiquitylation protein and
ubiquitylation sites. To better re�ect the protein sequence information and obtain better prediction, the
KNN scoring matrix model based on functional domain GO annotation and word embedding model
(CBOW and Skip-Gram) are used to extract the features, and the light gradient boosting machine (LGBM)
is selected as the ubiquitylation proteins prediction engine. As results, accuracy (ACC), precision
(precision), recall (recall), F1_score and AUC are respectively 85.12%, 80.96%, 72.80%, 0.7637 and 0.9193
in the 10-fold cross-validations on independent data set. In the ubiquitylation sites prediction model, Skip-
Gram, CBOW and EAAC feature extraction codes were used to extract protein sequence fragment features,
and the predicted results on training and independent test data have also achieved good performance. In
a word, the comparison results demonstrate that our models have a decided advantage in predicting
ubiquitylation proteins and sites, and it may provide useful insights for studying the mechanisms and
modulation of ubiquitination pathways. The datasets and source codes used in this study are available
at: https://github.com/gmywqk/Ub-PS-Fuse.

1 Introduction
As one of the most important post-translational modi�cations (PTMs), ubiquitylation is widely involved in
some key processes of life activities[4, 5]. Ubiquitylation has important regulatory functions and plays an
important role in in�ammation, cell division, signal transduction, hypersensitivity, proteasome
degradation, down regulation, transcription and deoxyribonucleic acid repair[3, 6–11]. It is also related to a
variety of diseases, such as periodontal disease[12]], cancer[13], Alzheimer's disease[14], liver disease[15],
and so on. More and more evidences show that ubiquitylation is almost involved in the whole life cycle
from germination to �owering of plant seeds, aging and pathogen response[16, 17]. Therefore, we are
facing a challenging and interesting problem for exploring new ubiquitylation proteins and their
modi�cation sites to gain new insights into their mechanisms and functions. There are two main reasons
for its di�cult to study this issue: Ubiquitylation is second only to glycosylation[18], which has the most
complex modi�cation due to its different target binding modes; Similar to the phosphorylation[19]

pathway, the ubiquitylation modi�cation pathway is reversible, that is, the modi�cation of ubiquitylation
protein can be removed by deubiquitinase. Over the past few decades, due to technological advances in
ubiquitylation protein (or peptide) a�nity analysis, mass spectrometry, ubiquitin antibodies[20] and
ubiquitin-binding proteins[20, 21], a wide range of analysis of ubiquitylation proteins. However, these large-
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scale experimental screening techniques for identifying ubiquitylation sites are time-consuming,
expensive, and laborious. In contrast, machine learning-based computational methods provide another
alternative strategy for predicting ubiquitylation sites in a low-cost and e�cient manner.

Regarding the identi�cation of ubiquitylation proteins, Qiu[21] �rstly proposed a computational method by
using evolutionary pro�les and functional domain annotation to predict ubiquitylation proteins in multiple
species in 2019, and achieved good results. Moreover, Qiu also identi�ed phosphorylation[22],
acetylation[23], S-nitrosylation[24] and pupylation[25] in proteins with KNN scoring matrix based on GO
annotation information. For predictive analysis of ubiquitylation sites, although many models have been
proposed to identify ubiquitylation sites in different species, only a few have been designed for plants. To
predict Arabidopsis ubiquitylation sites, Chen[26] designed an online support vector machine-based
predictor, named "AraUbiSite", combined with K-spaced amino acid pairs and amino acid composition
(AAC) feature extraction methods. Mosharaf[27] proposed a random forests model by using a feature
extraction method encoded with binary amino acid. Mosharaf[28] used a random forest model by
combining the feature extraction methods of K-spaced amino acid pairs and binary amino acid encoding.
In recent years, deep learning has been widely used in the �eld of bioinformatics. Wang[29] �rstly used
word embedding to extract features of plant ubiquitylation sites in 2020, and then combined with a multi-
layer convolutional neural network model to predict them. Siraj[30] developed a deep learning-based
predictor UbiComb in 2021, which uses two modules to extract features, namely: an embedding module
and physicochemical properties module. Recently, Yin[31] proposed a prediction model UPFPSR based on
random forest classi�er, which was developed using multiple physicochemical properties of amino acids
and sequence-based statistics. The aforementioned predictive models are helpful to scientists, however
they also have certain limitations, such as training on small datasets, using shallow machine learning
models, and using limited deep neural networks. Therefore, there is still a lot of room for improving
prediction performance.

In this study, we develop a prediction framwork, named as Ub-PS-Fuse and shown in Fig. 1, for exploring
ubiquitylation proteins and their modi�cation sites of plants. In the prediction model of ubiquitinated
proteins, the positive samples were collected from the PLMD[32] database, and the negative samples were
collected from the UniProKB[33] database. The fundamental step in building a predictive model is feature
extraction, and the KNN scoring matrix[23] and word embeddings[34, 35] (Skip-Gram and CBOW) models
based on functional domain GO annotations are used in this work. The 10-fold cross-validation is applied
to evaluate and enhance the performance of classi�er.

In the ubiquitylation sites prediction model, the dataset was constructed by Wang[29]. Sequence
information is encoded into numerical feature vectors by using multiple feature encoding schemes of
EAAC, Skip-Gram[35] and CBOW[34], LGBM was selected as the classi�er and validated by 10-fold cross-
validation. Comparison results show that our proposed model is better than other existing predictors in
the terms of performance and stability.
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2. Materials

2.1 Datasets for Prediction Ubiquitylation proteins
To obtain scienti�cally rigorous prediction results, a rigorous benchmark dataset is necessary. In this
study, the positive samples were collected from the Protein Lysine Modi�cation Database (PLMD)[32], with
a total of 2139 ubiquitylation proteins. A total of 117,065 negative samples were collected from the
UniProKB[36] database. After 30% de-redundancy of negative samples, 4,278 non-ubiquitylation proteins
were randomly selected. In the datasets for predicting ubiquitylation proteins, denoted as Ub-P, a positive
sample is a protein with at least one ubiquitination site, and the negative sample dataset is the set of
proteins without any ubiquitylation site. A ubiquitylation protein sequence can be represented as:

1

where  represents the ith amino acid residue (20 common amino acids and a pseudo-amino acid " "),
and  represents the length of the protein sequence.

2.2 Datasets for Prediction Ubiquitylation sites
This paper used the same training and independent test dataset as Wang[29], which were collected from
the PLMD[32] database and experimentally validated lysine ubiquitylation sites. The dataset consists of
Oryza sativa subsp indica, O. sativa subsp japonica, and Arabidopsis thaliana, and the dataset includes a
total of 2139 ubiquitylation proteins. In the datasets for prediction ubiquitylation sites, denoted as Ub-S, a
potential ubiquitylation site-contained sample can be expressed by a fragment with 31 amino acids. If the
number of upstream or downstream amino acids is less than 15, it would be supplemented with pseudo-
amino acid " " to ensure that each ubiquitylation protein fragment has the same amino acids. After a
series of processing, a total of 7000 protein sequence fragments were obtained, including 3500 positive
samples (ubiquitylation sites) and 3500 negative samples (non-ubiquitylation sites). Among these
positive samples and negative samples, 2750 positive samples and 2750 negative samples were
randomly selected to form the training set, and the remaining 750 positive samples and 750 negative
samples were used to form an independent test set. Table 1 summarizes the datasets for predicting
ubiquitylation proteins and ubiquitylation sites.

P = R1R2R3 ⋯ Ri ⋯ RL

Ri X

L
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Table 1
Datasets of ubiquitylation proteins and ubiquitylation

sites for this work.
Datasets Positive Negative Total Ratio

Ub-P Training 1711 3422 5133 1:2

Ub-P Testing 428 856 1284 1:2

Ub-S Training 2750 2750 2500 1:1

Ub-S Testing 750 750 1500 1:1

For a more detailed and comprehensive formulation of ubiquitylation site sequences, the fragments of
potential ubiquitylation sites can be expressed with Eq. (2).

2

Where the center " " represents "Lysine"[37],  represents the -th amino acid residue of the upstream,
and  represents the -th amino acid residue of the downstream,  is an integer, and so forth. In
addition, the peptide sequence can be divided into two types:  and , where 
represents a true ubiquitylation segment with " " at the center point,  indicates a non-
ubiquitylation segment with "K" at its center. The sliding window method was used to segment
ubiquitylation protein sequences with different window sizes. According to the analysis of the preference
of ubiquitylation protein sequences by Wang[29], it can be seen that when the window size is 31 (i.e. 

), the best prediction is achieved.

In order to equalize the site sequence lengths, the missing amino acids are �lled with " " residues when
the sequence fragments are divided. The ubiquitylation site dataset takes the form of Eq. (3).

3

Among them, the subset of positive samples  represents the ubiquitylation site fragment
samples centered on " ", and the subset of negative samples  represents the non-ubiquitylation
site fragment samples centered on " ".  represents the benchmark dataset.

3 Feature Extraction And Methods

3.1 GO-KNN
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GO-KNN[23] extracts features based on a KNN score annotated by functional domain GO. In this study, we
need to �nd out the GO information of all proteins, if the GO information cannot be found for a given
protein, it would be replaced with its homologous protein GO information. We need to calculate the
distance between each protein sequence and other protein sequences. Take proteins  and  as

example, their GO annotations can be expressed as  and 

. Among them,  and  represent the i-th GO of proteins
and , respectively, and  and  represent the numbers of GO, respectively. The extraction steps are as
follows:

Step 1: Calculating the distance between the two proteins, such as formula (4). Where ∪ and ∩ represent
the intersection and union of sets, respectively, and ⌊ ⌋ represents the number of elements in the set.

4

Step 2: Sorting all calculated distances from small to large.

Step 3: Selecting the  nearest neighbors of the protein sequence and calculating the percentage of
positive samples of the  nearest neighbors to the whole samples.

In this study, the selection of the  value is based on the number of samples. For example, the number of
positive and negative samples in the ubiquitylation protein training set in this study is 5133, so we
choose the  value as 2, 4, and 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096. Finally, a 12-dimensional
feature vector is formed, so the digital feature vector of protein  can be expressed as: 

. Since the total number of positive and negative samples in the independent test set of
ubiquitylation proteins in this study is 1284, a 10-dimensional feature vector is formed.

3.2 Word Embedding
Word Embedding[34, 35, 38] is a method of converting words in text into numeric vectors. The word
embedding process is to embed a high-dimensional space containing the number of all words into a low-
dimensional continuous vector space, each word or phrase is mapped to a vector on the real number
domain, and the result of word embedding generates a word vector. Here is a brief description of how
word embedding was applied in this study:

Step 1: The ubiquitylation protein sequence is �rstly split into fragments and a word book is created. In
this study we used �ve different word embedding models, that is, cutting ubiquitylation protein sequences
into different fragment lengths, which can be set to 1, 2, 3, 4, and 5, respectively, moving the window with
a step size of 1 and removing duplicates, which generates the �ve wordbooks with a number of v. Let's
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take the splitting fragment length of 3 as an example, and the detailed splitting process is shown in
Fig. 2.

Step 2: Use the Skip-Gram and CBOW models to train the data separately. There are two mainstream
word embedding methods today, namely word2vec and Glove. The word2vec algorithm has two training
modes: predict current word by context (CBOW) and predict context by current word (Skip-Gram).
However, the training speed of Skip-Gram is slower than that of the CBOW model, because the Skip-Gram
model does not ignore low-frequency words, but the accuracy of Skip-Gram is generally higher than that
of the CBOW model (this is what Mikolov[34] said). In order to speed up the training speed of word vectors,
this research adopts the negative sampling technique and the back propagation algorithm. The
dimension size of the word vectors we choose for each wordbook is 500 dimensions. The speci�c
training process for CBOW models and Skip-gram models is shown in Fig. 3.

Step 3: Extract features using Skip-Gram and CBOW models. By training the Skip-Gram and CBOW
models respectively, we obtained �ve word-vector matrices  respectively. Then, we combined the
features of each ubiquitylation protein sequence of the �ve word-vector matrices, as shown in formula
(5), and �nally obtained a 2500-dimensional Skip-Gram and CBOW feature vector respectively.

5

Where (1) represents a 500-dimensional word vector with a word segment length of 1, (2) represents
a 500-dimensional word vector with a word segment length of 2, and so on, M(5) represents a 500-
dimensional word vector with a word segment length of 5. "" means to merge (vertically) two word-
vectors.

3.3 EAAC
EAAC is called "enhanced amino acid composition" and is widely used in bioinformatics research, such as
predicting protein malonylation sites[39], lysine glutarylation sites[40]. The EAAC coding process is brie�y
described as follows: In a �xed-length protein sequence fragment, the frequency of occurrence of 20
amino acids and a pseudo-amino acid " " is calculated, as shown in formula (6).

6

Among them,  represents the number of amino acids  when the sliding window size is , 
 represents the size  of the sliding window, generally defaulting to 5. Considering that the �xed

length of the protein sequence fragments of the ubiquitylation site and the non-ubiquitylation site is 31, a
feature vector of (31 − 5 + 1)⋅20 = 567 dimensions is �nally formed.

M

W = M(1)M(2)M(3)M(4)M(5) 

M M

X

f(χ, K) = N(χ, Q)/N (O) , χ ∈ (A, C, D, … , Y , X)

N (χ, Q) χ O

N (Q) Q
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4. Model Evaluation Metrics And Operation Engine

4.1 Model Evaluation Metrics
Four metrics were used to evaluate the performance of the model when predicting ubiquitylation proteins
and their corresponding modi�cation sites. That is, accuracy (ACC), precision (Precision), recall rate
(Recall), and F1-score[41–43], respectively, formula (7) is de�ned in detail.

7

When predicting ubiquitylation proteins, where TP, FP, TN and FN represent the number of true positives
(predicted ubiquitylation proteins to be actual ubiquitylation proteins), false positives (predicted
ubiquitylation proteins to be actual non-ubiquitylation proteins), true negatives (predicting non-
ubiquitylation proteins to be actual non-ubiquitylation proteins) and false negatives (predicting non-
ubiquitylation proteins to be actual ubiquitylation proteins), respectively.

When predicting ubiquitylation sites, where TP, FP, TN and FN represent the number of true positives
(predicted ubiquitylation sites are actual ubiquitylation sites), false positives (predicted ubiquitylation
sites are actual non-ubiquitylation sites), true negatives (predicted non-ubiquitylation sites are actual non-
ubiquitylation sites) and false negatives (predicted non-ubiquitylation sites are actual ubiquitylation
sites), respectively.

Additionally, we plotted the receiver operating characteristic curve (ROC) and calculated the area under
the ROC (AUROC) as the evaluation measure of this work for completeness to further evaluate our model
performance. To make the results more convincing and stable, we used the average of ten 10-fold cross-
validations to represent the overall performance of the model.

4.2 Operation Engine

4.2.1 LGBM
LGBM (Light Gradient Boosting Machine) is an e�cient gradient boosting decision tree using gradient-
based one-sided sampling (Goss)[44] and exclusive feature binding (EFB)[45] proposed by Ke. It supports
e�cient parallel training, and has the advantages of faster training speed, lower memory consumption,
better accuracy, and support for distributed and fast processing of massive data. It is an ensemble model
of decision trees based on basic classi�ers, which can be trained sequentially by �tting the negative

⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩

ACC =
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gradient of the loss function. In this study, the selected parameters are: learning_rate = 0.1, n_estimators = 
800, max_depth = 4. LightGBM code is available at https://github.com/Microsoft/LightGBM. This
algorithm is widely used in classi�cation[46], ranking[47] and many other machine learning[48] tasks.

4.2.2 RF
The Random Forest (RF)[49, 50] algorithm is based on the Classi�cation and Regression Tree (CART)[51]

technique. Due to its �exibility and generalization ability, the algorithm has been applied in �elds such as
bioinformatics[52], data mining, and energy architecture[53]. It is an algorithm formed by integrating
multiple decision trees through the idea of ensemble learning. In the random forest, each decision tree is
a classi�er. For a given sample, each tree will get a classi�cation result, integrate all the voting results,
and the �nal output is the category with the most votes.

4.2.3 SVM
Support Vector Machine (SVM)[54], is a supervised learning model. It has been widely used in various
�elds such as marketing management[55], bioinformatics[49] and image retrieval[56]. Compared with other
machine learning algorithms, the advantage of the SVM algorithm is that the dimension of the SVM
parameters is equal to the number of training samples[50]. Its main idea is to �nd a hyperplane that
distinguishes the two classes, maximize the margin, and some points in the sample that are closest to
the hyperplane, these points are called support vectors.

4.2.4 DNN
Due to the strong learning ability of deep learning algorithms and as a cutting-edge technology, deep
learning is also widely used in the �eld of bioinformatics to predict protein modi�cation sites[57], RNA
modi�cation sites[58], etc. In this study, the deep learning classi�er consists of three layers:  Input layer. 
Hidden layer, the hidden layer has four layers, three LeakyRelu activation functions and two batch
normalization functions (BatchNormalization, which makes training more stable and speeds up learning).
 The output layer performs binary classi�cation through the sigmoid activation function. We choose the

Adam algorithm as the optimizer and the cross-entropy loss formula as the loss function.

4.2.5 BiLSTM
Bidirectional Long Short-Term Memory (BiLSTM)[59] network is a combination of forward LSTM[60] and
backward LSTM, which is commonly used in natural language processing (NLP) tasks to model
contextual information and effectively capture contextual information. Bidirectional semantic
dependencies. This network has been widely used to predict protein sites[61], identify antimicrobial
peptides and their functional types[62], and drug-target interactions[63]. In this study, the BiLSTM classi�er
consists of �ve layers:  BiLSTM layer, LSTM cell unit is 128.  A dropout layer with dropout of 0.4 and 64
hidden nodes  A fully connected layer with 32 hidden nodes and ReLU activation.  A dropout layer, the
parameter of dropout is 0.4 and the number of hidden nodes is 16.  A fully connected layer with 1 hidden
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node and binary classi�cation via sigmoid activation. We choose the Adam algorithm as the optimizer
and the cross-entropy loss formula as the loss function.

5. Results And Discussion

5.1 Results and discussion for Ubiquitylation Proteins
prediction

5.1.1 Effect of the Different Features on Training Dataset
In this study, three feature encodings, namely GO-KNN, CBOW and Skip-Gram models, were used. The
feature dimensions of the three feature codes are 12 dimensions, 2500 dimensions, and 2500
dimensions, respectively, so the feature set, noted as Ub-P-Fuse, has 5012 dimensions. Test with LGBM
classi�er training and 10-fold cross-validation, the prediction results of different features are shown in
Table 2.

From Table 2, we can see that the prediction results after random combination of three feature codes are
much better than the prediction results of single feature code. Among them, when the Skip-Gram and
CBOW models are combined with the GO-KNN model in pairs, the effect is better than the combination of
their own models, with an average increase of four points, which further veri�es the importance of the GO-
KNN model. However, when the three feature codes are fused (Ub-P-Fuse), the prediction effect is better
than that of pairwise combination coding. Therefore, the results show that the multi-feature fusion Ub-P-
Fuse (GO-KNN + CBOW + Skip-Gram) improves the prediction effect.

 
Table 2

A comparison of different features for predicting ubiquitylation proteins.
Method ACC(%) Precision(%) Recall(%) F1-score

GO-KNN 82.04 74.60 70.66 0.7254

CBOW 82.21 74.53 70.88 0.7262

Skip-Gram 82.87 76.50 70.32 0.7323

GO-KNN + CBOW 86.79 80.73 79.33 0.7993

GO-KNN + Skip-Gram 86.75 80.95 78.77 0.7982

CBOW + Skip-Gram 83.17 76.24 71.98 0.7400

Ub-P-Fuse 87.22 81.51 79.77 0.8058
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5.1.2 Effect of the Different Classi�ers on Training Dataset
In this work, we used the �ve classi�ers described above to identify ubiquitylation proteins. After 10-fold
cross-validation on the training set with Ub-P-Fuse, the evaluation index results of each classi�er with a
ratio of positive and negative samples of 1:2 are shown in Table 3.

 
Table 3

A comparison of different classi�ers on the training set for
predicting ubiquitylation proteins.

Method ACC(%) Precision(%) Recall(%) F1-score

LGBM 87.22 81.51 79.77 0.8058

RF 85.45 81.24 69.14 0.7465

SVM 86.33 80.34 78.08 0.7915

DNN 83.24 75.49 75.74 0.7483

BiLSTM 85.43 77.61 80.23 0.7849

From Table 3, we can see that the BiLSTM classi�er has the best performance on the evaluation index of
Recall, but from the comprehensive index, the LGBM classi�er obtained the best results. In order to better
compare the effects of different classi�ers, the prediction results of the �ve classi�ers are shown in
Fig. 4.

The area under the ROC curve can evaluate the predictive performance of the model. It can be seen from
Fig. 4 that LGBM classi�er has a higher ROC curve accuracy than others in 10-fold cross-validation. The
area under the curve of LGBM, RF, SVM, DNN, BiLSTM is 0.9397, 0.9108, 0.9284, 0.9086 and 0.9286
respectively. Therefore, compared with the other four classi�ers, the LGBM classi�er is the best choice for
the proposed model.

5.1.3 Effect of the Different Classi�ers on Independent
Dataset
To validate the effect of the Ub-P-Fuse, 428 ubiquitylation and 856 non-ubiquitylation proteins were
independently tested in this study, as shown in Table 4. Experimental results show that the Ub-P-Fuse
based on the LGBM algorithm outperforms other popular algorithms on all these prede�ned features.
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Table 4
A comparison of different classi�ers on the independent test sets for

predicting ubiquitylation proteins.
Method ACC(%) Precision(%) Recall(%) F1-score AUC

LGBM 85.12 80.96 72.80 0.7637 0.9193

RF 83.33 80.89 66.10 0.7237 0.8945

SVM 84.11 79.45 70.60 0.7460 0.9065

DNN 80.06 70.24 70.89 0.6988 0.8716

BiLSTM 82.78 75.02 78.09 0.7527 0.9096

5.2 Results and discussion for Ubiquitylation Sites
prediction

5.2.1 Effect of the Different Features on Training Dataset
In this study, we have also tried three single feature encodings, Skip-Gram, CBOW and EAAC, and the
numbers of features are 2500, 2500, and 567 dimensions, respectively. After several single coding
combinations, the model Ub-S-Fuse is �nally obtained, which is fused by Skip-Gram and EAAC feature
coding, and the dimension is 3057. Through 10-fold cross-validation, we select the LGBM classi�er for
training, and the prediction results of different feature extraction with a ratio of positive and negative
samples of 1:1 are shown in Table 5.

From Table 5, we can see that the indicators of the Skip-Gram model are higher than other single codes,
so the importance of this code is self-evident. After the fusion of the two models, the Ub-S-Fuse (Skip-
Gram + EAAC) model performs much better than other single feature and fusion models in various
indicators. This also re�ects that the EAAC coding model also contributed a lot to this model, which
probably improved the prediction effect by three points.
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Table 5
A comparison of different feature extraction methods on the training set for

predicting ubiquitylation sites.
Method ACC(%) Precision(%) Recall(%) F1-score

Skip-Gram 83.85 83.80 83.31 0.8354

EAAC 78.82 79.36 77.83 0.7858

CBOW 75.11 75.29 74.77 0.7499

Skip-Gram + EAAC 86.53 87.04 85.83 0.8641

Skip-Gram + CBOW 83.07 83.65 82.22 0.8291

Skip-Gram + EAAC + CBOW 86.11 86.73 85.17 0.8593

5.2.2 Effect of the Different Classi�er on Training Dataset
Choosing the right classi�er (machine learning and deep learning) is also a crucial step in predicting the
outcome. When predicting ubiquitylation sites, we chose LGBM, RF, SVM, DNN and BiLSTM algorithms. In
order to verify the effectiveness and superiority of the LGBM algorithm used to predict ubiquitylation
sites, we compared these algorithms through 10-fold cross-validation on the same training set, and the
prediction results are shown in Table 6.

Table 6
A comparison of different classi�ers on the training set for predicting

ubiquitylation sites.
Method ACC(%) Precision(%) Recall(%) F1-score AUC

LGBM 86.53 87.04 85.83 0.8641 0.9342

RF 79.90 81.62 77.18 0.7931 0.8783

SVM 83.18 83.90 82.02 0.8294 0.9049

DNN 81.30 81.15 81.78 0.8134 0.8953

BiLSTM 81.19 81.17 81.86 0.8123 0.8959

As can be seen from Table 6, the prediction effect of the LGBM classi�er is much better than other
traditional machine learning and deep learning. The classi�er performance of LGBM is 4–14% higher
than other traditional machine learning metrics, and nearly 4–6% higher than that of deep learning. This
further validates that deep learning tends to perform well on large-scale data, and our dataset is only built
on plants, which is not large enough. In order to better and more comprehensively evaluate the
performance of the classi�er, the ROC curves of different classi�ers are shown in Fig. 5.
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5.2.3 Effect of the Different Classi�er on Independent
Dataset
To further demonstrate the generalization ability of the Ub-S-Fuse model and LGBM, we also further test
the prediction results of different classi�ers on an independent test set, as shown in Fig. 6. The results
show that the performance of the LGBM classi�er is still better than other classi�ers in various indicators.

5.2.4 Comparison with other methods on Independent
Dataset
To demonstrate the effectiveness of our Ub-S-Fuse model, we performed 10-fold cross-validation on the
same independent test set to objectively compare with two existing methods (CNN + word2vec and
UPFPSR). The dataset contains 750 positive samples and 750 negative samples, and the speci�c
performance comparison is shown in Table 7. The results show that between these three predictors, Ub-S-
Fuse outperforms the �rst two models on every measure. The ACC, Precision, Recall, F1 score and AUC of
Ub-S-Fuse are about 9%-11%, 9%-11%, 7%-12%, 8%-11% and 10%-12% higher than those of the �rst two
models respectively. Taken together, all the results show that the model has high con�dence in the
prediction of plant ubiquitylation sites and is more suitable for identifying plant ubiquitylation sites.

Table 7
Comparison with other methods on independent test set when predicting

ubiquitylation sites.
Method ACC(%) Precision(%) Recall(%) F1-score AUC

CNN + word2vec[29] 75.6 73.3 76.7 0.7493 0.82

UPFPSR[31] 77.3 75 81.7 0.7824 0.84

Ub-S-Fuse 86.13 84.42 88.70 0.8638 0.9378

6. Conclusion
Ub-PS-Fuse was developed for better prediction of ubiquitylation proteins and sites. To predict
ubiquitylation proteins, we used three feature extraction methods, GO-KNN, Skip-Gram and CBOW. GO-
KNN extracts features based on a KNN scoring matrix annotated by functional domain GO, and Word
Embedding is a method to convert words in text into numeric feature vectors. Finally, we selected the
LGBM classi�er as the prediction engine. We then evaluate the performance of Ub-P-Fuse using an
independent test dataset to demonstrate the generalization ability of the Ub-P-Fuse. To predict
ubiquitylation sites, three feature extraction codes and one fusion feature extraction code were used,
namely Word Embedding (Skip-Gram and CBOW), EAAC and Ub-S-Fuse. Validation was performed by
using 10-fold cross-over, and the extracted feature vectors were input into the LGBM classi�er for
classi�cation. The performance of Ub-S-Fuse is evaluated on an independent test dataset and compared
with other existing methods, and it is concluded that the prediction performance of Ub-S-Fuse is better
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than other existing methods. The above process can be summarized as shown in Fig. 1. These processes
only require computational models and do not require any physical and chemical experiments, which
saves experimental costs and improves work e�ciency. We hope this work contributes to
computationally solving biological problems.
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Figure 1

The framework of Ub-PS-Fuse
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Figure 2

Detailed process of splitting ubiquitylation protein sequences

Figure 3

The speci�c training process for CBOW models and Skip-gram models.
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Figure 4

ROC curves of different classi�ers on the training set when predicting ubiquitylation proteins.
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Figure 5

ROC curves of different classi�ers on the training set when predicting ubiquitylation sites.
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Figure 6

Prediction results of different classi�ers on independent test sets when predicting ubiquitylation sites


