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Abstract
Background

CDKL5 Deficiency Disorder (CDD), a severe neurodevelopmental disorder characterized by early-onset
epilepsy, intellectual disability, and autistic features, is caused by mutations in the CDKL5 gene. Evidence
in animal models of CDD showed that absence of CDKL5 negatively affects neuronal survival, as well as
neuronal maturation and dendritic outgrowth; however, knowledge of the substrates underlying these
alterations is still limited. Neuro-inflammatory processes are known to contribute to neuronal dysfunction
and death. Recent evidence shows a subclinical chronic inflammatory status in plasma from CDD
patients. However, to date, it is unknown whether a similar inflammatory status is present in the brain of
CDD patients and, if so, whether this plays a causative or exacerbating role in the pathophysiology of
CDD.

Methods

We evaluated microglia activation using AIF-1 immunofluorescence, proinflammatory cytokine expression
and signaling in the brain of a mouse model of CDD, the Cdkl5 KO mouse, which is characterized by an
impaired survival of hippocampal neurons that worsens with age. Hippocampal neuron survival was
determined by DCX, NeuN and cleaved caspase-3 immunostaining in Cdkl5 KO mice treated with luteolin
(10 mg/kg), a natural anti-inflammatory flavonoid. Since hippocampal neurons of Cdkl5 KO mice exhibit
increased susceptibility to excitotoxic stress, we evaluated neuronal survival in Cdkl5 KO mice injected
with NMDA (60 mg/kg) after a 7-day treatment with luteolin.

Results

We found increased microglial activation in the brain of the Cdkl5 KO mouse. We found alterations in
microglial cell morphology and number, increased levels of AIF-1 and proinflammatory cytokines, and
activation of STAT3 signaling. Remarkably, treatment with luteolin recovers microglia alterations as well
as neuronal survival and maturation in Cdkl5 KO mice, and prevents the increase in NMDA-induced cell
death in the hippocampus.

Conclusions

Our results suggest that neuro-inflammatory processes contribute to the pathogenesis of CDD and imply
the potential usefulness of luteolin as a treatment option in CDD patients.

Background
The cyclin-dependent kinase-like 5 gene (CDKL5), located on the short arm of the X-chromosome [1],
encodes for a serine/threonine kinase that is highly expressed in the brain [2]. Genetic mutations of this
gene cause absence of a functional CDKL5 protein, resulting in a severe neurodevelopmental
encephalopathy named CDKL5 deficiency disorder (CDD; OMIM 300203, 300672). This disorder is
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associated with early onset epilepsy, and severe cognitive, motor, visual, and sleep disturbances [3–5]. An
animal model of CDD, the Cdkl5 knockout (KO) mouse [6–9], recapitulates, to varying degrees, the
underlying molecular and behavioral defects of the human disease. Interestingly, mouse models of CDD
do not have recurrent epileptic seizures, but nonetheless demonstrate significant behavioral deficits:
learning and memory, motor control and social interaction deficits, visual impairments, and sleep
disturbances [6–14].

Changes in neuronal morphology such as dendritic branching and stability of dendritic spines have been
consistently reported in Cdkl5 KO mice [6, 7]. Cdkl5 KO mice showed a reduction in dendritic length of
cortical and hippocampal pyramidal neurons [6, 11, 15, 16] and changes in the maturation and stability of
dendritic spines, as well as in the density of PSD-95 dendritic clusters in several brain structures [10, 15–
18].

Interestingly, recent evidence has shown that CDKL5, in addition to neuronal maturation and dendritic
outgrowth, also affects neuronal survival [11, 19, 20]. Cdkl5 KO mice are characterized by an increased
rate of apoptotic cell death in the hippocampal dentate gyrus that causes a reduction in the final number
of granule neurons [11] and by accelerated neuronal senescence/death during aging [21]. Moreover,
hippocampal neurons of Cdkl5 KO mice exhibit increased susceptibility to neurotoxic/excitotoxic stress
[19, 20], indicating that absence of Cdkl5 increase neuronal vulnerability.

Neuroinflammatory processes are known to contribute to neuronal dysfunction and death. When over-
activated in response to neuronal damage and genetic or environmental factors, microglia, the brain
macrophages [22], cause widespread damage to neighboring neurons. Indeed, reactive microglia kill
neurons by producing neurotoxic factors and pro-inflammatory molecules such as tumor necrosis factor-
α (TNF-α) and interleukin-1β and − 6 (IL-1β, IL-6) [23, 24]. Remarkably, over-activated microglia have been
described in several neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s
diseases and Amyotrophic lateral sclerosis [25–27], suggesting that active neuroinflammation may
account for the compromised neuronal survival observed in these pathologies. Interestingly, active
neuroinflammation could account for the compromised brain development observed in
neurodevelopmental disorders such as Down syndrome, autism-spectrum disorders (ASD), and Rett
syndrome [28–30], by damaging synaptic connectivity.

Recently, a major cytokine dysregulation proportional to clinical severity, inflammatory status, and redox
imbalance was evidenced in plasma from CDD patients [31, 32], suggesting a subclinical chronic
inflammatory status in children affected by this pathology. However, to date, it is unknown whether such
an inflammatory state is even mirrored at the cerebral level and whether it can contribute to the
pathophysiology of CDD.

Here, we show evidence of a microglia over-activation status in the brain of Cdkl5 KO mice, characterized
by alterations in microglia cell number/morphology and increased pro-inflammatory gene expression. We
found that microglia over-activation is already present in the postnatal period in Cdkl5 KO mice and
worsens during aging. Importantly, by restoring microglia alterations, treatment with luteolin, a natural
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anti-inflammatory flavonoid, counteracts hippocampal neuron cell death in both adult and aged Cdkl5 KO
mice, and rescues NMDA-induced excitotoxic damage in Cdkl5 KO mice. These findings highlight new
insights into the CDD pathophysiology and provide the first evidence that therapeutic approaches aimed
at counteracting neuroinflammation could be beneficial in CDD.

Materials And Methods

Colony and husbandry
The mice used in this work derive from the Cdkl5 null strain in the C57BL/6N background developed in [6]
and backcrossed in C57BL/6J for three generations. Mice for experiments were produced by crossing
Cdkl5 +/− females with Cdkl5 -/Y males and Cdkl5 +/− females with +/Y males [6]; animals were
karyotyped by PCR on genomic DNA as previously described [6] and littermate controls were used for all
experiments. P0, postnatal day zero, was designated as the day of birth and 24 h later mice were
considered 1-day-old animals (P1). Mice were housed three to five per cage and maintained in a
temperature- (23 C) and humidity-controlled environment with a standard 12 h light/dark cycle, and
provided with standard mouse chow and water ad libitum. Animals’ day-to-day health and comfort were
monitored by the veterinary service. All possible efforts were made to minimize suffering and the number
of animals used. Experiments were carried out on a total of 89 Cdkl5 KO mice (Cdkl5 +/Y, n = 4; Cdkl5 -/Y,
n = 4; Cdkl5 +/+, n = 26; Cdkl5 +/-, n = 55).

Treatments
All treatments were performed in the animal house at the same hour of the day.

Luteolin treatment - The dose of luteolin was chosen based on [33]. Mice were intraperitoneally (i.p.)
injected daily with saline or luteolin (10 mg/kg in saline; Tocris) for 7 or 20 days. The day following the
last treatment mice were sacrificed for histological and Western blot analyses.

NMDA treatment - Mice were treated with an intraperitoneal injection of NMDA (60 mg/kg; Sigma-Aldrich)
in phosphate-buffered saline (PBS) after 7 days of luteolin treatment. Animals were sacrificed 24 h or 8
days after NMDA injection and immunohistochemical analysis was assessed as described below.

TATκ-GFP-CDKL5 protein treatment – Brain sections processed for AIF-1 immunohistochemistry derived
from animals used in [34]. Briefly, mice were treated twice a day (morning and evening) with TATκ-GFP or
TATκ-GFP-CDKL5 protein (50 ng/injection) directly injected into the carotid artery through a
programmable pump [34].

Histological and immunohistochemical procedures
Animals were anesthetized with 2% isoflurane (in pure oxygen) and sacrificed through cervical
dislocation. Brains were quickly removed and cut along the midline. While right hemispheres were quickly
frozen and used for Western blot analyses, left hemispheres were fixed via immersion in 4%
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paraformaldehyde (100 mM phosphate buffer, pH 7.4) for 48 h, kept in 15–20% sucrose for an additional
24 h and then frozen with cold ice. Hemispheres were cut with a freezing microtome into 30 µm-thick
coronal sections and processed for immunohistochemistry procedures as described below. Brain sections
from Emx1 KO mice used in [35] were processed for AIF-1 immunohistochemistry.

AIF-1, NeuN and Ki-67 immunohistochemistry - One out of every eight free-floating sections from the
hippocampal formation was incubated with one of the following primary antibodies: rabbit polyclonal
anti-AIF-1 antibody (1:300; ThermoFisher), mouse monoclonal anti-NeuN antibody (1:250; Merk Millipore),
or rabbit monoclonal Ki-67 antibody (1:100; Thermoscientific). Sections were then incubated for 2 h at
room temperature with a Cy3-conjugated anti-rabbit secondary antibody (1:200, Jackson
ImmunoResearch Laboratories, Inc.) for AIF-1 and Ki-67 immunohistochemistry, and with a Cy3-
conjugated anti-mouse secondary antibody (1:200, Jackson ImmunoResearch Laboratories, Inc.) for
NeuN immunohistochemistry. Nuclei were counterstained with Hoechst-33342 (Sigma-Aldrich).

Cleaved caspase-3 staining - For cleaved caspase-3 immunofluorescence, one out of every six sections
from the hippocampal formation was incubated overnight with a rabbit polyclonal anti-cleaved caspase-3
antibody (1:200; Cell Signaling Technology). The following day the sections were washed and incubated
with an HRP-conjugated anti-rabbit secondary antibody (1:200; Jackson Immunoresearch, Inc.). Detection
was performed using the TSA Cyanine 3 Plus Evaluation Kit (Perkin Elmer) and nuclei were
counterstained with Hoechst 33342 (Sigma-Aldrich).

DCX immunohistochemistry - One out of every six free-floating sections from the hippocampal formation
was incubated overnight with a goat polyclonal anti-doublecortin antibody (DCX, 1:1000, Santa Cruz
Biotechnology, Inc.). The following day the sections were washed and incubated with a biotinylated anti-
goat IgG secondary antibody (1:200, Vector BioLabs, Malver, PA, USA) for 2 h and thereafter for 1 h with
the VECTASTAIN®ABC kit (Vector BioLabs). Detection was performed using DAB kit (Vector BioLabs).

Image acquisition and measurements
Fluorescence images were taken with an Eclipse TE 2000-S microscope equipped with a DS-Qi2 digital
SLR camera (Nikon Instruments Inc.). A light microscope (Leica Mycrosystems) equipped with a
motorized stage and focus control system and a color digital camera (Coolsnap-Pro; Media Cybernetics)
were used for neuronal tracing and to take bright field images. Measurements were carried out using
Image Pro Plus software (Media Cybernetics, Silver Spring, MD, USA).

Cell density - The number of AIF-1-positive cells in the hippocampus and somatosensory cortex was
manually counted using the point tool of the Image Pro Plus software (Media Cybernetics, Silver Spring,
MD, USA) and cell density was established as AIF-1-positive cells/mm3. The density of Hoechst-positive
nuclei, of neurons (NeuN-positive), and apoptotic cells (cleaved caspase-3-positive) in the CA1 layer were
manually counted and expressed as cells/mm3. Ki-67-positive cells were counted in the subgranular zone
of the dentate gyrus, and expressed as number of cells/mm.
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Morphometric microglial cell analysis – Starting from 20X magnification images of AIF-1-stained
hippocampal and cortical slices, AIF-1 positive microglial cell body size was manually drawn using the
Image Pro Plus measurement function, and expressed in µm2. The roundness index of each microglia cell
was calculated as reported in [36] with the equation: Roundness = 4A/πM2, where A is the area and M is
the length of the major axis of each microglia cell's soma. Approximately 120 microglia cells were
analysed from each sample.

Number and neuronal tracing of doublecortin (DCX)-positive cells – DCX-positive cells were counted in
the subgranular zone and in the granular layer of the dentate gyrus, and expressed as number of
neurons/100 µm. Dendritic trees of newborn DCX-positive granule neurons (15–20 per animal) were
traced using custom-designed software for dendritic reconstruction (Immagini Computer, Milan, Italy),
interfaced with Image Pro Plus. The dendritic tree was traced live, at a final magnification of 500X. The
program provides the total dendritic length once the reconstruction of the entire dendritic tree is finished.

Microglia cell isolation
Microglial cells were isolated following the protocol published in [37]. Briefly, wild-type (+/+) and Cdkl5 KO
(+/-) female mice were anesthetized with 2% isoflurane (in pure oxygen) and transcardial perfused with
PBS. Brains were transferred to ice-cold phosphate buffered saline (PBS; without Ca2 + and Mg2’, with
NaHCO3, 0.75 g/l, Hepes buffer 10 mM, pH 7.4), freed of meninges, minced in serum-free Dulbecco
modified Eagle medium (DMEM) containing 0.25% trypsin (T9201; Sigma-Aldrich, St. Louis, MO, USA)
and 0.02% EDTA, and incubated at 37°C for 60 min. Enzymatic digestion was blocked by adding DMEM
supplemented with 10% heat-inactivated FBS. After centrifugation (2000 rpm at 4°C for 5 min) samples
were incubated with a DNAse I solution (serum-free DMEM containing 40 ug/ml DNAse Type I, D5025;
Sigma-Aldrich, St. Louis, MO, USA) for 15 min at 37°C. Samples were then centrifuged, transferred to ice-
cold DMEM, and sieved through a nylon mesh 40 µm pore size (Corning Cell Strainer). DMEM (21.4 ml)
with sieved tissue derived from 2 mice brain was mixed with 8.6 ml of cold isotonic Percoll (Formerly GE
Healthcare Life Sciences; Fisher scientific) in PBS and centrifuged (2000 rpm at 4°C for 20 min). Pellet
was washed in PBS and finally resuspended in 1 ml of TRI reagent (Sigma-Aldrich, St. Louis, MO, USA)
and stored at -80°C or processed for RNA extraction.

RNA isolation and RT-qPCR
Microglia cell RNA isolation was performed using the Direct-zol RNA MiniPrep kit (Zymo Research) and
cDNA synthesis was achieved with 1 µg of total RNA using iScript™ Advanced cDNA Synthesis Kit (Bio-
Rad, Hercules, CA, USA) according to the manufacturer’s instructions. Real-time PCR was performed using
Sso Advanced Universal SYBR Green Supermix (Bio-Rad) in an iQ5 Real-Time PCR Detection System (Bio-
Rad). We used primer pairs (table S1) that gave an efficiency close to 100%. GAPDH (glyceraldehyde 3-
phosphate dehydrogenase) used as a reference gene for normalization in the qPCR. Relative
quantification was performed using the ΔΔCt method.

Western blotting
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For the preparation of total cell extracts, tissue samples were homogenized in RIPA buffer (50 mMTris–
HCl, pH 7.4, 150 mM NaCl, 1% Triton-X100, 0.5% sodium deoxycholate, 0.1% SDS) supplemented with 1
mM PMSF and 1% protease and phosphatase inhibitor cocktail (Sigma-Aldrich). Protein concentration
was determined using the Bradford method [38]. Equivalent amounts (50 µg) of protein were subjected to
electrophoresis on a 4–12% Mini-PROTEAN® TGX™ Gel (Bio-Rad) and transferred to a Hybond ECL
nitrocellulose membrane (GE Healthcare Bio-Science). The following primary antibodies were used: rabbit
polyclonal anti-GAPDH (1:5000, Sigma-Aldrich), rabbit polyclonal anti-STAT3 (1:1000, Sigma-Aldrich),
rabbit polyclonal anti-phospho-STAT3 (1:1000, Cell Signaling Technology), and rabbit polyclonal anti-
BDNF (1:500, Santa Cruz Biotechnology). An HRP-conjugated goat anti-rabbit IgG (1:5000, Jackson
ImmunoResearch Laboratories) secondary antibody was used. Densitometric analysis of digitized
images was performed using Chemidoc XRS Imaging Systems and Image LabTM Software (Bio-Rad).

Statistical analysis
Statistical analysis was performed with GraphPad Prism (version 7). Values are expressed as means ± 
standard error (SEM). The significance of results was obtained using Two-tailed unpaired t-test and one-
way or two-way ANOVA followed by Fisher’s LSD post-hoc test as specified in the figure legends. A
probability level of P < 0.05 was considered to be statistically significant. The confidence level was taken
as 95%.

Results
Increased microglial activation in the brain of Cdkl5 KO mice.

To investigate whether inflammatory processes could be involved in the pathophysiology of CDD, we
counted the number and analyzed the morphology of microglia (AIF-1-positive cells) in the hippocampus
and cortex of male (-/Y) and female (+/-) Cdkl5 KO mice and wild-type (+/Y, +/+) littermates. We found an
increase in the number of microglial cells in both the analyzed brain regions of -/Y and +/- Cdkl5 KO mice
in comparison with their +/Y, and +/+ counterparts (Fig. 1A-C). Moreover, microglial cells in Cdkl5 KO mice
presented an enlarged body size (Fig. 1D and Fig S1A,B) and reduced roundness of the cell body (Fig. 1E)
compared to wild-type counterparts (Fig. 1B,D,E). Together, these data indicate that in the absence of
Cdkl5 microglia adopted a bigger, more irregular soma shape, typical of a state of activation [39].

Importantly, replacement of CDKL5 protein through a systemic injection of a TATκ-GFP-CDKL5 fusion
protein [34] reversed microglial activation in Cdkl5 KO mice. We found a lower number of microglial cells
(Fig. 2A) with a smaller body size (Fig. 2B) in the hippocampus and cortex of TATκ-GFP-CDKL5-treated
Cdkl5 -/Y mice compared to Cdkl5 -/Y mice treated with a TATκ-GFP control protein, indicating the
reversibility of the inflammatory phenotype due to the absence of Cdkl5.

Non-cell autonomous microglial activation in the absence of Cdkl5

In order to investigate whether microglial activation in Cdkl5 KO mice is a cell-autonomous effect, we first
evaluated Cdkl5 expression levels in purified microglial cells. Real time and western blot analyses showed
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very low mRNA levels (Fig. 3A) and undetectable protein levels (Fig. 3B) of Cdkl5 in microglial cells
compared to cortical extracts of wild-type mice, suggesting that Cdkl5 function is of minor relevance in
these cells. Next, we evaluated the microglia activation status in Emx1 KO mice, a conditional Cdkl5 KO
mouse model carrying Cdkl5 deletion only in the excitatory neurons of the forebrain, but not in microglial
cells [6, 35]. Similarly to Cdkl5 KO mice, activation of microglial cells, increased number and body size of
microglial cells (Fig. 3C), was present in the hippocampus of Emx1 KO mice, suggesting a non-cell
autonomous microglial over-activation in the absence of Cdkl5.

Treatment with luteolin inhibits microglia over-activation in Cdkl5 +/- mice.

Luteolin, a naturally occurring polyphenolic flavonoid, is a potent microglia inhibitor that possesses
antioxidant, anti-inflammatory, and neuroprotective effects both in vitro and in vivo [40, 41]. Since the
majority of CDD patients are heterozygous females [42], we tested the efficacy of an in vivo treatment
with luteolin on microglial over-activation in the heterozygous female mouse model of CDD (+/-). Three-
month-old Cdkl5 KO female mice (+/-) were injected daily with luteolin (i.p. 10 mg/Kg) for 7 or 20 days.
While both short and long term treatments with luteolin did not affect microglia cell number in the cortex
of Cdkl5 +/- mice (Fig. 4A,C), a 7-day treatment was sufficient to recover microglia body size at the wild-
type level in both cortex (Fig. 4B,C) and hippocampus (Fig. S2).

Confirming microglia over-activation, we found significantly higher levels of phosphorylated STAT3, a key
promoter of microglial cell pro-inflammatory phenotype [43, 44], in brain homogenates of Cdkl5 +/- mice
in comparison with their wild-type counterparts (Fig. 4D-F). A 7-day treatment with luteolin restored
phospho-STAT3 levels to those of wild-type mice (Fig. 4D,F). No differences in total STAT3 levels were
observed in treated or untreated Cdkl5 +/- mice in comparison with their wild-type counterparts (Fig. 4E,F).

Accordingly with activation of STAT3 signaling and microglia over-activation, we found increased
expression of molecules involved in the microglial neuroinflammatory response, such as IL-1β and IL-6
cytokines, and TNFα or microglial markers (CX3CR1 and AIF-1) (Fig. 5A,B); the increased expression was
recovered by treatment with luteolin in Cdkl5 +/- mice (Fig. 5A,B).

Treatment with luteolin restores survival and maturation of newborn cells in the dentate gyrus of Cdkl5
+/- mice

Loss of Cdkl5 impairs survival and maturation of newborn hippocampal neurons [11, 16]. In order to
evaluate the efficacy of in vivo treatment with luteolin on the survival rate of new neurons, we assessed
the number of doublecortin (DCX)-positive cells in the dentate gyrus (DG) of untreated Cdkl5 +/- and
Cdkl5 +/+ mice and Cdkl5 +/- mice treated with luteolin for 7 days. We found that treatment with luteolin
restored the number of DCX-positive granule neurons in Cdkl5 +/- mice (Fig. 6A,B). To determine whether
increased proliferation rate underlies the positive effect of luteolin on newborn neuronal number, we
counted proliferating cells immunostained for Ki-67, an endogenous marker of actively proliferating cells.
We found that luteolin-treated Cdkl5 +/− mice had the same number of Ki-67 labelled cells as untreated
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Cdkl5 +/− and Cdkl5 +/+ mice (Fig. 6C). This evidence indicates that the higher number of DCX-positive
cells in treated Cdkl5 +/− mice is not due to an increase in proliferation rate.

Importantly, luteolin treatment improved impaired dendritic development in Cdkl5 +/- mice. Quantification
of the dendritic tree of DCX positive cells showed that Cdkl5 +/− mice had a shorter dendritic length than
wild-type mice (Fig. 6A,D); a 7-day treatment with luteolin improved this defect (Fig. 6A,D).

It was reported that luteolin treatment increases brain levels of the brain-derived neurotrophic factor
(BDNF) [33], which is necessary for neuronal survival and maturation [45]. We examined mature BDNF
levels in cortical homogenates of Cdkl5 +/- and Cdkl5 +/+ mice and in Cdkl5 +/- mice following
administration of luteolin for 7 days. While levels of BDNF were similar in Cdkl5 +/- and Cdkl5 +/+ mice
treated with the vehicle, treatment with luteolin increased levels of BDNF by about 50% (Fig. 6E,F).

Microglia activation with age in Cdkl5 +/- mice

To assess whether microglia over-activation is already present at an early stage of life and to monitor its
evolution with age, we analyzed microglial cell status in the brains of Cdkl5 KO mice at different
developmental stages (young: 20-day-old, adult: 3-month-old, and middle-aged: 11-month-old mice). We
found that an increase in microglial cell number and soma size was already present in the cortex and
hippocampus of young Cdkl5 +/- mice compared to their wild-type counterparts of the same age
(Fig. 7A,B). A significant decrease in the density of microglial cells with age was present in both wild-type
and Cdkl5 +/- mice compared to their 20-day-old counterparts (Fig. 7A,B). Surprisingly, while the
difference in the number of microglial cells was maintained between Cdkl5 +/- and wild-type mice at 3
months of age, in middle-aged mice there was no longer a difference (Fig. 7A,B). In contrast, increased
microglial body size in Cdkl5 +/- mice was present in all three age groups compared to their wild-type
counterparts of the same age (Fig. 7A,B). Interestingly, an age-dependent worsening of microglial
activation, and, therefore, microglial body size, was observed in both middle-aged Cdkl5 +/- and Cdkl5 +/+
mice (Fig. 7A,B).

Luteolin treatment restores neuron survival in middle-aged Cdkl5 +/- mice

Microglial cell changes compatible with their activation have been documented in aging [46, 47] and it
has been suggested that they contribute to the brain decline in pathological conditions [48, 49]. Recent
evidence showed an age-dependent decreased hippocampal neuron survival in middle-aged Cdkl5 KO
mice, paralleled by an increased cognitive decline [21].

To explore the possibility that microglia over-activation in aged Cdkl5 KO mice could underlie the higher
neuronal loss, we assessed the efficacy of treatment with luteolin in counteracting neuronal loss in 11-
month-old Cdkl5 +/- mice (Fig. 8A). Treatment with luteolin reduced microglia body size in the
hippocampus of middle-aged Cdkl5 +/- mice at even lower levels than those of wild-type mice of the
same age (Fig. 8B). Importantly, the reduced number of Hoechst-positive nuclei (Fig. 8C) and NeuN-
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positive cells (Fig. 8D) in middle-aged Cdkl5 +/- mice was strongly improved by treatment with luteolin
(Fig. 8C,D).

Treatment with luteolin prevents NMDA-induced excitotoxicity in the hippocampus of Cdkl5 +/- mice.

To investigate whether microglia over-activation has a causative role in the increased neuronal
susceptibility to excitotoxic stress in Cdkl5 KO mice [19, 20], we pre-treated Cdkl5 +/- mice for 7 days with
Luteolin before NMDA (60mg/kg) intraperitoneal injection (Fig. 9A). Animals were sacrificed 1 day or 8
days after NMDA administration (Fig. 9A). As expected, microglia activation increased in the
hippocampus of both Cdkl5 +/- and Cdkl5 +/+ mice after NMDA treatment (Fig. 9B). Nevertheless, after
NMDA excitotoxic stimulation, the somal volume of microglial cells in Cdkl5 +/- mice was higher than
that of NMDA-treated wild-type mice (Fig. 9B). Importantly, luteolin treatment was able to counteract both
basal and NMDA-induced microglial activation in Cdkl5 KO mice, bringing microglial soma size back to
that of the untreated wild-type mouse condition (Fig. 9B).

Neuronal death was assessed 1 day after NMDA administration using immunohistochemistry for cleaved
caspase-3 and 8 days after using Hoechst staining and immunohistochemistry for NeuN. In the CA1 layer
of the hippocampus, NMDA-treated Cdkl5 +/- mice showed a higher number of cleaved caspase-3
positive cells (Fig. 9C,D) and a lower number of Hoechst-positive nuclei (Fig. 9E) and NeuN-positive cells
(Fig. 9F,G) in comparison with NMDA-treated wild-type mice, indicating increased cell death in Cdkl5 +/-
mice after the excitotoxic stimulus. Importantly, pre-treatment with luteolin reduced cell death at 24 h
after NMDA treatment in Cdkl5 +/- mice (Fig. 9C,D), thus preventing neuronal loss in the hippocampal
CA1 region (Fig. 9E-G).

Discussion
The lack of effective therapies for CDD stresses the urgency with which pathogenic mechanisms
underlying the disorder need to be identified. Our results highlight, for the first time, the presence of a
generalized status of microglia over-activation in the brain of a mouse model of CDD. We found
alterations in microglial cell morphology and number, increased levels of AIF-1 and proinflammatory
cytokines, and increased STAT3 signaling in the brain of Cdkl5 KO mice. Remarkably, treatment with
luteolin (a natural anti-inflammatory flavonoid) is able to recover impaired neuronal survival and
maturation in Cdkl5 KO mice, suggesting that a hyperactive state of microglia plays a causative role in
the CDD phenotype.

Recently, a cytokine dysregulation, proportional to clinical severity and redox imbalance, was found in
children affected by CDD [31, 32]. Results included increased Tumour Necrosis Factor (TNF)-α, Interleukin
(IL)-1β, and Interleukin (IL)-6 in the peripheral blood of children with CDD. These inflammatory cytokines
could signal inflammatory changes in the brain that could, in turn, greatly impact neurodevelopment and
neural function in CDD. Our finding of an over-activation of microglial cells with increased TNF-α, IL-1β
and IL-6 levels in the brain of Cdkl5 KO mice is in line with the results observed in CDD patients, and
suggests the involvement of neuro-inflammatory processes in the pathophysiology of CDD.
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Microglia activation, associated with an increase in cell body size, as well as cytokine alterations in the
peripheral blood, has been recently described in neurodevelopmental disorders such as autism spectrum
disorders (ASDs), Down syndrome, and Rett syndrome [28–30, 50, 51]. Similarly to Rett syndrome [52],
the mechanism by which absence of Cdkl5 induces microglia over-activation appeared to be non-cell
autonomous. By using Emx1 KO mice, a conditional Cdkl5 KO mouse model which does not carry Cdkl5
deletion in microglial cells [6, 35], we found that microglia over-activation is independent of microglia-
specific loss of Cdkl5 expression. This finding suggests that microglial activation in the Cdkl5 KO brain
may be attributable to neuronal loss of Cdkl5. Accumulating evidence indicates the presence of
bidirectional microglia-neuron communication in the healthy and diseased brain [53]. In the healthy brain,
microglia exhibit an actively repressed ‘surveying’ phenotype that is dependent on a dynamic crosstalk
between microglia and neurons [54]. It has been proposed that the removal of this neuronal-derived
inhibitory control represents a type of danger signal for microglia, indicating that neuronal function is
impaired and leads to alterations in microglia morphology and function. The chronic activation of
microglia may, in turn, cause reduced neuronal maturation and survival through the release of potentially
cytotoxic molecules such as proinflammatory cytokines [23, 24]. Our finding that inhibition of microglia
over-activation by luteolin restores survival and maturation of newborn neurons in the hippocampal
dentate gyrus of Cdkl5 KO mice is in line with this hypothesis. Though luteolin treatment had no effect on
the number of microglial cells, it restored microglia body size and shape, and, importantly, pro-
inflammatory cytokines and P-STAT3 levels. Differently from a recent study that demonstrated the effect
of luteolin treatment in increasing cell proliferation in a mouse model of Down syndrome [33], we did not
observe an increased number of Ki-67-positive cells in the hippocampal dentate gyrus of Cdkl5 KO mice.
This discrepancy can be explained by a selective effect of luteolin on the Ts65Dn mouse, as the authors
themselves did not observe a luteolin-dependent proliferation increase in wild-type mice. The pro-survival
effect of microglial inhibition was confirmed by the restoration of the age-dependent decreased
hippocampal neuron survival in middle-aged Cdkl5 KO mice. This is in agreement with recent studies that
suggest that luteolin plays a role in counteracting age-induced microglia activation in aged mice [55, 56].

The neuroprotective effect of luteolin might also be associated with its effect on increasing BDNF levels.
Recent findings reported that luteolin increases the expression of BDNF in the cerebral cortex and
hippocampus of mice [33, 57]. Similarly to these findings, we found increased BDNF levels in the brain of
luteolin treated Cdkl5 KO mice. Since BDNF plays an important role in the survival and development of
neurons [58], it is reasonable to hypothesize that, in Cdkl5 KO mice, the luteolin-dependent activation of
the BDNF pathways contributes to hippocampal neuronal survival and maturation.

As previously reported in male Cdkl5 KO mice [19, 20], we found here that hippocampal neurons of
heterozygous female Cdkl5 KO mice showed an increased vulnerability to excitotoxicity. Inflammatory
processes, including activation of microglia and production of proinflammatory cytokines, such as TNF-α,
IL-1β, and IL-6, are associated with excitotoxic stimuli [59, 60]. Similarly, we observed an increased
microglial over-activation in response to NMDA treatment. Importantly, the microglia activation was
higher in Cdkl5 KO mice than in wild-type mice. Luteolin pre-treatment recovered the increased NMDA-
induced cell death in hippocampal neurons of Cdkl5 KO mice. Because the increased cell death of



Page 12/27

hippocampal neurons observed in response to NMDA treatment correlates with an increased microglial
over-activation, the beneficial effect of luteolin in neuronal survival can be, at least partially, ascribed to
the inhibition of microglia activation. Luteolin was observed to exert a similar neuroprotective activity
against kainic acid-induced brain damage in mice [61].

Conclusions
Microglia remain to be controversial cells within the CNS, with both beneficial and detrimental roles,
especially in the context of disease pathology. Our finding that treatment with luteolin recovers neuronal
survival and maturation in Cdkl5 KO mice supports the theory that microglia exert a harmful action in the
CDKL5-null brain. Recent evidence strongly supports the role of neuroinflammation in the
pathophysiology of human epilepsy [62]. In support of this it has been shown that pre-treatment with
luteolin significantly reduces the frequency of drug-induced seizures in animal models of epilepsy [61,
63–65]. Since epilepsy is one of the hallmark features of CDD, it may be hypothesized that luteolin has a
beneficial effect on this feature. Therefore, the suppression of microglia-mediated inflammation may be
considered as an important strategy in CDD therapy.
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Figure 1

Increased microglial activation in the brain of Cdkl5 KO mice. A,C: Quantification of AIF-1-positive cells in
hippocampal (Hippo) and somatosensory cortex (Cortex) sections from 3-month-old male (+/Y n=4, -/Y
n=4; A), and female (+/+ n=5, +/- n=6; C) Cdkl5 KO mice. B: Representative fluorescence images of
cortical sections processed for AIF-1 immunohistochemistry of a wild-type (+/Y) and a Cdkl5 KO mouse
(-/Y). The dotted boxes in the upper panels indicate microglial cells shown in magnification in lower
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panels. D: Distribution analysis of microglial cells soma area in the somatosensory cortex of 3-month-old
male (+/Y n=4, -/Y n=4 on the left), and female (+/+ n=4, +/- n=6 on the right) Cdkl5 KO mice, showing a
shift to larger cell body sizes in the absence of Cdkl5. E: Distribution analysis of microglial cell circularity
(roundness) in the somatosensory cortex of Cdkl5 KO mice as in D. In Cdkl5 KO mice microglial cells are
more irregularly shaped (lower roundness index) showing a left-shifted distribution compared to that of
wild-type mice. The results in A and C are presented as means ± SEM. * p<0.05; ** p<0.01; ***p<0.001
(two-tailed Student’s t-test). The results in D and E are presented as means ± SEM. * p<0.05; ***p<0.001
(Fisher’s LSD test after two-way ANOVA).

Figure 2

Effect of TATκ-GFP-CDKL5 administration on microglial cell activation in Cdkl5 KO mice. A:
Quantification of AIF-1-positive cells in hippocampal (Hippo) and somatosensory cortex (Cortex) sections
from 6-month-old wild-type (+/Y n=2) mice and Cdkl5 -/Y mice treated with TATκ-GFP (n= 5) or TATκ-
GFP-CDKL5 (n= 5) protein as described in [34]. B: Mean microglia cell body size in the hippocampus and
somatosensory cortex of Cdkl5 KO mice as in A. Data in A and B are presented as means ± SEM. *
p<0.05; ** p<0.01; ***p<0.001 (Fisher’s LSD after one-way ANOVA). C: Examples of cortical sections
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processed for AIF-1 immunostaining of a Cdkl5 -/Y mouse treated with TATκ-GFP or TATκ-GFP-CDKL5 as
in A.

Figure 3

Non-cell autonomous microglial activation in the absence of Cdkl5.
A: Expression of Cdkl5 mRNA in
cortex of 3-month-old Cdkl5 +/+ mice (n=3) and microglial cells purified from 3-month-old Cdkl5 +/+ mice
(n=3). Data are given as a percentage of Cdkl5 cortical expression. B: Example of immunoblot showing
Cdkl5 and GAPDH levels in extracts from somatosensory cortex (CTX) of a wild-type Cdkl5 +/+ mouse
and from microglial cells (MG) purified from Cdkl5 +/+ mice (n=4). C: Quantification of AIF-1-positive
cells (on the left) and mean cell body size (on the right) of microglial cells in hippocampal sections of
wild-type (+/Y; n=4) and Emx1 KO (-/Y Emx1; n=5) mice. The results in A and C are presented as means ±
SEM. * p<0.05; **P< 0.01; ***p<0.001 (two-tailed Student’s t-test).
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Figure 4

Effects of luteolin treatment on microglia activation in Cdkl5 +/- mice. A: Quantification of AIF-1-positive
cells in somatosensory cortex from 3-month-old Cdkl5 +/+ (n=5) and Cdkl5 +/- (n=6) mice, and Cdkl5 +/-
mice daily treated with luteolin intraperitoneal injections (i.p. 10 mg/Kg) for 7 (Lut 7d, n=4) or 20 days
(Lut 20d, n=4). B: Mean AIF-1-cell body size of microglial cells in Cdkl5 female mice as in A. C:
Representative fluorescence images of cortical sections processed for AIF-1 immunohistochemistry of a
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Cdkl5 +/+ and a Cdkl5 +/- mouse, and a seven-day luteolin-treated Cdkl5 +/- mouse (+ Lut 7d). Values in
A,B are represented as mean ± SEM. *p<0.05; ***p<0.001 (Fisher’s LSD test after one-way ANOVA). D,E:
Western blot analysis of P-STAT3 (Tyr 705), STAT3, and GAPDH levels in somatosensory cortex
homogenates from untreated Cdkl5 mice (+/+ n=4, +/- n=4) and luteolin-treated Cdkl5 +/- mice as in A.
Histograms show P-STAT3 (Tyr 705) protein levels normalized to corresponding total STAT3 protein
levels in (D), and STAT3 levels normalized to GAPDH in (E). Data are expressed as percentages of Cdkl5
+/+ mice. Values are represented as means ± SEM of two independent experiments; *p<0.05; ***p < 0.001
(Fisher’s LSD test after one-way ANOVA). F: Example of immunoblots from 4 animals of each
experimental group.

Figure 5

Effects of luteolin treatment on neuroinflammatory gene expression in microglial cells of Cdkl5 KO mice.
A: Real-time qPCR analysis of Interleukin 1 beta (IL-1β Interleukin 6 (IL-6), and Tumor necrosis factor
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alpha (TNFα) gene expression in microglial cells isolated from the brain of 3-month-old Cdkl5 +/+ (n=6)
and Cdkl5 +/- (n=5) mice and 7-day luteolin-treated Cdkl5 +/- (n=6, Lut) mice. B: Expression of CX3C
chemokine receptor 1 (CX3CR1) and Allograft inflammatory factor 1 (AIF-1) in microglial cells isolated
from the brain of mice as in A. Data are given as fold change in comparison with microglial cells from
Cdkl5 +/+ mice. * p<0.05; ** p<0.01; (Fisher’s LSD test after one-way ANOVA).

Figure 6
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Effect of luteolin treatment on survival and maturation of postmitotic granule neurons in Cdkl5 KO mice.
A: Examples of sections processed for DCX immunostaining from the dentate gyrus (DG) of an untreated
WT (+/+), a heterozygous Cdkl5 KO female (+/-), and a 7-day luteolin-treated heterozygous Cdkl5 KO
female (10 mg/Kg; +/- Lut 7d) mouse. B: Number of DCX-positive cells in the DG of treated Cdkl5 +/+
(n=6) and Cdkl5 +/- (n=6) mice, and Cdkl5 +/- 7-day luteolin-treated mice (Lut +, n=4). Data are expressed
as number of DCX positive cells per 100 μm of granule cell layer. C: Number of Ki-67 positive cells in the
DG of mice as in B. D: Mean total dendritic length of CA1 pyramidal neurons of mice as in B. Values in
B,C and D are represented as means ± SEM. *P< 0.05, **P< 0.01 (Fisher’s LSD test after one-way ANOVA).
E,F: Western blot analysis of BDNF and GAPDH levels in somatosensory cortex homogenates from
untreated Cdkl5 mice (+/+ n=4, +/- n=4) and 7-day luteolin-treated Cdkl5 +/- mice (+/-Lut7d, n=4) as in
Fig. 4F. Examples of immunoblot in E. The nitrocellulose membrane used in the Western blot shown in
Fig. 4F was probed with the anti-BDNF antibody. Histogram in F shows mature BDNF protein levels
normalized to GAPDH. Data are expressed as a percentage of untreated Cdkl5 +/+ mice. Values are
represented as means ± SEM of two independent experiments; *p<0.05;**p < 0.01 (Fisher’s LSD test after
one-way ANOVA).

Figure 7



Page 25/27

Assessment of microglia activation in different life stages of Cdkl5 +/- mice A,B: Quantification of the
number of AIF-1-positive cells (on the left) and mean AIF-1-cell body size (on the right) of microglial cells
in somatosensory cortex (A) and hippocampal sections (B) from young (20-day-old; +/+ n=5; +/- n=6),
adult (3-month-old; +/+ n=5; +/- n=6), and middle-aged (11-month-old; +/+ n=4; +/- n=4) Cdkl5 mice. The
results in A and B are presented as means ± SEM. * p<0.05; ** p<0.01; ***p<0.001 (Fisher’s LSD test after
two-way ANOVA).

Figure 8

Effect of luteolin treatment in middle-aged Cdkl5 +/- mice. A: Schedule of treatment. Middle-aged (11-
month-old) Cdkl5 mice were treated with vehicle or luteolin for 7 days. Mice were sacrificed 1 day after
the end of treatment. B: Mean AIF-1-cell body size of microglial cells in the hippocampus of vehicle-
treated (+/+ n=4; +/- n=4) and luteolin-treated (+/- n=4, Lut) middle-aged Cdkl5 mice. C,D: Quantification
of Hoechst-positive cells (C), and NeuN positive cells (D) in CA1 layer of hippocampal sections from mice
treated as in C. The results in B,C, and D are represented as means ± SEM. ** p<0.01; ***p<0.001 (Fisher’s
LSD test after one-way ANOVA).
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Figure 9

Effect of luteolin treatment on NMDA-induced excitotoxicity in the hippocampus of Cdkl5 +/- mice. A:
Schematic view of in vivo treatments in 3-month-old Cdkl5 KO female mice. Mice received a single
intraperitoneal injection of NMDA (60 mg/kg) after 7 days of vehicle or luteolin treatment. Animals were
sacrificed 1 day or 8 days after NMDA administration. B: Mean AIF-1-cell body size of microglial cells in
the hippocampus of Cdkl5 +/+ (n=5) and Cdkl5 +/- (n=6) mice treated with vehicle only, in Cdkl5 +/+
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(n=3) and Cdkl5 +/- (n=3) mice treated with vehicle and NMDA and in Cdkl5 +/- (n=3) mice pre-treated for
seven days with luteolin before NMDA injection. Mice were sacrificed 8 days after NMDA treatment. C:
Number of cleaved caspase-3 positive cells in the hippocampus of Cdkl5 +/+ (n=3) and Cdkl5 +/- (n=4)
mice treated with vehicle and NMDA, and in Cdkl5 +/- (n=6) mice pre-treated for 7 days with luteolin
before NMDA injection. Mice were sacrificed 24 h after NMDA treatment. Data are given as a percentage
of NMDA treated Cdkl5 +/+ mice. D: Examples of cleaved caspase-3 positive cells (white arrows) in CA1
layer of mice as in C. E,F: Quantification of Hoechst-positive cells (E), and NeuN positive cells (F) in CA1
layer of hippocampal sections from mice treated as in B. The results in B, E and F are presented as
means ± SEM. * p<0.05; ** p<0.01; ***p<0.001 (Fisher’s LSD test after one-way ANOVA). G: Representative
fluorescent images of hippocampal sections of mice treated as in B immunostained for NeuN and
counterstained with Hoechst.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Additionalfile1.pdf

GAPDH0.8.jpg

GEL1E21.jpg

GEL1E22.jpg

GEL1E23.jpg

GEL2E11.jpg

LAB2021.jpg

https://assets.researchsquare.com/files/rs-203260/v1/8c9d3acc887e3451f87b744f.pdf
https://assets.researchsquare.com/files/rs-203260/v1/f13c8458cab4de0f2d071d55.jpg
https://assets.researchsquare.com/files/rs-203260/v1/45c1da5e19d4bbcadd56a119.jpg
https://assets.researchsquare.com/files/rs-203260/v1/d2314c7969b46478e1cf1e9b.jpg
https://assets.researchsquare.com/files/rs-203260/v1/d6a0324216fd71d548af01e4.jpg
https://assets.researchsquare.com/files/rs-203260/v1/7ff275aa204fd867fbd09174.jpg
https://assets.researchsquare.com/files/rs-203260/v1/f6e7ce92a2359e67c300f47a.jpg

