
GPU Performance analysis for viscoacoustic wave
equations using fast stencil computation from the
symbolic speci�cation
Lauê Jesus

Supercomputing Center for Industrial Innovation, SENAI/CIMATEC
Peterson Nogueira

Supercomputing Center for Industrial Innovation, SENAI/CIMATEC
João Speglich

Supercomputing Center for Industrial Innovation, SENAI/CIMATEC
Murilo Boratto ( murilo.boratto@�eb.org.br)

Supercomputing Center for Industrial Innovation, SENAI/CIMATEC

Research Article

Keywords: Viscoacoustic wave equations, Finite-Difference, Devito, GPU

Posted Date: September 12th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-2039437/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-2039437/v1
mailto:murilo.boratto@fieb.org.br
https://doi.org/10.21203/rs.3.rs-2039437/v1
https://creativecommons.org/licenses/by/4.0/

Springer Nature 2021 LATEX template

GPU Performance analysis for viscoacoustic

wave equations using fast stencil computation

from the symbolic specification

Lauê Jesus1, Peterson Nogueira1, João Speglich1 and Murilo

Boratto1*

1Supercomputing Center for Industrial Innovation,
SENAI/CIMATEC, Av. Orlando Gomes, 1845 - Piatã, Salvador,

41650-010, Bahia, Brazil.

*Corresponding author(s). E-mail(s): murilo.boratto@fieb.org.br;
Contributing authors: laue.jesus@fieb.org.br;

peterson.santos@fieb.org.br; joao.speglichr@fieb.org.br;

Abstract

Seismic forward modeling is a computationally and data-intensive stage

in the seismic processing workflow. By profiling the kernels of seismic

forward modeling algorithms, was observed that they need to access

a wide variety of memory locations, in addition to the computational

cost of performing floating-point operations for the numerical solution

of wave equations. In this context, was used the Roofline model to ana-

lyze six representative computing kernels in seismic modeling on GPU

environment to indicate bottlenecks in the performance and suggest

improvements of these wave equation propagators. Based on this, was

implemented six viscoacoustic equations using the Devito tool. Experi-

mental data have shown that optimizations in increasing data reuse and

decreasing off-chip memory traffic can significantly improve performance.

Keywords: Viscoacoustic wave equations, Finite-Difference, Devito, GPU

1

Springer Nature 2021 LATEX template

2 GPU Performance analysis

1 Introduction

Stencil computation is the essence of several applications in the high-
performance computing area, such as computational fluid dynamics, image
processing, and geophysical applications that involve solving wave equations.
According to [1] stencil computations are often used in applications to solve
partial differential equations in multidimensional grids. A typically 3D grid
is iteratively traversed from a starting cell in stencil computation. Each grid
cell is updated based on a set of coefficients and the values of its neighboring
cells [2]. Regular and predictable memory access patterns characterize sten-
cil computation; however, it has a low FLOP/byte ratio, precisely tuning the
data layout and optimizing the memory accesses according to the different
hardware architectures [3]. In the context of a wave equation solver, these are
finite-difference (FD) schema time-marching kernels that update a data set in
a grid at iteration n to get that of the next iteration.

The most common seismic modeling uses acoustic wave equation. However,
several other wave equations which best represent the subsurface can be used
for seismic modeling. Viscoacoustic modeling provides an accurate image with
the high resolution of exploratory targets due to the inclusion of characteristics
such as amplitude attenuation and velocity dispersion in the propagation of
seismic waves. In this work, the viscoacoustic equations based on the Maxwell,
Kelvin-Voigt, and standard linear solid (SLS) rheological models are described,
considering first and second-order formulations. These equations are in the
time-space domain, and the finite-difference method is suitable to solve them.

Our implemented FD kernel viscoacoustic equations were introduced into
Devito [4], [5] and [6], an open-source domain-specific language (DSL) tool for
highly optimized FD kernel solutions. Devito is available as a Python language
package and can be integrated with different packages, such as SymPy [7] and
Numpy [8].

The methodology used includes using the Roofline model [9], [10], and [11],
which proposes to identify performance bottlenecks and be a guide to perfor-
mance optimization. According to [11], the Roofline is a performance-oriented
model centered around computational capabilities, memory bandwidth, and
data locality. The data locality is commonly expressed as the arithmetic inten-
sity (AI), the ratio of floating-point operations performed to data moved
(FLOP/Byte).

The present work describes the development and implementation of six
viscoacoustic equations on the Devito tool. Through the Roofline model, the
computational aspects of viscoacoustic seismic modeling will be evaluated.
The primary purpose is to provide information about the bottlenecks and
optimization strategies indicated from the computational analysis of the ker-
nels of viscoacoustic equations. This paper proceeds as follows: Section 2
brings information on mathematical model to viscoacoustic wave equations.
Section 3 details the implementations of our model over the parallel archi-
tectures. Section 4 presents our case studies and experimental results. Some
conclusions and future work ideas close the paper.

Springer Nature 2021 LATEX template

GPU Performance analysis 3

2 Mathematical model to viscoacoustic wave equations

The viscoacoustic equations based on the rheological models originate from
the stress-strain relation

σ =
∂ψ

∂t
∗ ϵ = ψ ∗

∂ϵ

∂t
, (1)

where σ is the stress, ϵ is the deformation, ψ is the relaxation function.
Moreover,

∂ϵ

∂t
= ∇ · v, (2)

and
∂v

∂t
=

1

ρ
∇σ, (3)

where v is the particle velocity, ρ is the density. Equations (1), (2), and (3)
are the main relations to derive the viscoacoustic equations based on Maxwell,
Kelvin-Voigt, and SLS rheological models [12].

2.1 Equations based on the Maxwell model

The relaxation function for the Maxwell model is defined as

ψ =MUe
(−t/τ)H(t), (4)

whereMU is the elasticity constant of the unrelaxed spring, H(t) is the Heavi-
side function and τ = η/MU = ω0Q is the relaxation time, being η the viscosity
and Q the quality factor. Replacing (4) in (1), using (2) and (3), considering
MU ≈ k to the dominant frequency, and adding the source term S, derived
the first-order equation

{

∂p
∂t + κ∇ · v + ω0

Q p =
∫

S(xs, t),

∂v
∂t + 1

ρ∇P = 0,
(5)

where κ is the bulk modulus, p = −σ is the pressure field, and ω0 = 2πf0 is
the angular frequency, being f0 the dominant frequency.

Taking the time derivative in (5), and replacing the second term in the
first term, derived the second-order equation

∂2p

∂t2
− κ∇ ·

1

ρ
∇p+

ω0

Q

∂p

∂t
= S(xs, t). (6)

2.2 Equations based on the Kelvin-Voigt model

The relaxation function for the Kelvin-Voigt model is defined as

ψ =MRH(t) + ηδ(t), (7)

Springer Nature 2021 LATEX template

4 GPU Performance analysis

where MR is the elasticity constant of the relaxed spring, η is the viscos-
ity, H(t) and δ(t) are the Heaviside and Dirac delta functions, respectively.
Replacing (7) in (1), taking the time derivative, and using (2), is obtained

∂σ

∂t
=MR∇ · v + η∇ ·

1

ρ
∇σ. (8)

Thus, considering σ = −p, the motion equation in (3), and adding the
source term S, derived the first-order equation







∂p
∂t + κ∇ · v − η∇ ·

1
ρ∇p =

∫

S(xs, t),

∂v
∂t + 1

ρ∇p = 0.
(9)

being MR ≈ κ, η = τMR with τ = (ω0Q)−1, where κ, η, τ are the bulk modu-
lus, viscosity, and relaxation time, respectively. Taking the time derivative in
(9), and replacing the second term in the first term, derived the second-order
equation

∂2p

∂t2
= κ∇ ·

1

ρ
∇p+ η∇ ·

1

ρ
∇
∂p

∂t
. (10)

2.2.1 Equations based on the SLS model

The relaxation function for the SLS model is defined as

ψ = κ

[

1 +

(

1−
τϵ
τσ

)

e−t/τσ

]

H(t). (11)

Taking the time derivative in (1), and replacing (11) in (1), is obtained the
relationship between the pressure field and particle velocity (3) [13], [14]:

∂p

∂t
= −

∂
[

κ
(

1 + τe−
t

τσ

)

H(t)
]

∂t
∗ ∇ · v + S, (12)

where κ = κ(x) the bulk modulus, p = −σ is the pressure field, H(t) is the
Heaviside function, and S = S(xs, t) the source term at position xs. The
τ = τϵ/τσ − 1 represents the magnitude of Q. The τϵ and τσ are stress and
strain relaxation parameters given by:

τσ =

√

Q2 + 1− 1

2πf0Q
and τϵ =

√

Q2 + 1 + 1

2πf0Q
. (13)

Equation (12) is expensive to solve by numerical modeling because of the asso-
ciated convolution operation. So, it is necessary the introduction of a memory

Springer Nature 2021 LATEX template

GPU Performance analysis 5

variable rp [15], allowing us to derive the first-order equation















∂p
∂t + κ(τ + 1)(∇ · v) + rp =

∫

S(xs, t),

∂v
∂t + 1

ρ∇p = 0,

∂rp
∂t + 1

τσ
[rp + τκ(∇ · v)] = 0.

(14)

For the second-order formulation, the derivative of time was taken in (12) and
introducing rp to remove the convolution term [16], resulting in







1
v2

∂2p
∂t2 = (1 + τ)ρ∇ ·

1
ρ∇p− rp + S(xs, t),

∂rp
∂t = τ

τσ
ρ∇ ·

1
ρ∇p−

1
τσ
rp.

(15)

3 Methodology

3.1 Hardware and software setup

All experiments performed in this work were run on a environment offering
GPU node, where this node contains two 18-core Intel(R) Xeon(R) Gold 6240
CPU @2.60 GHz, 376 GB RAM, and 1 NVIDIA TESLA V100 SXM2 [17].
This architecture provides 80 streaming multiprocessors with 32 GB HBM2
memory. For the Roofline analysis, the nvprof tool [18] collects and visualizes
the data obtained from the execution of kernel. The nvprof collects a time-
line of application-related activities on the CPU and GPU, including kernel
execution and memory transfers.

3.2 Experimental setup

As input parameters, the three layers seismic model Figure 1(a), with grid
spacing in x, y, and z, and border size of equal to 8 and 50 meters (m),
respectively. We performed the experiment considering two different grid point
models. The first with 1003 points and the second with 5003 points. The choice
of the model is for computational purposes only. In this work, we do not intend
to evaluate the geophysical side. We generated a seismic shot Figure 1(b) with
4s of record time.

In this experiment, the source is located in the center position of the model
surface. The receivers are spread along a plane (x, y). Such receivers capture
energy from various points, which improves the illumination of the target
explored. In this context, the seismogram of a shot with three-dimensional
modeling provides details by taking planes along the x or y axes and analyzing
them separately.

3.3 Roofline implementation

For the implementation of the Roofline model, the nvprof provides the
data to feed the graph with information on AI and GFLOPs. First, it is

Springer Nature 2021 LATEX template

6 GPU Performance analysis

✵

✵�✁

✵�✂

✵�✄

③
☎✆
✝
✞

✵ ✵�✁ ✵�✂ ✵�✄

①✟✠✡☛

☞

☞✌✍

☞✌✎

☞✌✏

②✑
✒✓

✔

(a)

✵

✵�✁

✶

✶�✁

✷

✷�✁

✸

✸�✁

✹

③
✂✄
☎
✆

✵ ✵�✷ ✵�✹ ✵�✝

①✞✟✠✡

☛

☛☞✌

☛☞✍

☛☞✎

②✏
✑✒

✓

(b)

Figure 1 Seismic Forward Modeling: (a) 100×100×100 three layers seismic model. (b) 3D
seismogram modeled with first-order SLS viscoacoustic equation, in the seismic central of
model position (x = 400m and y = 400m), 1001 time steps.

necessary to perform the machine characterization to define the peak perfor-
mance (GFLOP/s) and the bandwidth (GB/s), both attributes of the roofline
graph. Based on that, was used the Empirical Roofline Toolkit (ERT) [19],
whose function is to characterize GPU-accelerated systems. According to the
methodology adopted in [11], to calculate the AI of the kernels, as well as the
performance in GFLOP/s, it is necessary the use of the nvprof to obtain three
basic information. The kernel execution time, the number of floating-point
operations performed and the number of bytes read and write each memory
level. From this:











AI = nvprof GFLOPs
nvprof Bytes ,

GFLOP/s = nvprof GFLOPs
nvprof Runtime .

(16)

The Roofline plots that will be shown in the graphs are: The p kernel, vx:vy:vz
kernel and p sub-kernel. The experiment has as main objective to measure
the performance of these kernels. The p kernel represents the p pressure field
update, present in the Kelvin-Voigt and Maxwell equations. The p:r kernel

represents the pressure field p and the memory variable r updates (Algo-
rithm 1), present in the SLS equation. The vx:vy:vz kernel represents the
particle velocity components (vx, vy, and vz) update (Algorithm 2), present

Springer Nature 2021 LATEX template

GPU Performance analysis 7

in the first-order viscoacoustic equations. The p sub-kernel represents opti-
mizations that are inserted by the Devito compiler to eliminate redundancies
in consecutive loop iterations and data reuse.

1 # The stress relaxation parameter

2 t_s = (sp.sqrt (1.+1./ qp**2) -1./qp)/f0
3 # The strain relaxation parameter

4 t_ep = 1./(f0**2* t_s)
5 # The relaxation time

6 tt = (t_ep/t_s) -1.
7 # Bulk modulus

8 bm = rho * vp**2
9

10 pde_r = r - s * (1. / t_s) * r - s * (1. / t_s) * tt * rho
* div(v.forward)

11 u_r = Eq(r.forward , damp * pde_r)
12

13 pde_p = p - s * bm * (tt + 1.) * div(v.forward) - s * vp**2
* r.forward + s * vp**2 * q

14 u_p = Eq(p.forward , damp * pde_p)

Algorithm 1 Symbolic expression for the pressure field p and the memory variable r

updates for SLS first-order viscoacoustic equation.

1 pde_v = v - s * b * grad(p)
2 u_v = Eq(v.forward , damp * pde_v)

Algorithm 2 Symbolic expression for the particle velocity v update for SLS first-order
viscoacoustic equation.

3.4 Viscoacoustic wave equations implementation on Devito

3.4.1 Target application: seismic forward modelling workflow

Based on the seismic forward modeling application Figure 2, was had the seis-
mic model definition and the acquisition geometry, which involves the source
type and source peak frequency, as well as the source/receivers locations. Then
the FD Kernel represents the function with the highest computational cost of
the entire application. In the case of this application, for each viscoacoustic
wave equation presented in Section 2 an FD Kernel has been implemented.

3.4.2 Case study: code generation of the first-order SLS viscoacoustic
equation on Devito.

In the Algorithm 3 it is possible to visualize only a part of the automatically
generated code, referring to the update of the particle velocity components of
the first-order SLS viscoacoustic equation.

Springer Nature 2021 LATEX template

8 GPU Performance analysis

�✁✂✄☎✁ ✆✝✁ ✞✝✟✠✄✡☛☞ ✞✌✍✎☞✁✏

✡✌✁☛✆✁ ✆✝✁ ✠✁✄✠✏✄✡ ✏✍✑✁☞

�✁✂✄☎✁ ✆✝✁ ☛✡✒✓✄✠✄✆✄✍☎

✔✁✍✏✁✆✌✟

✡✌✁☛✆✁ ✠✍✓✌✡✁ ☛☎✑ ✌✁✡✁✄✕✁✌✠

✖✗✘✙✚✗ ✛✜✢✣✤✗ ✥✚✖ ✣✗✤✗✙✦✗✣✛

✧✜✤✥★✙✜✚✛

✛✩✜★ ✧✜✜✪

★✙✫✗ ✧✜✜✪

✬� ✭✁✌☎✁☞

✓✞✑☛✆✁ ✮✯✰ ✮✱✰ ✮✲ ✳✴✵✶✷✸✹✺✶✻✼✶ ✼✽✾✿✸✵✺❀✷ ✺❀❁✱❂

✓✞✑☛✆✁ ✞ ☛☎✑ ✌

☛✞✞☞✟ ✠✍✓✌✡✁ ✆✍ ✞

✠✆✍✌✁ ✌✁✡✁✄✕✁✌✠ ✞✍✄☎✆✠

✚✜ ✚✜

Figure 2 Forward modelling flowchart.

1 #pragma acc parallel loop collapse (3) present(b,p,vx,vy,vz)
2 for (int x = x_m; x <= x_M; x += 1)
3 {
4 for (int y = y_m; y <= y_M; y += 1)
5 {
6 for (int z = z_m; z <= z_M; z += 1)
7 {
8 float r9 = -p[t0][x+16][y+16][z+16];
9 vx[t1][x+16][y+16][z+16]=(-5.0e-1F*dt*(b[x+16][y+16][z

+16]+ ...
10 vy[t1][x+16][y+16][z+16]=(-5.0e-1F*dt*(b[x+16][y+16][z

+16]+ ...
11 vz[t1][x+16][y+16][z+16]=(-5.0e-1F*dt*(b[x+16][y+16][z

+16]+ ...
12 }
13 }
14 }

Algorithm 3 The 3D grid point model vx:vy:vz to kernel.

3.4.3 Optimizations

For GPU flow, Devito presents two optimization levels (noop, advanced)
for code generation. With noop, no performance optimizations are intro-
duced. The advanced directive provides several flop-reducing and data locality
optimization passes.

Cross-iteration redundancy elimination (CIRE) searches for redundancies
across consecutive loop iterations. These are often induced by a mixture of
nested, high-order, partial derivatives. The advanced mode has a code motion
pass. In explicit PDE solvers, this is most commonly used to lift expensive
time-invariant sub-expressions out of the inner loops. The advanced directive
is used by default in Devito. However, the generated code still has optimization
gaps and this work aimed to contribute to this aspect.

From the Algorithm 3 analysis and the AI and performance in GFLOP/s
information obtained, it is assumed that the FD Kernel presents a

Springer Nature 2021 LATEX template

GPU Performance analysis 9

computationally-intensive process with a large number of memory accesses
and that demands a high memory bandwidth. In this context, the FD Kernel
operates in a DRAM bandwidth limit region. Thus, strategies that optimize
memory access are analyzed to take advantage of all memory bandwidth and
eliminate redundant memory accesses.

There is a feature available in the standard OpenACC directives [20], which
is the addition of the tile clause to the acc loop directive. With the tile clause, it
is possible to optimize the loop by operating smaller blocks to explore locality
and data reuse [21]. Using the tile clause in Devito is optional and is disabled
by default.

According to [22] tiling can improve parallel stencil applications in at least
3 ways. First, tiling partitions loop data and computations into tiles, thereby
enabling the GPU to handle amounts of input data that exceed the capacity
of its internal memory. Second, tiling reorders loop nesting of the stencil,
which can improve spatial and temporal locality within the tiles. Third, the
partitioning combined with loop reordering potentially reduces the volume of
communication between host memory and GPU, which reduces the memory
bandwidth requirements for the application.

4 Experimental results

This section presents some results obtained with the usage of our proposed.
Experimental results are shown and commented, with detailed explanation
and useful insights.

4.1 First-order viscoacoustic equations

For each first-order viscoacoustic equation we performed application profil-
ing. Figure 3 represents an approximate average of the execution time of the
application functions using the first-order viscoacoustic equations.

35%

p kernel

19%

vx:vy:vz kernel

28%

p sub-kernel

18%

transfer+initialization

Figure 3 Application profiling using first-order viscoacoustic equation. High cost in terms
of execution time.

Springer Nature 2021 LATEX template

10 GPU Performance analysis

In the graphics of Figures 4, 5, and 6 was noticed similarity, the Roofline
plots are located in a region where GFLOP/s performance is limited by mem-
ory bandwidth. From the tests performed, was noted in Figures 4 (b), 5 (b)
and 6 (b) that the increase in the domain size results in the approximation
between the Roofline plots and the memory bandwidth limit.

It is also important to note a better performance using the tile clause repre-
sented by OPTIMIZED KERNEL. Was understood that the optimization decrease
the data movement between DRAM memory and device, which resulted in
increased performance in GFLOP/s, Figures 4 (b), 5 (b), and 6 (b).

10−3 10−2 10−1 100 101 102 103

Arithmetic Intensity [FLOPs/Byte]

100

101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

]

FP32 Maximum: 14535.3 GFLOP/s
FP64 Maximum: 7732.8 GFLOP/s

L1: 3339.8 GB/s

DRAM: 783.2 GB/s

V100 - dtype: float32

vx:vy:vz kernel p:r kernel

STANDARD KERNEL
OPTIMIZED KERNEL

(a)

10−3 10−2 10−1 100 101 102 103

Arithmetic Intensity [FLOPs/Byte]

100

101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

]

FP32 Maximum: 14535.3 GFLOP/s
FP64 Maximum: 7732.8 GFLOP/s

L1: 3339.8 GB/s

DRAM: 783.2 GB/s

V100 - dtype: float32

vx:vy:vz kernel p:r kernel

STANDARD KERNEL
OPTIMIZED KERNEL

(b)

Figure 4 Roofline first-order SLS viscoacoustic equation: (a) Roofline plots for a
100×100×100 model. (b) Roofline plots for a 500×500×500 model.

10−3 10−2 10−1 100 101 102 103

Arithmetic Intensity [FLOPs/Byte]

100

101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

]

FP32 Maximum: 14535.3 GFLOP/s
FP64 Maximum: 7732.8 GFLOP/s

L1: 3339.8 GB/s

DRAM: 783.2 GB/s

V100 - dtype: float32

vx:vy:vz kernel
p sub-kernel

p kernel

STANDARD KERNEL
OPTIMIZED KERNEL

(a)

10−3 10−2 10−1 100 101 102 103

Arithmetic Intensity [FLOPs/Byte]

100

101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

]

FP32 Maximum: 14535.3 GFLOP/s
FP64 Maximum: 7732.8 GFLOP/s

L1: 3339.8 GB/s

DRAM: 783.2 GB/s

V100 - dtype: float32

vx:vy:vz kernel
p sub-kernel

p kernel

STANDARD KERNEL
OPTIMIZED KERNEL

(b)

Figure 5 Roofline first-order Kelvin-Voigt viscoacoustic equation: (a) Roofline plots for a
100×100×100 model. (b) Roofline plots for a 500×500×500 model.

4.2 Second-order viscoacoustic equation

For each second-order viscoacoustic equation we performed application profil-
ing. Figure 7 represents an approximate average of the execution time of the
application functions using the second-order viscoacoustic equations.

Springer Nature 2021 LATEX template

GPU Performance analysis 11

10−3 10−2 10−1 100 101 102 103

Arithmetic Intensity [FLOPs/Byte]

100

101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

]

FP32 Maximum: 14535.3 GFLOP/s
FP64 Maximum: 7732.8 GFLOP/s

L1: 3339.8 GB/s

DRAM: 783.2 GB/s

V100 - dtype: float32

vx:vy:vz kernel p kernel

STANDARD KERNEL
OPTIMIZED KERNEL

(a)

10−3 10−2 10−1 100 101 102 103

Arithmetic Intensity [FLOPs/Byte]

100

101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

]

FP32 Maximum: 14535.3 GFLOP/s
FP64 Maximum: 7732.8 GFLOP/s

L1: 3339.8 GB/s

DRAM: 783.2 GB/s

V100 - dtype: float32

vx:vy:vz kernel p kernel

STANDARD KERNEL
OPTIMIZED KERNEL

(b)

Figure 6 Roofline first-order Maxwell viscoacoustic equation: (a) Roofline plots for a
100×100×100 model. (b) Roofline plots for a 500×500×500 model.

41%

p kernel

33%

p sub-kernel

26%

transfer+initialization

Figure 7 Application profiling using second-order viscoacoustic equation. High cost in terms
of execution time.

In the graphics of Figures 8, 9, and 10 was noted that the Roofline plots are
located in a region where GFLOP/s performance is limited by memory band-
width. It is important to note that the performance increase with the use of
the clause tile represented by the OPTIMIZED KERNEL was more significant for
the second-order viscoacoustic equations compared to first-order viscoacoustic
equations.

Figure 11 shows the seismic forward modeling execution time results,
using each of the viscoacoustic equations. The input parameters are the
same previously used. Was used the number of 10001 time steps so that the
experiment.

From the experiments shown in Figures 4, 5, 6, 8, 9, and 10 an analysis
was performed around the functions [CUDA memcpy HtoD] and [CUDA memcpy

DtoH] that handle data movement between the host and the device.
With the data of the Figure 12 was observed that this optimization was

due to the increase in global L1 memory read and store transactions in nvprof,

Springer Nature 2021 LATEX template

12 GPU Performance analysis

10−3 10−2 10−1 100 101 102 103

Arithmetic Intensity [FLOPs/Byte]

100

101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

]

FP32 Maximum: 14535.3 GFLOP/s
FP64 Maximum: 7732.8 GFLOP/s

L1: 3339.8 GB/s

DRAM: 783.2 GB/s

V100 - dtype: float32

p sub-kernel p:r kernel

STANDARD KERNEL
OPTIMIZED KERNEL

(a)

10−3 10−2 10−1 100 101 102 103

Arithmetic Intensity [FLOPs/Byte]

100

101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

]

FP32 Maximum: 14535.3 GFLOP/s
FP64 Maximum: 7732.8 GFLOP/s

L1: 3339.8 GB/s

DRAM: 783.2 GB/s

V100 - dtype: float32

p sub-kernel p:r kernel

STANDARD KERNEL
OPTIMIZED KERNEL

(b)

Figure 8 Roofline second-order SLS viscoacoustic equation: (a) Roofline plots for a
100×100×100 model. (b) Roofline plots for a 500×500×500 model.

10−3 10−2 10−1 100 101 102 103

Arithmetic Intensity [FLOPs/Byte]

100

101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

]

FP32 Maximum: 14535.3 GFLOP/s
FP64 Maximum: 7732.8 GFLOP/s

L1: 3339.8 GB/s

DRAM: 783.2 GB/s

V100 - dtype: float32

p sub-kernel p kernel

STANDARD KERNEL
OPTIMIZED KERNEL

(a)

10−3 10−2 10−1 100 101 102 103

Arithmetic Intensity [FLOPs/Byte]

100

101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

]
FP32 Maximum: 14535.3 GFLOP/s

FP64 Maximum: 7732.8 GFLOP/s

L1: 3339.8 GB/s

DRAM: 783.2 GB/s

V100 - dtype: float32

p sub-kernel p kernel

STANDARD KERNEL
OPTIMIZED KERNEL

(b)

Figure 9 Roofline second-order Kelvin-Voigt viscoacoustic equation: (a) Roofline plots for a
100×100×100 model. (b) Roofline plots for a 500×500×500 model.

10−3 10−2 10−1 100 101 102 103

Arithmetic Intensity [FLOPs/Byte]

100

101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

]

FP32 Maximum: 14535.3 GFLOP/s
FP64 Maximum: 7732.8 GFLOP/s

L1: 3339.8 GB/s

DRAM: 783.2 GB/s

V100 - dtype: float32

p sub-kernel p kernel

STANDARD KERNEL
OPTIMIZED KERNEL

(a)

10−3 10−2 10−1 100 101 102 103

Arithmetic Intensity [FLOPs/Byte]

100

101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

]

FP32 Maximum: 14535.3 GFLOP/s
FP64 Maximum: 7732.8 GFLOP/s

L1: 3339.8 GB/s

DRAM: 783.2 GB/s

V100 - dtype: float32

p sub-kernel p kernel

STANDARD KERNEL
OPTIMIZED KERNEL

(b)

Figure 10 Roofline second-order Maxwell viscoacoustic equation: (a) Roofline plots for a
100×100×100 model. (b) Roofline plots for a 500×500×500 model.

while there was a decrease in transactions of reading and storing DRAM mem-
ory in nvprof. It is important to emphasize that L1 memory read and store
transactions are faster when compared to DRAM memory.

Another approach is to analyze the cache hit ratio. The nvprof tool
provides information about the cache hit rate using the following metrics:

Springer Nature 2021 LATEX template

GPU Performance analysis 13

firs
t-o
rde
r

SLS

sec
on
d-o
rde
r

SLS firs
t-o
rde
r

Ke
lvin

-Vo
igt

sec
on
d-o
rde
r

Ke
lvin

-Vo
igt

firs
t-o
rde
r

Ma
xw
ell

sec
on
d-o
rde
r

Ma
xw
ell

0

250

500

750

1000

1250

1500

1750

2000

Ti
m
e

(s
)

951 1037

1827 1823

906 992

688 627

899 827
622 545

Viscoacoustic Equations
STANDARD KERNEL
OPTIMIZED KERNEL

Figure 11 Forward modeling execution time for one shot.

• global hit rate: Hit rate for global load and store in unified L1 cache.
• local hit rate: Hit rate for local loads and stores.
• tex cache hit rate: Unified cache hit rate.
• l2 tex hit rate: Hit rate at L2 cache for all requests from texture cache.

In the Figure 13, it is possible to notice that the kernels included in the OPTI-
MIZED KERNEL present higher values for global hit rate and tex cache hit rate.
In addition, there was a reduction regarding l2 tex hit rate.

Springer Nature 2021 LATEX template

14 GPU Performance analysis

CUDA OPTIMIZED
KERNEL

0

10

20

30

40

50

%

22.24
18.23

16.47

13.5

38.71

31.73

Runtime of the kernels
HtoD
DtoH

Figure 12 First-order SLS viscoacoustic equation FD kernel, Figure 4, for the STANDARD

KERNEL the function [CUDA memcpy HtoD] represents 22.24% of the total runtime, while the
[CUDA memcpy DtoH] function represents 16.47%. With the OPTIMIZED KERNEL, the [CUDA

memcpy HtoD] function represents 18.23% of the total execution time, while the [CUDA memcpy

DtoH] function represents 13.5%.

Figure 13 Application profiling: Cache hit ratio using SLS first-order viscoacoustic equation.

5 Conclusions

From the application profiling, was observed that the Kelvin-Voigt viscoacous-
tic equation presented greater complexity due to a more significant amount of
floating-point operations performed. In addition, the Kelvin-Voigt viscoacous-
tic equation showed a more substantial amount of memory read and storage
operations. Was noticed a more significant performance gain for the Kelvin-
Voigt viscoacoustic equation, when compared to other viscoacoustic equations.
This fact is explained based on the use of the tile clause, which provides an
optimization aimed at reading and storing transactions from memory.

Was analyzed that the maximum GFLOP/s performance values obtained
for the viscoacoustic wave equations FD kernels were approximately 1255

Springer Nature 2021 LATEX template

GPU Performance analysis 15

GFLOP/s. This fact shows that it is possible to increase the GFLOP/s per-
formance since the maximum value achieved is far from the theoretical peak
available in the GPU. For that, it is necessary to find more optimization alter-
natives. Based on the results obtained, was understood that optimizations in
decreasing data movement in memory are essential to increase performance.

Some related works [1], [23], and [24] indicate strategies for optimizations
that replace replicated global memory accesses with local memory accesses
that substantially reduce the stencil computation execution time for any grid
size. Other related works, such as [25] which aim at optimizations from the
proper configuration of OpenACC directives for data management and [26]
which investigates multi-GPU performance. Devito also supports distributed-
memory parallelism via MPI, will also be prospected for future work the
Roofline analysis of the viscoacoustic equations FD kernels execution in
multi-GPU environments.

Acknowledgments

This research was executed in partnership between SENAI CIMATEC
and PETROBRAS. The authors would like to acknowledge PETROLEO
BRASILEIRO S.A and Agência Nacional de Petróleo, Gás Natural e Biocom-
bust́ıvel (ANP), for the support and investments in R&D.

Declarations

5.1 Ethical approval

Not applicable.

5.2 Competing interests

Not applicable.

5.3 Authors’ contributions

All authors built and reviewed the manuscript equally.

5.4 Funding

Any funding received.

5.5 Availability of data and materials

Not applicable.

References

[1] Carrijo Nasciutti, T., Panetta, J., Pais Lopes, P.: Evaluating opti-
mizations that reduce global memory accesses of stencil computations

Springer Nature 2021 LATEX template

16 GPU Performance analysis

in GPGPUs. Concurrency and Computation: Practice and Experience
31(18), 4929 (2019)

[2] Sano, K., Yamamoto, S., Hatsuda, Y.: Domain-specific programmable
design of scalable streaming-array for power-efficient stencil computation.
ACM SIGARCH Computer Architecture News 39(4), 44–49 (2011)

[3] Said, I.: Contributions of hybrid architectures to depth imaging: a CPU,
APU and GPU comparative study. PhD thesis, Université Pierre et Marie
Curie-Paris VI (2015)

[4] Kukreja, N., Louboutin, M., Vieira, F., Luporini, F., Lange, M., Gorman,
G.: Devito: Automated fast finite difference computation. In: 2016 Sixth
International Workshop on Domain-Specific Languages and High-Level
Frameworks for High Performance Computing (WOLFHPC), pp. 11–19
(2016). IEEE

[5] Lange, M., Kukreja, N., Louboutin, M., Luporini, F., Vieira, F., Pan-
dolfo, V., Velesko, P., Kazakas, P., Gorman, G.: Devito: Towards a generic
finite difference dsl using symbolic python. In: 2016 6th Workshop on
Python for High-Performance and Scientific Computing (PyHPC), pp.
67–75 (2016). IEEE

[6] Louboutin, M., Luporini, F., Witte, P., Nelson, R., Bisbas, G., Thorbecke,
J., Herrmann, F.J., Gorman, G.: Scaling through abstractions–high-
performance vectorial wave simulations for seismic inversion with Devito.
arXiv preprint arXiv:2004.10519 (2020)

[7] Meurer, A., Smith, C.P., Paprocki, M., Čert́ık, O., Kirpichev, S.B., Rock-
lin, M., Kumar, A., Ivanov, S., Moore, J.K., Singh, S., Rathnayake,
T., Vig, S., Granger, B.E., Muller, R.P., Bonazzi, F., Gupta, H., Vats,
S., Johansson, F., Pedregosa, F., Curry, M.J., Terrel, A.R., Roučka, v.,
Saboo, A., Fernando, I., Kulal, S., Cimrman, R., Scopatz, A.: Sympy:
symbolic computing in python. PeerJ Computer Science 3, 103 (2017).
https://doi.org/10.7717/peerj-cs.103

[8] Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen,
P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern,
R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del
Ŕıo, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K.,
Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array
programming with NumPy. Nature 585(7825), 357–362 (2020). https://
doi.org/10.1038/s41586-020-2649-2

[9] Konstantinidis, E., Cotronis, Y.: A quantitative roofline model for GPU
kernel performance estimation using micro-benchmarks and hardware
metric profiling. Journal of Parallel and Distributed Computing 107,

https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

Springer Nature 2021 LATEX template

GPU Performance analysis 17

37–56 (2017)

[10] Wang, Y., Yang, C., Farrell, S., Zhang, Y., Kurth, T., Williams, S.:
Time-based roofline for deep learning performance analysis. In: 2020
IEEE/ACM Fourth Workshop on Deep Learning on Supercomputers
(DLS), pp. 10–19 (2020). IEEE

[11] Yang, C., Kurth, T., Williams, S.: Hierarchical roofline analysis for gpus:
Accelerating performance optimization for the nersc-9 perlmutter system.
Concurrency and Computation: Practice and Experience 32(20), 5547
(2020)

[12] Carcione, J.M.: Wave Fields in Real Media: Wave Propagation in
Anisotropic, Anelastic, Porous and Electromagnetic Media, (2014)

[13] Robertsson, J.O., Blanch, J.O., Symes, W.W.: Viscoelastic finite-
difference modeling. Geophysics 59(9), 1444–1456 (1994)

[14] Carcione, J.M., Kosloff, D., Kosloff, R.: Wave propagation simulation in
a linear viscoelastic medium. Geophysical Journal International 95(3),
597–611 (1988)

[15] Dutta, G., Schuster, G.T.: Attenuation compensation for least-squares
reverse time migration using the viscoacoustic-wave equation. Geophysics
79(6), 251–262 (2014)

[16] Bai, J., Yingst, D., Bloor, R., Leveille, J.: Viscoacoustic waveform inver-
sion of velocity structures in the time domain: Geophysics, 79. R103–R119
(2014)

[17] Jia, Z., Maggioni, M., Staiger, B., Scarpazza, D.P.: Dissecting the NVIDIA
volta GPU architecture via microbenchmarking. CoRR abs/1804.06826
(2018) https://arxiv.org/abs/1804.06826

[18] Bradley, T.: GPU performance analysis and optimization. NVIDIA
Corporation (2012)

[19] Yang, C.: Hierarchical roofline analysis: How to collect data using
performance tools on intel cpus and NVIDIA GPUs. arXiv preprint
arXiv:2009.02449 (2020)

[20] OpenACC: Directive-based performance-portable parallel programming
model for GPU Architectures. Available in: https://www.openacc.org
(2021)

[21] Feki, S., Smaoui, M.: Tuning OpenACC loop execution. In: Parallel
Programming with OpenACC, pp. 111–124 (2017)

{1804.06826}

Springer Nature 2021 LATEX template

18 GPU Performance analysis

[22] Rocha, R.C., Pereira, A.D., Ramos, L., Goes, L.F.: Toast: Automatic
tiling for iterative stencil computations on GPUs. Concurrency and
Computation: Practice and Experience 29(8), 4053 (2017)

[23] Kim, K.-H., Kim, K.-H., Park, Q.-H.: Performance analysis and opti-
mization of three-dimensional FDTD on GPU using roofline model.
Computer Physics Communications 182, 1201–1207 (2011). https://doi.
org/10.1016/j.cpc.2011.01.025

[24] Yang, C.: 8 steps to 3.7 TFLOP/s on NVIDIA V100 GPU: Roofline
analysis and other tricks. arXiv preprint arXiv:2008.11326 (2020)

[25] Kupiainen, M., Gong, J., Axner, L., Laure, E., Nordström, J.: GPU-
acceleration of a high order finite difference code using curvilinear
coordinates. In: Proceedings of the 2020 International Conference on
Computing, Networks and Internet of Things, pp. 41–47 (2020)

[26] Xue, W., Roy, C.J.: Multi-GPU performance optimization of a CFD code
using OpenACC on different platforms. arXiv preprint arXiv:2006.02602
(2020)

https://doi.org/10.1016/j.cpc.2011.01.025
https://doi.org/10.1016/j.cpc.2011.01.025

	Introduction
	Mathematical model to viscoacoustic wave equations
	Equations based on the Maxwell model
	Equations based on the Kelvin-Voigt model
	Equations based on the SLS model

	Methodology
	Hardware and software setup
	Experimental setup
	Roofline implementation
	Viscoacoustic wave equations implementation on Devito
	Target application: seismic forward modelling workflow
	Case study: code generation of the first-order SLS viscoacoustic equation on Devito.
	Optimizations

	Experimental results
	First-order viscoacoustic equations
	Second-order viscoacoustic equation

	Conclusions
	Ethical approval
	Competing interests
	Authors' contributions
	Funding
	Availability of data and materials

