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ABSTRACT

We introduce new analytical approximations of the minimum electrostatic energy configuration of n electrons, E(n), when they

are constrained to be on the surface of a unit sphere. Using 454 putative optimal configurations we searched for approximations

of the form E(n) = (n2/2) eg(n) where g(n) was obtained via a memetic algorithm that searched for truncated analytic continued

fractions finally obtaining one with Mean Squared Error equal to 4.5744×10−8.

Using the Online Encyclopedia of Integer Sequences, we searched over 350,000 sequences and, for small values of n, we

identified a strong correlation of the highest residual of our best approximations with the sequence of integers n defined by the

condition that n2 +12 is a prime. We also observed an interesting correlation with the behaviour of the smallest angle α(n),
measured in radians, subtended by the vectors associated with the nearest pair of electrons in the optimal configuration. When

using both
√

n and α(n) as variables a very simple approximation formula for E(n) was obtained with MSE = 7.9963×10−8.

When expanded as a power series in infinity, we observe that an unknown constant of an expansion as a function of n−1/2 of

E(n) first proposed by Glasser and Every in 1992 as −1.1039, and later refined by Morris, Deaven and Ho as −1.104616 in

1996, may actually be very close to −1−π/30.

Introduction

Very recently, a number of papers have been related to uncovering equations that model the dynamics of physical systems with

high accuracy. An increased interest now exists in the research and development of new methods for symbolic regression, a

technique for multivariate regression problems that also has a history as a hub between the machine learning, computational

intelligence and evolutionary algorithms communities.

While many pioneer works exist in the area, since the publication of the work of Schmidt and Lipson in 2009 in the famed

journal Science1, it is without question that many researchers have found its outcomes as a source of inspiration in Physics.

Their work then led to the development of a commercial software (called Eureqa)2, and thanks to their free academic license,

the power of the genetic programming heuristic running as a search engine, and the easy-to-use graphical user interface, this

spawns the interest of many newcomers into the field.

In the original paper by Schmidt and Lipson, the objective of the authors was to show how symbolic regression can be used

to uncover natural laws of Physics from experimental data. Far from being a mathematical curiosity in the field of classical

mechanics, identifying invariants in the dynamics of systems and uncovering new empirical laws is still pretty much a constant

need in science. Like in the case of Kepler, who established three laws for the movement of the celestial bodies, those laws

may not stand forever, but they may inspire the work of theoreticians, particularly when the fitting of the observed data by

the empirical law is relatively simple and also pretty accurate. In that case, it was Newton who simplified the three laws and

later established his simpler theory. Today we have a similar process going on; sometimes, many features are measured from

experimental settings, and since symbolic regression methods are generally coupled with model complexity reduction heuristics,

a subset of the variables is generally chosen together with a good model. This allows theoreticians to concentrate perhaps on

those variables in the quest to find a simpler explanation to the phenomenon of interest.

One of the fields that well illustrates on the benefits from symbolic regression is Astronomy, an area of science with a

long tradition in data-driven discovery. In 2014, Krone-Martins et al.reported “the first analytical expression to estimate

photometric redshifts” suggested by a computer algorithm3, and a year before a group at Caltech illustrated on the use of

symbolic regression to uncover classical astronomical relationships like the Hertzsprung–Russell diagram, the fundamental

plane of elliptical galaxies, and the period–amplitude plane of RR Lyrae stars4. These two groups have also used the academic

version of Eureqa and the company website for many years collected information on several new applications of symbolic

regression, including our own using their software, in areas as diverse as consumer behaviour and business analytics5–7 and

drug response in cancer cell lines8.

More recently, an MIT group has published another machine-assisted method to uncover relationships in Physics9. The



approach is properly called AI-Feynman because its claim is to have been able to “uncover” 100 equations from the three-book

series called The Feynman Lectures on Physics by Feynman, Leighton, and Sands as well 90 percent of another set of 20 “more

challenging” equations coming from other Physics collections. In a new preprint, the new version called AI-Feynman 2.0 is

shown to be superior to the original approach10 including robustness to experimental noise.

This paper is structured as follows: at first, we present the problem and previous work, and then we present novel

approximations based on our work using symbolic regression and analytic continued fractions. That introduces a very simple

formula that is based on a particular feature of the known optimal configurations so far found. Finally, we present our

conclusions from this study.

The Thomson Problem

The basic Thomson problem is simple to state but difficult to solve constrained non-linear global optimisation; find the

equilibrium configuration of n identical charges subjected to be on a surface of a sphere. This means that for each value of n the

task is to find the global optimum. This has proved to be a challenge in itself, the problem is used as a classical benchmark to

evaluate the performance of optimisation packages11.

Although its long history, the problem is far from being solved for an arbitrary value of n, and it has the ongoing interest of

chemists, physicists and mathematicians. In fact, it has a renewed interest lately since it is a special case of one of the “Eighteen

unsolved mathematical challenges” proposed for the 21st Century by Steve Smale12.

This problem was posed in 1904 by J.J. Thomson and, in some sense, pioneered computational chemistry. His quest was to

solve which is the 3-dimensional configuration of n electrons that minimises the electrostatic potential if they are constrained to

be on a surface of a unit sphere. The electrons repel each other with a force that is given by Coulomb’s Law.

Part of the renewed interest also lies in the generalisations and some of the present open conjectures. For instance, if p(a)
and p(b) are the positions of two points on the sphere where two electrons a and b are located, and if we assume the Riesz

potential, the energy of a set S of |S|= n “electrons” will have potential energy given by

E(n) = ∑
a,b∈S

1

|p(a)− p(b)|s (1)

where s > 0 and the case s = 1 corresponds to the Coulomb potential; thus, in that case, we have the Thomson problem. It has

been recently conjectured13 that for the minimum configuration potential the Riesz potential the value of the energy is given by:

E(n,s) =
(
√

3/2)s/2 ξΛ2
(s)

(4π)s/2
n1+s/2 +Vsn

2 +o(n2) (2)

where

Vs =
21−s

2− s
, (3)

Λ2 is the regular planar triangular lattice generated by basis vectors (1,0) and (1/2,
√

3/2), and ξΛ2
(s) is the Epstein-zeta

function14 for the lattice Λ2
13.

Having presented the relevance and interest of this problem, we now look at the history of the Thomson problem and how

researchers have tried to obtain an analytical expression from existing data.

Configurations with Energy lower than the trend

Glasser and Every suggested that “minimum energy accurately follows a simple half-integral power law in 1/n”15. They first

noticed how “it is striking how close the configuration energies lie to a smooth curve. On the scale that has been used, scatter

in the energies can barely be discerned”. In fact, a number of optimal configurations seem to be characterised by a “significant

lower (energy value) than the neighbours”. In16, the authors comment that the configurations for n = 12,32,72,122,132, and

192 have all in common the fact that they have icosahedral symmetry, and that “the icosahedral structures for n = 212,272,282,
and 312 also have icosahedral symmetry and have low energy”. While they argue that this has been predicted, they also point

out that the cases of n = 42,92, and 162 are also icosahedral structures, but these have high energies relative to the trend of the

equation we are fitting.

While the question is outside the scope of this work, we point out however, that the integer sequence 12, 32, 42, 72, 92,

122, 132, 162, 192, 212, 252, 272,282, 312, 362, 372, 392, 432, 482, 492, 522, 572, 612, 632, 642, 672, 732, 752, 762, 792,

812, . . . corresponds to the number of vertices of Goldberg-Casper-Klug pseudo-icosahedra in the curated Online Encyclopedia

of Integer Sequences (OEIS) A071336. We underline those values of n which were discussed before by Glasser and Every16.
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We also note that the numbers we write in boldface belong to another sequence curated at the OEIS (A005901), and it is one

corresponding to the “Number of points on surface of cuboctahedron (or icosahedron): a(0) = 1; for n > 0,a(n) = 10 n2 +2.

Also coordination sequence for f.c.c. or A3 or D3 lattice.” Since the sequence A071336 contains the one defined by their

recurrence relation of A005901, it may then be an interesting open problem to determine if other icosahedral configurations with

“avoided” low energy values are exactly those defined by that specific subsequence of the number of vertices of Goldberg-Casper-

Klug pseudo-icosahedra or if others exist. Very recently, Timothy Michaels used equidistributed icosahedral configurations

based on combining the (m,n) icosahedral nodes of Casper and Klug and an azimuthal projection method to define a low

deformation equal area mapping. This allowed him to analyze the Riesz potential energies numerically up to n < 5000017.

The OEIS seems to be an interesting tool to analyse sequences of values of n on which we observed some property and we

introduced it here since it will be again used later in the manuscript as an exploratory tool.

Approximations to the Energy in Thomson problem as a function of the number of electrons

We briefly review here how several approximations have been given, generally all of them linked to an extension on the

availability of conjectured or proved exact solutions for increasingly larger values of n. We will start with the already cited

work of Glasser and Every and their derivation of a functional form.

Glasser and Every15

There has been huge progress in this problem in the last thirty years. Before 1992, optimal configurations for the problem

were known only for n ≤ 50. In15, Glasser and Every finally extended the number of problems solved for up to 101 electrons.

They observe that the values of the “minimum energy accurately follows a simple half-integral power law in 1/n”. They fit a

function to the data by using the known minimum energies for all cases with n ≤ 50 and another 20 optimal configurations with

51 ≤ n ≤ 101.

They propose a functional form for the energy as

E(n) =
n2

2

(

1+
a

nα
+

b

nβ
+ · · ·

)

(4)

with 0 < α < β < .. . . Using only the values of the energies for n = 70 (E(70) = 2127.100902) and n = 80 (E(80) =
2805.355876), and leaving the first term of the expansion, they fit the free parameters as follows: α = 0.496 and a =−1.084,

concluding from the good fit to the first configurations with n ≤ 30 that α should be equal to 1/2 instead. Then they observe the

need to include the second term of the expansion and, after another round of fitting and approximation of an exponent to a ratio

of two integers they ended, finally, setting for a formula of the form:

E(n) =
n2

2

(

1− 1.1028

n1/2
+

0.096

n3/2
· · ·
)

. (5)

A note added in proof indicates a better fitting with a =−1.1039 and b = 0.105 for n ≤ 65, so we will call the “Glasser and

Every model” the one coming from the use of the formula with these values.

Morris, Deaven, Ho16

In 1996, Morris, Deaven and Ho presented results of what we consider a memetic algorithm18, 19, a population-based strategy

for finding the minimum energy configurations that use conjugate gradient optimization as a local search strategy. Not only they

have been able to independently reproduce all the known optimal results for 10 < n < 132, but they have been able to provide

optimal configurations up to n ≤ 200. They use the same formula employed by the Glasser and Every model but with slightly

different values of the parameters (i.e. a =−1.104616±0.00001 and b = 0.1376±0.001), concluding that the fitted formula

for the new information available still is in reasonable agreement with the previous fits and calculations by Every and Glasser.

Approximations using symbolic and analytic continued fraction regression

Given the reported successes of symbolic regression in other problem domains, we first aimed at finding a fit to all the existing

data that Morris, Deaven, Ho had, as if we were placing ourselves before the year 2000.

An initial model of interest found with symbolic regression

Again, using all results for n ≤ 200, and using the commercial package Eureqa (together with a post-optimisation procedure

based on non-linear programming), we have been able to find an approximation model for the total energy of the form:
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Figure 1. The difference between the exact value of the normalized energy and the value given by approximation in

equation (7) for 13 ≤ n ≤ 204 and highlighted the n where n2 +12 is a prime.

E(n) =
n2

2
kγ(n) (6)

where

γ(n) =
−4

11
√

n−6
, (7)

and k = 11591/547. Once again, the simplicity of this model for E(n), defined by five integer constants, is quite impressive.

A Puiseux series expansion at n = ∞ for γ(n) reveals an interesting role of the powers of the integers 12 and 11 in this

approximation since it has the following form:

γ(n) =4
1

11
n−1/2 +2

12

112
n+1

122

113
n−3/2 +6

122

114
n2 +3

123

115
n−5/2 +18

123

116
n3 +9

124

117
n−7/2 +54

124

118
n4 +27

125

119
n−9/2 +O

(

n−5
)

.

(8)

And a Puisaux series at n = ∞ of k−γ(n) is given by:

k−γ(n) = 1− 4

11
log(k)n−1/2 +

8 (log(k)−3) log(k)

121
n−1 +O(n−3/2) (9)

with log(k) being the natural logarithm of k. We can observe that the second term of the expansion, −4/11 log(k) =
−1.11037651326 . . . , is relatively close to Morris, Deaven and Ho’s estimation of a = −1.104616, but we note that their

original proposal did not include a term in n−1. By comparison, the Puisaux series expansion of our model of Eq (6) explains

why perhaps a better approximation was not found until now.

Behaviour of the residual error and the relative error of the model of equation (6) for n ≤ 200

This motivated us to look at the behaviour of both the residual error and the relative error for the values that we have used

to find this approximation (i.e. 2 ≤ n ≤ 200). For simplicity, we will refer to the normalized energy, i.e. En = 2 E(n)/n2.

The difference between the exact value and the one provided by our model for n = 2 is 0.25− k−γ(2) = 0.028561067. Fig. 1

shows the difference between the exact value of the normalized energy and the value given by k−γ(n) for 13 ≤ n ≤ 204. For the

configuration with the largest number of electrons in the figure the difference is 0.922699961− k−γ(204) =−3.55852×10−4.

Approximations with continued fraction regression
We have then used symbolic regression to find a more fitting function than equation (7) to see if we can find a better

approximation of very low complexity using the software Eureqa on all the known conjectured or proven optimal solutions to

Thomson problems that are currently known. Unfortunately, no solution better than equations (6) and (7) was found. We then

turned our attention to a new method we have recently developed based on analytic continued fractions.
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Figure 2. The difference between the exact value of normalised energy and the value approximated by the Continued Fraction

regression approximation in equation (11) (MSE = 2.54153×10−7) for fitting the experimental data for 13 ≤ n ≤ 204 and

highlighted the n where n2 +12 is prime.

A first approximation using continued fraction regression

We used a method based on multivariate regression using an analytic continued fraction representation of our target function of

interest20–24. We looked at approximating E(n) as follows:

E(n)≈ n2

2
eg(n) (10)

We executed our memetic algorithm based continued fraction regression (CFR) method to approximate g(n) for Depths =
{0,1,2}23. The CFR method uses a continued fraction-based representation of the unknown function that we are aiming to fit.

A memetic algorithm, i.e. a population-based search technique, is used as an optimisation method to find good approximating

functions. A number of optimising agents use the Nelder-Mead (NM) based local search to optimise the current solutions at

each generation. Details of the method can be found in23. In22 results on 452 datasets of physical relevance show their good

performance, and in23 another comprehensive review of comparative performance against many state-of-the-art regression

algorithms is also given on a large multivariate dataset used for testing.

We found the following Depth = 2 model as the best approximation (with a MSE = 2.54153×10−7):

g(n) =









a u+
b u+ c

(d u+ e)+
f u+g

h u+ i









(11)

where u= n−1/2 and the coefficients are: a = -0.880367889446965535, b = 0.793386942751073909, c = 0.184694236906771669,

d = 1.27484122748516482, e = -0.488981361176515139, f = 0.0528983408465706698, g = 0.298731221071015351, h =

-0.341376009238492262, i = -0.000516314596688742609.

All the residuals presented in this paper are plotted on the same range, basically between −12×10−4 and 2×10−4 and for

13 < n < 204. In particular, this helps to compare the results with the previous one given by equation (6) and equation (7).

From Figs. 1 and 2 we can observe that for increasing values of n, we now have an approximation that converges faster to a

desired zero residual, with noticeable differences already in the range of n ≤ 204 in Fig. 2.

An approximation using n−1/2,n−1 and, n−3/2 as independent variables

We then look at the possibilities that we can have by explicitly employing n−1/2,n−1 and, n−3/2 as independent variables since

our memetic algorithm for analytic continued fraction regression can handle well multi-dimensional problems. In this case, we

have managed to obtain a new approximation for E(n) of the form:

E(n) =
n2

2
eg(n) (12)

where g(n) is now an explicit function of these variables:

g(n) =−n−1/2 +
7n−1/2 +35n−1 −14n−3/2

58n−1/2 −67
, (13)
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Figure 3. The difference between the exact value of the normalized energy and the value given by the model in equation (13)

for fitting the experimental data for 13 ≤ n ≤ 204 and highlighted the n where n2 +12 is prime.
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Figure 4. The difference between the exact value of normalised energy and the value approximated by the Continued Fraction

regression model with integer coefficients (MSE = 4.57438×10−8) in equation (15) for fitting the experimental data for

13 ≤ n ≤ 204 and highlighted the n where n2 +12 is prime.

here, the mean square error of normalised energy (i.e. 2E(n)/n2) is MSE = 8.4161×10−8 (difference between the exact data

and the approximation are showed in Fig. 3 for 13 ≤ n ≤ 204 with highlighting the n where n2 +12 is prime). Most notably,

the Puisaux series at n = ∞ of eg(n) is given by:

eg(n) = 1− 74

67
n−1/2 − 13

4489
n+

117974

902289
n−3/2 +O(n−2), (14)

so the second term of the expansion is −74/67 = −1.10447761 . . . , again very close to Morris, Deaven and Ho’s previous

estimate of −1.104616.

A new Solution with Integer Coefficients
We found a numerical approximation with only integer coefficients of the Memetic Algorithm approximation in equation (11)

as:

g(n) =









−91 u

−44 u+83+
−25 u−30

−57 u−49









(15)

again with u = n−1/2. Notably, the memetic algorithm found a solution with a = b = zero, which eventually nullified the first

term a u+b of a Depth=2 model. It has the MSE = 4.57438×10−8.

We showed the residual of the continued fraction regression model with only integer coefficients for approximating

the Thomson values in the range of n ≤ 204 in Fig. 4. This is a remarkable good approximation in all the ranges, even
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Figure 5. The difference between the exact value of normalised energy and the value approximated by the Continued Fraction

regression model with integer coefficients in equation (15). The plot is shown to fit the experimental data for 10 ≤ n ≤ 50 and

highlights the n for an angle-based new sequence of integers.
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Figure 6. The difference between the exact value of normalised energy and the value approximated by the Continued Fraction

regression model with integer coefficients in equation (15). The plot is shown to fit the experimental data for 50 ≤ n ≤ 100 and

highlights the n for an angle-based new sequence of integers.

for the case of two electrons (giving a value of 0.2499071, when the exact value of the normalised energy is 0.25). For

the largest configuration in the dataset (with n = 4352 electrons25, 26, Lowest minima located for the Thomson problem:

http://www.junlilab.org/database/TP2.html) the approximation is 0.983258143 for the known solution of

value equal to 0.983244295.

A simple equation based on minimum angles

We have shown before that, at least for optimal configurations with small n, all approximations seem to err somewhat more

than the trend when n2 + 12 is prime. We have not yet found an explanation for this fact. We then turned our attention to

some other proven and putative optimal known solutions for n ≤ 20025 (Global Minima for the Thomson Problem: https://

www-wales.ch.cam.ac.uk/~wales/CCD/Thomson/table.html, https://www-wales.ch.cam.ac.uk/

~wales/CCD/Thomson/xyz/) and we found a pattern worth exploring further.

A new sequence of integers

In fact, a new sequence of integers can be defined, which at the time of preparing this manuscript does not seem to be currently

listed in the Online Encyclopedia of Integer Sequences, while other sequences related to the Thomson problem are. It is:

11,13,16,19,23,26,29,31, . . . . This sequence is defined in the following way. Let α(n) is the smallest angle, measured in

radians, which is subtended by the vectors associated with the nearest charge pair in the optimal configuration for n electrons.

We then say that an integer n is in this sequence if and only if α(n)< α(n+1). This means that in the optimal configuration

for n electrons there is at least one pair which is near than the nearest pair in a configuration with n+1 electrons.

Since we have observed that there was an overlap between this integer sequence and those n such that n2 +12 is prime (e.g.

19, 23, 26, 29) (OEIS A114275). Motivated by this fact, we looked at the possibility that α(n), together with the inverse of the

square root of the number of electrons, could provide a good approximation for the energy of the optimal configuration.
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Figure 7. The difference between the exact value of normalised energy and the value approximated by the Angle-based model

(MSE = 8.08549×10−8) in equation (16). The plot is shown to fit the available data for 13 ≤ n ≤ 204 and highlights the n for

an angle-based new sequence of integers.

Using symbolic regression (in this case the commercial package TuringBot), we have also found the following simple

formula which is a good approximation for E(n):

E(n)≈ n2

2

( √
n−1

√
n+ α(n)+π

30

)

. (16)

The formula was obtained by only accepting integer coefficients in the expressions generated by the symbolic regression

method. The constant π was incorporated ad hoc in the formula after interpreting that ‘α(n)+3’ may actually be representing

an angle measured in radians ‘α(n)+π’. We noted that the ‘3’ in that formula is a consequence of the symbolic regression

approach (that searched for integer coefficients) and we present this formula after observing that the MSE improved with the

substitution.

This is very interesting, in the limit for α(n) tending to zero, we have that

lim
α(n)→0

E(n)≈ n2

2

(

30 (
√

n−1)

30
√

n+π

)

(17)

and if we take look at the series expansion at n = ∞ we have

lim
α(n)→0

E(n)≈ n2

2

[

1+
(

−1− π

30

)

n−1/2 + · · ·
]

(18)

an expression that includes the transcendental number

−1− π

30
=−1.10471975511965977 . . . (19)

again, a result that is in reasonable agreement with the previous estimate by Morris, Deaven and Ho (−1.104616 . . .) which, it is

useful to recall, was obtained by analysing only electron configurations with n ≤ 200. Using a non-linear optimisation approach

and all the data we obtained −1−π/29.96627907927524 . . .≈−1.104837 . . . . When we used the the 254 configurations not

used by Morris, Deaven and Ho, i.e. those with 200 ≤ n ≤ 4352, we obtained −1−π/30.0270165553 . . . , leading to a value

of −1.10462553440167 . . . .
We present our previous model in eq. (15) with highlights the n for the angle-based new sequence (11, 13, 16, 19, 23, 26, 29,

31,. . . here defined for the first time) of 10 ≤ n ≤ 50 in Fig. 5 and 50 ≤ n ≤ 100 in Fig. 6. We present the residual calculated

between exact and approximation by eq. (16) in Fig. 7. Also, Figs. 8 (10 ≤ n ≤ 50 ) and 9 (50 ≤ n ≤ 100 ) show that, for the

new integer sequence, the points in this sequence do not look as outliers of the general trend, indicating that the geometric

information introduced by just including the minimum angle between pairs of electrons leads to a model of low complexity and

also good approximation capability.

We have summarised the different approximations presented in this work along with the MSE score in Table 1 for the

reader’s convenience.
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Figure 8. The difference between the exact value of normalised energy and the value approximated by the model with

including minimal angles of equation (16). The plot is shown to fit the experimental data for 10 ≤ n ≤ 50 and highlights the n

for an angle-based new sequence of integers defined in this work.
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Figure 9. As in Fig. 8 we plot the difference between the exact value of normalised energy and the value approximated by

equation (16). Here we present results from 50 ≤ n ≤ 100 highlighting values of n for an angle-based new sequence of integers.

Table 1. Summary of the results obtained by the approximations to the Energy in Thomson problem presented in this

contribution

Equation No. Approximation MSE

Equations (6),(7) E(n)≈ n2

2
kγ(n), where γ(n) = −4

11
√

n−6
and k = 11591/547 2.2138×10−6

Equations (10),(11) E(n)≈ n2

2
eg(n), where g(n) =









a u+
b u+ c

(d u+ e)+
f u+g

h u+ i









, u = n−1/2 2.5415×10−7

Equations (12),(13) E(n)≈ n2

2
eg(n) where g(n) =−n−1/2 + 7 n−1/2+35 n−1−14 n−3/2

58 n−1/2−67
1.2396×10−7

Equations (10),(15) E(n)≈ n2

2
eg(n), where g(n) =









−91 u

−44 u+83+
−25 u−30

−57 u−49









, u = n−1/2 4.5744×10−8

Equations (16) E(n)≈ n2

2

( √
n−1

√
n+

α(n)+π
30

)

7.9963×10−8
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Conclusions

In this paper, we have shown that the minimum potential energy of the Thomson problem, E(n), can be well approximated by a

formula for the form: E(n) = (n2/2) eg(n) where g(n) is obtained using a truncated analytic continued fraction expansion. The

methodology used here is very general and could eventually be used for other cases such as Reisz potential and other variants

of this problem of interest27, 28. Investigation of the sequence of values of n for which the residual error of our approximations

was a bit higher than the trend lead to the introduction of a new sequence of integers. This, in turn, suggested that perhaps

another expression could be found involved α(n) is the smallest angle, measured in radians, which is subtended by the vectors

associated with the nearest charge pair in the optimal configuration for n electrons. These values are only known after a very

hard non-linear optimisation is solved. Future work involves finding an approximation of α(n) using only the value of n

which could be potentially something of interest for building constructive heuristics for the challenging non-linear optimisation

problem for the general case of n electrons.

Data availability

The datasets generated during and/or analysed during the current study are available in the public domain. The Global Min-

ima for the Thomson Problem for n ≤ 400 are available25 at: https://www-wales.ch.cam.ac.uk/~wales/CCD/

Thomson/table.html and29 https://en.wikipedia.org/wiki/Thomson_problem. The files containing

(x,y,z) coordinate values are available25 at: https://www-wales.ch.cam.ac.uk/~wales/CCD/Thomson/xyz/.

The lowest found minima for the Thomson problem for some larger values in the range of 400 ≤ n ≤ 4352 (and associated

(x,y,z) coordinates of the configurations) are available26 at: http://www.junlilab.org/database/TP2.html.
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