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Abstract

Tipping to an undesired state in the climate, viewed as a complex system, when a control parameter
slowly approaches a critical value (λ(t) → λc) is a growing concern with increasing greenhouse gas
concentrations. Predictions can rely on detecting early warning signals (EWS) in observations of the
system. The primary EWS are increase in variance, due to loss of resilience, and increased autocorrelation
or critical slow down. These measures are statistical in nature, which implies that the reliability and
statistical significance of the detection depends on the sample size in observations and the magnitude of
the change away from the base value prior to the approach to the tipping point. Thus, the possibility of
providing useful early warning depends on the relative magnitude of several interdependent time scales in
the system. These are (a) the time before the critical value λc is reached, (b) the (inverse) rate of approach
to the bifurcation point, (c) the size of the time window required to detect a significant change in the
EWS and finally, (d) the escape time for noise-induced transition (prior to the bifurcation). Conditions
for early warning of tipping of the AMOC are marginally fulfilled for the existing past ∼150 years of
proxy observations where indicators of tipping have recently been reported. Here we provide statistical
significance and estimate a collapse of the AMOC to occur around year 2050.

1 Main

A forthcoming collapse of the Atlantic meridional overturning circulation (AMOC) is a major concern as it is
one of the most important tipping elements in Earth’s climate system [1, 2, 3]. In recent years, model studies
and paleoclimatic reconstructions indicate that the strongest abrupt climate fluctuations, the Dansgaard-
Oeschger events [4], are connected to the bimodal nature of the AMOC [5, 6]. Numerous climate model
studies show a hysteresis behaviour, where changing a control parameter, typically the freshwater input
into the Northern Atlantic, makes the AMOC bifurcate through a set of co-dimension one saddle-node
bifurcation [7, 8]. State-of-the-art Earth-system models can reproduce such a scenario, but inter-model
spread is large and the critical threshold is poorly constrained [9, 10]. When complex systems undergo
critical transitions by changing a control parameter λ through a critical value λc, a structural change in the
dynamics happens. The previously statistically stable state ceases to exist and the system moves to a different
statistically stable state. The system undergoes a bifurcation, which for λ sufficiently close to λc can happen
in a limited number of ways rather independent from the details in the governing dynamics [11]. Beside a
decline of the AMOC before the critical transition, there are statistical quantities, the so-called Early Warning
Signals (EWS), which also change before the tipping happens. These are critical slow down (increased auto-
correlation) and, from the Fluctuation-Dissipation Theorem, increased variance in the signal [12, 13, 14]. The
latter is also termed ”loss of resilience”, especially in the context of ecological collapse [15]. The two EWS
are statistical equilibrium concepts, thus using them as actual predictors of a forthcoming transition, rely
on the assumption of quasi-stationary dynamics. The AMOC has only been monitored continuously since
2004, through combined measurements from moored instruments, induced electrical currents in submarine
cables and satellite surface measurements [16]. Over the period 2004-2012 a decline in the AMOC has been
observed, but longer records are necessary in order to assess the significance. For that, careful finger printing
techniques have been applied to longer records of sea surface temperature (SST), which, backed by survey
of a large ensemble of climate model simulations, have found the SST in the Subpolar gyre (SG) region of
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the North Atlantic (Area marked with a black contour in Fig. 1a) to contain an optimal fingerprint of the
strength of the AMOC [17, 18, 19]. In order to obtain the AMOC fingerprint, two steps are required: The
seasonal cycle in the SST is governed by the surface radiation independent from the circulation and thus
removed by considering the monthly anomalies, where the mean over the period of recording of the month
is removed. Secondly, there is an ongoing positive linear trend in the SST related to global warming, which
is also not related to the circulation. This is compensated for by subtracting two times the global mean
(GM) SST anomaly (small seasonal cycle removed). The factor two is a conservative estimate for the polar
amplification [20] of global warming in the SG region. Fig. 1b shows the SG - and the GM SST obtained
from the Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST) [21]. Fig. 1c shows the
SG anomaly and Fig.1d shows the GM anomaly with a clear global warming trend in the last half of the
record. The AMOC fingerprint obtained from the HadISST for the period 1870-2020 is shown in Fig.1e.
This is the basis for the analysis. It has been reported [22, 23] that this, and similar AMOC indices show
significant trends in the variance and autocorrelation, indicating early-warning of a shutdown of the AMOC.
However, a trend in the EWSs within a limited period of observation could be a random fluctuation within
a steady state statistics. Thus, for a robust assessment of the tipping point, it is necessary to establish a
statistical confidence level for the change above natural fluctuations. This is not easily done given only one,
the observed, realization of the transition. Here we establish such a measure of the confidence and find that
the transition is most likely to occur in 2051 with the 95% confidence interval 2026-2071. The strategy is
to infer the evolution of the AMOC solely on observed changes in mean and variance. The autocorrelation
can be included, but that is not necessary, as we demonstrate that variance is the more reliable EWS of
the two. The typical choice of control parameter is the flux of freshwater into the North Atlantic. River
runoff, Greenland ice melt and export from the Arctic ocean are not well constrained [24], thus we do not
assume the control parameter known. Boers [23] assumes the global mean temperature T to represent the
control parameter. T increases roughly linear with time since ∼ 1920 (Fig.1d). All we assume here is that
the AMOC is in an equilibrium state prior to a change towards the transition. The simplest, uninformed,
assumption is that the change is sufficiently slow and that the control parameter approach the (unknown)
critical value linearly with time.

2 Modeling the critical transition

For ease of notation, we denote the observed AMOC variable as x(t) (Fig.1e). We assume Xt to be a
representative observable of a system, which, depending on a control parameter λ < 0, is in risk of undergoing
a critical transition through a saddle-node bifurcation for λ = λc = 0. The system is initially in a statistically
stable state, i.e., it follows some stationary distribution. We are uninformed about the dynamics governing
the evolution of Xt, but can assume an effective dynamics, which, with λ sufficiently close to the critical
value λc = 0, can be described by the stochastic differential equation (SDE):

dXt = −((Xt −m)2 + λ)dt+ σdBt, (1)

where m+
√

|λ| represents the mean level of the observed record. Disregarding the noise, this is the normal
form of the co-dimension one saddle-node bifurcation [11]. The detection of a forthcoming transition using
statistical measures involves several time scales. The primary internal time scale is the autocorrelation time
τ of x(t) in the steady state. The period over which the control parameter changes from the steady state
value to the critical value sets an external time scale, τr (’r’ for ’ramping’). The mean and variance are
calculated from the observations as the control parameter λ(t) is changing. These quantities are inherently
equilibrium concepts and statistical, thus a time-window, Tw, of a certain size is required for a reliable
estimate. The further away from the steady state value (baseline), the shorter is the window required for
detecting a change. On the other hand, the closer to transition, critical slow down decreases the number of
independent points within a window, thus calls for a larger window for a reliable detection. Within a short
enough window, [t−Tw/2, t+Tw/2], we may assume λ(t) to be constant and the noise small enough, that the
process is well approximated by the linear process dXt = −α(Xt−µ)dt+σdBt, where µ is the mean and α is
the inverse correlation time. The EWSs are obtained from the observed time series by maximum likelihood
estimation (MLE), which for mean µ, one-lag autocorrelation ρ = exp(−α∆t) and variance γ2 = σ2/2α are
given in closed forms (see Methods) [25].
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3 Uncertainty on Early Warning Signals

The uncertainty is expressed through the variances of the estimates γ̂2 and ρ̂ obtained from the observations
within a time window Tw. These are Var(γ̂2) ≈ σ4/(2α3Tw) and Var(ρ̂) ≈ 2α∆t2/Tw, where Tw = n∆t is
the observation window, n is the number of observations within the window, ∆t is the time step between
observations, and α is a function of λ: α(λ) = 2

√

|λ| (see Methods). The uncertainties can be made
arbitrarily small by observing over a long time window Tw. We may therefore assume that ρ0 = exp(−α0∆t)
and γ20 = σ2/(2α0) are known, where α0 = 2

√

|λ0| and λ0 is the baseline value before t0. At t0, λ(t) begins
to change linearly towards λc = λ(tc) = 0: λ(t) = λ0(1 − Θ[t − t0](t − t0)/τr), where Θ[t] is the Heaviside
function and τr = tc − t0 > 0 is the ramping time up to time tc, whereafter the transition eventually will
occur. Knowing α(t), and deciding the q-percentile (such as 95% or 99% confidence level) the required time
window Tw(q, α), to detect a change from baseline in EWSs at the given confidence level is given in closed
form in Methods (7) for variance and in (8) for autocorrelation. As the transition is approached, the risk of
a noise-induced tipping (n-tipping) prior to tc is increasing and at some point making the EWS irrelevant
for predicting the tipping. The probability for n-tipping can in the small noise limit be calculated in closed
form, P (t, λ) = 1−exp(−t/τn(λ)), with mean waiting time τn(λ) = (π/

√

|λ|) exp(8|λ| 32 /3σ2) (see Methods).
To summarize the involved time scales, in Fig. 2a the required window size Tw at the 95% confidence level
is plotted as a function of λ(t) for the EWS variance (red curve) and autocorrelation (yellow curve). These
are plotted together with the mean waiting time for n-tipping (blue curve). With a chosen data window
size of 50yrs, increased variance can only be detected after the time when λ(t) ≈ −1.1 (crossing of red
and red-dashed curves). At that time a window of approximately 75yrs is required to detect an increase
in autocorrelation, making variance the better EWS of the two. When λ ≈ −0.4 the mean waiting time
for n-tipping is smaller than the data window size. Thus, the increased variance can be used as a reliable
EWS in the range −1.1 <≈ λ(t) <≈ −0.4 indicated by the green band. How timely an early warning this
is depends on the speed at which λ(t) is changing from λ0 to λc, i.e., the ramping time τr. A set of 1000
realizations have been simulated with λ0 = −2.56 and τr = 140yrs, indicated by the time labels on top of
Fig. 2a. Ten of these realizations are shown in Fig. 2b on top of the stable and unstable branches of fixed
points of the model (1) (this is the bifurcation diagram of the model Eq. (1)). Fig. 2c (d) shows the variance
(autocorrelation) calculated from the realizations within a running 50yrs window (shown in Fig. 2c). The
solid black line is the baseline value, while the solid blue line is the increasing value. The calculated 95%
confidence level for the measurement of the EWS within the running window is shown by the dashed black
and blue lines, respectively. The corresponding light blue curves are obtained numerically from the 1000
realizations. The green band in Fig. 2c corresponds to the green band in Fig. 2a and shows where early
warning is possible in this case.

4 Predicting a forthcoming collapse of the AMOC

The AMOC fingerprint shown in Fig. 1e (replotted in Fig. 3a) shows an increased variance and autocor-
relation, plotted in Fig. 3b and c as functions of the mid-point of a 50yrs running window, i.e., the EWS
obtained in 2020 is assigned to year 1995. With the results above, we can now estimate the significance of
the increase: Firstly, within the running window, we can obtain the parameters of the linearized dynamics,
α (Fig. 3d) and σ2 (Fig. 3e). These are consistent with a linear decrease of λ(t) beginning from a constant
level λ0 = −2.56 at 1920, ramping linearly with τr = 130yrs, and a constant noise level σ2 = 0.28. This is
shown by the red lines in Fig. 3a, d and e. With these parameter values the model is completely determined
and the confidence levels can be calculated, thus the two-sigma levels around the baseline values of the EWS
are shown by purple-dashed lines in Fig. 3b and c. Thus, both EWS show increases beyond the two-sigma
level. Once a change in λ has been established, the ramping time can be estimated by MLE from data after
time t0 in the approximate model (see Methods). This leads to an estimate of 131yrs using t0 = 1920. This
is how the tipping time in year 2051 is estimated, shown in Fig. 3f. The estimate of tc is robust with respect
to the estimate of t0: Assuming t0 in 1900-1950 provides estimates between 2047 and 2056 for tc. Observing
the estimated λ0 (Fig 4c) show the linear decrease beginning in 1920, suggesting this to be the best estimate
for t0. In order to obtain an estimate of the uncertainty in the derived critical time of collapse tc, a set
of 1000 realizations have been simulated, using the parameters estimated from the AMOC data starting in
t0 = 1920. From each realization the parameters λ0, σ

2, m and tc are calculated by MLE (see Methods).
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From this the probability density function (PDF) (Fig. 4a) and the corresponding cumulative distribution
function (Fig. 4b) are obtained. The mean is ⟨tc⟩ = 2047 and the 90% confidence interval is 2026 − 2071.
The small discrepancy in mean is due to the approximate model used for estimation being different from the
data generating model (1), confirming that the linear model still provides valid estimates even if the true
dynamics are unknown. To test the goodness-of-fit, uniform residuals (see Methods) were calculated for the
data from 1920 and up to today. These are plotted in Fig. 4d. The model is seen to fit the data well, further
supporting the obtained estimates.

5 Discussion

We have provided a novel robust statistical analysis to quantify the uncertainty in observed early warning
signals for a forthcoming critical transition. The confidence depends on how rapid the system is approaching
the tipping point. With this the significance of the observed EWS for the AMOC has been established and
we predict with high confidence the tipping to happen as soon as 2051. This is indeed a worrisome result,
which should call for fast and effective measures to reduce global greenhouse gas emissions in order to avoid
the steadily change of the control parameter towards the collapse of the AMOC (i.e. reduce temperature
increase and fresh water input through ice melting into the North Atlantic region). As a collapse of the
AMOC has strong societal implications [26], it is important to monitor the flow and EWS from direct
measurements [?, ?, 27].

6 Methods

Assume the evolution of a representative variable of the system Xt is governed by eq. (1), and that the
control parameter λ is constant up to time t0 and then increases linearly as

λ(t) = λ0(1−Θ[t− t0](t− t0)/τr). (2)

Since the exact dynamics eq. (1) are assumed unknown, they are locally (i.e., for given λ) approximated
with a linear SDE, the Ornstein-Uhlenbeck process [28]. A Taylor expansion around the mean µ(λ) yields
the approximation

dXt ≈ −α(λ)(Xt − µ(λ))dt+ σdBt (3)

where µ(λ) = m +
√

|λ| and α(λ) = 2
√

|λ|. For fixed λ the process is stationary and the estimators of
µ, ρ = e−α∆t and γ2 = σ2/2α using MLE are given in the online material, see also [25]. The asymptotic
variances of the estimators obtained by inverting the Fisher information are Var(µ̂) ≈ γ2(1 + ρ)/(1 − ρ)n,
Var(ρ̂) ≈ (1 − ρ2)/n and Var(γ̂2) ≈ 2(γ2)2(1 + ρ4)/(1 − ρ2)n (see online material). For α∆t ≪ 1 we
approximate (1 + ρ4)/(1− ρ2) ≈ 1/(α∆t) and 1− ρ2 ≈ 2α∆t and obtain

Var(γ̂2) ≈ 2(γ2)2

αTw
=

σ4

2α3Tw
; Var(ρ̂) ≈ 2α∆t2

Tw
, (4)

where Tw = n∆t is the observation window.
The uncertainties in γ̂2 and ρ̂ can be made arbitrarily small by observing over a long time window Tw,

we may therefore assume that ρ0 = exp(−α0∆t) and γ
2
0 = σ2/(2α0) are known, where α0 = 2

√

|λ0|. When
λ(t) starts increasing according to (2), the normal state disappears after tc = t0 + τr time units, whereafter
the transition eventually will occur. Time tc is denoted the tipping time, however, it can happen earlier due
to a noise-induced tipping. As λ(t) increases, α decreases, and thus variance and autocorrelation increase.
The question is then how large Tw needs to be in order to detect a statistically significant increase compared
to the baseline values γ20 and ρ0. For a given estimate γ̂2, the estimated difference from the baseline variance
is

∆γ2 = γ̂2 − γ20 = γ20(α0/α̂− 1), (5)

and the estimated difference from the baseline autocorrelation is

∆ρ = ρ̂− ρ0 = ρ0(e
(α0−α̂)∆t − 1) ≈ ρ0(α0 − α̂)∆t. (6)
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Since the two EWS, γ2 and ρ, are treated on an equal footing, in the following we let ψ̂ denote either of
the estimators (11) or (12) and ∆̂ denote either of the two estimated differences (5) or (6). The estimator
∆̂ follows a distribution depending on Tw. The null hypothesis is that λ = λ0, or equivalently α = α0. The
null distribution of ψ̂ is obtained from simulating eq. (3) many times with λ = λ0, and estimate ψ on the
simulated samples. Subsequently, after suitable normalization by subtracting ψ and dividing the estimate
with the standard error s(ψ̂) = Var(ψ̂)1/2, eq. (4), we obtain a quantile q, which expresses the acceptable
uncertainty in measuring the statistical quantity ψ (being variance or autocorrelation). For large Tw, it can
be assumed that q approaches the quantile obtained from the standard normal distribution (confirmed by

simulations). We thus get that ∆̂ < qs(ψ̂) at the q-confidence level (95%, 99% or similar) under the null
hypothesis. In order to detect an EWS at the q-confidence level based on measuring ψ at time t, we require
that ∆̂(t) > q(s(ψ̂(t)) + s(ψ0)), which, solved for Tw gives for variance:

Tw > 2q2

(

α(t)/
√
α0 + α0/

√

α(t)

α0 − α(t)

)2

, (7)

and for autocorrelation,

Tw > 2q2

(√
α0 +

√

α(t)

α0 − α(t)

)2

ρ−2
0 . (8)

where we assume q independent from Tw and identical for variance and autocorrelation. Substituting
α(t) = 2

√

|λ(t)|, provides the time window Tw needed to detect an EWS at time t. In Fig. 2 the different
time scales are shown as functions of λ.

6.1 Estimation of the tipping time

To estimate the tipping time once it has been established that the variance and autocorrelation are increasing,
only data after the linear ramping has started is used, x = (x0, x1, . . . , xn), where x0 = xt0 and xn = xtoday.
The time t0 is not known, we only know that it is before the time where the increase in EWSs are sufficiently
large to be detected. To obtain robust estimates, we repeated the estimation of the tipping time for t0 taken
to be all years from the beginning of the time series and up to the time of detection of an EWS. If t0 is
chosen too early, the estimate will be off because it is contaminated by stationary data from the beginning
of the record. For too late choice of t0, the estimate will be uncertain due to limited data, and estimates will
be hugely fluctuating. We expect a time interval where estimates are stable, and thus, an exact estimate of
t0 is less important, as long as it falls within this middle interval. This is indeed the case, see Fig. 4c.

We use approximation (3), but now with time varying λ, where α(λ(t − t0)) = 2
√

|λ0|(1− t/τr) and

µ(λ(t− t0)) = m+
√

|λ0|(1− t/τr), where λ0 is the value of λ(t) up to time t0.
Simplifying by assuming that λ is constant between observations, i.e., piecewise constant and jump-

ing every month where new AMOC observations are available, the approximate likelihood function of the
parameters θ = (λ0, τr,m, σ

2) is the product of Gaussian transition densities

Lx(θ) =
n
∏

i=1

ϕ((xi −mi)/si; θ)

where ϕ(·) is the standard normal probability density. The conditional mean is mi := E(Xi|Xi−1 =
xi−1) = xi−1ρi−1 + µi−1(1 − ρi−1) and the conditional variance is s2i = γ2i−1(1 − ρ2i−1), where µi =

m +
√

|λ0|(1− (ti − t0)/τr), ρi = exp(−2
√

|λ0|(1− (ti − t0)/τr)∆t) and γ2i = σ2/4
√

|λ0|(1− (ti − t0)/τr).

The parameter estimates θ̂ are found numerically by minimizing − logLx(θ). For this we use the optimizer
optim in R, using the Nelder-Mead algorithm. Starting values for the parameters are required. We draw
randomly 100 sets of starting values and chose the optimal run to avoid the risk of falling into a local mini-
mum. Starting values for −λ0 were drawn from a gamma distribution with mean 2 and variance 1, τr was
drawn from a normal distribution with mean 200yrs (twice the time from y0 to the time of estimation) and
variance 502, m was drawn from a normal distribution with mean 0 and variance 22, and σ2 was drawn from
a gamma distribution with mean 0.25 and variance 0.12. Out of the 100 runs, 16 runs arrived at the same
smallest minimum, suggesting they had reached a global minimum.
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The likelihood approach provides asymptotic confidence intervals, however, these assume that the likeli-
hood is the true likelihood. To incorporate also the uncertainty due to the data generating mechanism (1)
not being equal to the Ornstein-Uhlenbeck process (3) used in the likelihood, we chose to construct para-
metric bootstrap confidence intervals. This was obtained by simulating 1000 trajectories from the original
model with the estimated parameters, and repeat the estimation procedure on each data set. Empirical
confidence intervals were then extracted from then 1000 parameter estimates. These were indeed larger than
the asymptotic confidence intervals provided by the likelihood approach, however, not by much.

6.2 Model control

To test the model fit, uniform residuals, ui, i = 1, . . . , n, were calculated for the AMOC data from 1920 and
up to today as follows. The model assumes that observation xi is normally distributed with mean mi and
variance s2i for the estimated parameter values. If this is true, then ui = Fi,θ̂(xi) is uniformly distributed on

(0, 1), where Fi,θ̂ is the cumulative normal distribution function with the estimated mean and variance for
the i’th observation. Transforming these residuals back to a standard normal distribution provides standard
normally distributed residuals if the model is true. Thus, a normal quantile-quantile plot reveals the model
fit. The points should fall close to the identity line. The reason for making the detour around the uniform
residuals is twofold. First, since the data is not stationary, each observation follows its own distribution,
and residuals cannot be directly combined. Second, since the model is stochastic, standard residuals are
not well-defined, and observations should be evaluated according to their entire distribution, not only the
distance to the mean.
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Supplementary material

Maximum likelihood estimators of the Ornstein-Uhlenbeck process

The approximate model is an Ornstein-Uhlenbeck (OU) process, defined as the solution to the equation

dXt = −α(Xt − µ)dt+ σdBt. (9)

The variance is γ2 = σ2/2α and the ∆t-lag autocorrelation is ρ = e−α∆t. The likelihood function of the
parameters given observations (x0, x1, . . . , xn) is the product of the transition densities

Ln(θ) =
n
∏

i=1

p(△, xi−1, xi; θ)

where θ = (µ, ρ, γ2). Here, xi = x(ti) and ∆t = ti − ti−1. The transition density is normal with conditional
mean E(Xi|Xi−1 = xi−1) = xi−1ρ+ µ(1− ρ) and conditional variance γ2(1− ρ2),

p(△, xi−1, xi; θ) =
1

√

2πγ2(1− ρ2)
exp

(

− (xi − xi−1ρ− µ(1− ρ))2

2γ2(1− ρ2)

)

.

The maximum likelihood estimators (MLEs) are

µ̂ =
1

n

n
∑

i=1

xi +
ρ̂

n(1− ρ̂)
(xn − x0) ≈

1

n+ 1

n
∑

i=0

xi ≡ x̄, (10)

ρ̂ =

∑n
i=1(xi − µ̂)(xi−1 − µ̂)
∑n

i=1(xi−1 − µ̂)2
, (11)

γ̂2 =

∑n
i=1 (xi − xi−1ρ̂− µ̂(1− ρ̂))

2

n (1− ρ̂2)
, (12)

the symbol ˆ indicates an estimator. These are obtained as follows. The score function is the vector of
derivatives of the log-likelihood function with respect to the parameters. The MLE is given as solution to
the likelihood equations ∂θk logLn(θ) = 0, where θk is either µ, ρ or γ2. The score function is

∂

∂µ
logLn(θ) =

(1− ρ)

γ2(1− ρ2)

n
∑

i=1

(xi − xi−1ρ− µ(1− ρ)),

∂

∂ρ
logLn(θ) =

nρ

1− ρ2
+

∑n
i=1(xi − xi−1ρ− µ(1− ρ))(xi−1 − µ)

γ2(1− ρ2)

−ρ
∑n

i=1(xi − xi−1ρ− µ(1− ρ))2

γ2(1− ρ2)2
,

∂

∂γ2
logLn(θ) = − n

2γ2
+

∑n
i=1(xi − xi−1ρ− µ(1− ρ))2

2γ4(1− ρ2)
,

whose zeros provide the MLEs in equations (10)–(12). It requires that
∑n

i=1(xi− µ̂)(xi−1− µ̂) > 0, otherwise
the MLE does not exist.

The Fisher Information I of the MLEs equals minus the expectation of the Hessian H of the log-likelihood
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function. For the OU log-likelihood, the elements of H are given by

∂2

∂µ2
logLn(θ) = − n(1− ρ)

γ2(1 + ρ)
,

∂2

∂µρ
logLn(θ) =

n
∑

i=1

(C1(xi−1 − µ) + C2(xi − xi−1ρ− µ(1− ρ))) ,

∂2

∂µγ2
logLn(θ) = C3

n
∑

i=1

(xi − xi−1ρ− µ(1− ρ)),

∂2

∂ρ2
logLn(θ) =

n(1 + ρ2)

(1− ρ2)2
+ C4

n
∑

i=1

(xi − xi−1ρ− µ(1− ρ))(xi−1 − µ)− 1

γ2(1− ρ2)

n
∑

i=1

(xi−1 − µ)2

− 1 + 3ρ2

γ2(1− ρ2)3

n
∑

i=1

(xi − xi−1ρ− µ(1− ρ))2,

∂2

∂ργ2
logLn(θ) = C5

n
∑

i=1

(xi − xi−1ρ− µ(1− ρ))(xi−1 − µ) +
ρ

γ4(1− ρ2)2

n
∑

i=1

(xi − xi−1ρ− µ(1− ρ))2,

∂2

∂(γ2)2
logLn(θ) =

n

2γ4
−
∑n

i=1(xi − xi−1ρ− µ(1− ρ))2

γ6(1− ρ2)
,

where Ci, i = 1, . . . , 5, are deterministic constants that will disappear when taking expectations. Using that
E(Xi − µ)2 = γ2, E(Xi −Xi−1ρ− µ(1− ρ))2 = γ2(1− ρ2) and E(Xi −Xi−1ρ− µ(1− ρ))(Yi−1 − µ) = 0, we
obtain the Fisher Information

I = −EH = n







(1−ρ)
γ2(1+ρ) 0 0

0 1+ρ4

(1−ρ2)2
ρ

γ2(1−ρ2)

0 ρ
γ2(1−ρ2)

1
2γ4






.

The inverse of the Fisher Information provides the asymptotic covariance matrix,

1

n







γ2(1+ρ)
(1−ρ) 0 0

0 1− ρ2 2ργ2

0 2ργ2 2γ4(1+ρ4)
1−ρ2






.

The diagonal elements provide the asymptotic variances of µ, ρ and γ2, respectively.

Noise induced tipping

The drift term in eq. (1) is the negative gradient of a potential, f(x, λ) = −∂xV (x, λ) = −((x −m)2 + λ)
with V (x, λ) = (x − m)3/3 + (x − m)λ. For λ < 0, the drift has two fixed points, m ±

√

|λ|. The point

m+
√

|λ| is a local minimum of the potential V (x, λ) and is stable, whereas m−
√

|λ| is a local maximum

and unstable. The system thus has two basins of attraction separated by m −
√

|λ|, with a drift towards

either m+
√

|λ| or −∞ dependent on whether Xt > m−
√

|λ| or Xt < m−
√

|λ|. We denote the two basins
of attraction the normal and the tipped state, respectively. When λ = 0, the normal state disappears and
the system undergoes a bifurcation and Xt will be drawn towards −∞.

Due to the noise, the process can escape into the tipped state by crossing over the potential barrier
∆(λ) = V (−

√

|λ|, λ) − V (
√

|λ|, λ) = 4|λ| 32 /3. Assume Xt to be close to
√

|λ| at some time t, i.e., in the
normal state. The escape time will asymptotically (for σ → 0) follow an exponential distribution such that

P (t, λ) = 1− exp(−t/τn(λ)) (13)

where P (t, λ) is the probability of observing an escape time shorter than t for a given value of λ. The mean
noise induced escape time τn(λ) is [29, 30]:
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τn(λ) =
2π exp(2∆(λ)/σ2)

√

V ′′(−
√

|λ|, λ)|V ′′(
√

|λ|, λ)|
= (π/

√

|λ|) exp(8|λ| 32 /3σ2). (14)

Assume that the rate of change of λ(t) follows eq. (2), then for τr < τn(λ), the waiting time for a
random crossing is so long that a crossing will not happen before a bifurcation induced transition happens
(b-tipping). If τr > τn(λ), a noise-induced tipping is expected before the bifurcation point is reached. Since
τn(λ) decreases with increasing λ, at some point, the two time scales will end up matching.
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Figures

Figure 1

Panel a shows the Subpolar gyre (SG) region (black contour) on top of the HasISST SST reconstruction
for Dec. 2020. The SG region SST has been identi�ed as an AMOC �ngerprint [17]. Panel b shows full
monthly record of the SG SST together with the global mean (GM) SST. Panels c and d show the SG and



GM anomalies, which are the records subtracted the monthly mean over the full record. Panel e shows the
AMOC �ngerprint proxy, which is here de�ned as the SG anomaly minus twice the GM anomaly,
compensating for the polar ampli�ed global warming.

Figure 2

Panel a shows time scales involved in the critical transition ramping the control parameter λ from λ0 =

−2.56 to λc = 0, with a ramping time τr = 140yrs and σ2 = 0.28. These parameters are obtained as best
estimates from the HasISST data. The time remaining before tc is shown on top of the plot. The red and
orange curves shows the time window, Tw, needed in order to detect increase in variance (red) and
autocorrelation (orange) above the pre-ramping values at the 95% con�dence level. Close to the
bifurcation point, the (quasi-)stationarity approximation becomes less valid, which is indicated by the
dashed part of the two curves. It is seen that detecting signi�cant increase in autocorrelation requires a
longer data window than detecting a signi�cant increase in variance. With Tw = 50yrs (red dot-dashed
line) an increase in

variance can only be detected at the 95% con�dence level after the red curve is below the 50yrs level. The
blue curve shows the mean waiting time for a noise-induced transition, when this becomes shorter than



the 50yrs level the EWS is no longer relevant, due to n-tipping occurring before tc, thus the range of time,
where an EWS can be applied is indicated by the green band (limited by the crossings of the red and blue
curves with the size of the window). Panel b shows ten model realizations of the ramped approach to tc,
notice a few n-tippings prior to tc. The black (black dashed) curve is the stable (unstable) �xed point of
the model. Panel c shows the increased variance as EWS: Black line is the pre-ramping steady state value,
while dashed lines are the two-sigma uncertainty range for calculating variance within the 50yr data
window. The blue and dashed blue curves are the same, but for the model approaching the transition. The
brown curves correspond to the ten realizations in Panel b, while the green band corresponds to the green
band in Panel a. The thin blue lines are the same obtained from simulating 1000 realizations. Panel d is
the same as Panel c but for the autocorrelation.



Figure 3

Panel a shows the SST anomaly (identical to Figure 1e) together with best estimate model of the steady
state approaching a critical transition. Panels b and c show variance and autocorrelation calculated
within running 50yr windows, similar to Figure 2c and d. The two-sigma levels (dashed purple lines) are
obtained using the model to estimate the time varying α (Panel d) and σ2 (Panel e) from the data. Panel f
shows the best estimate for tc (see Methods).



Figure 4

With parameters obtained from the data, a set of 1000 realizations of the model are used in bootstrap
study to obtain a probability density for tc. Panel a is probability density, Panel b is the cumulative
distribution. The mean is ฀tc฀ = 2047 (vertical red line) and the 90% con�dence interval is 2026-2071
(vertical dashed lines). Panel c shows the evolution of the four parameter estimates when they are
estimated from data from year t0 indicated on the x-axis up to year 2020. The 95% con�dence intervals
(shadow) around the full drawn lines are based on the inverse Fisher information. The gray vertical line is
t0 = 1920, used in the �nal estimate. The constancy of the estimates around 1920 shows the estimates
are robust to the exact choice of t0.


