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ABSTRACT 21 

Humans are very accurate and robust at recognizing materials (e.g., linen or hand cream) and 22 

estimating their properties (e.g., softness or stickiness). To achieve this, they rely on sensory 23 

input as well as on previous knowledge and experience. Softness is an important mechanical 24 

material property that can be perceived directly through haptic-, but also indirectly through 25 

visual inspection. While visual and haptic softness are similar we have found in previous work 26 

that there are also differences in how softness related material attributes are judged. Here, we 27 

investigate how softness memory relates to haptic and visual perceptual spaces of softness. We 28 

performed an online experiment where people rated different sensory aspects of soft materials, 29 

for which only names were presented, i.e., without any haptic or visual information about the 30 

material. We compared results with previous studies where identical ratings were made on the 31 

basis of visual and haptic information. Correlation and Procrustes analyses show that the 32 

description spaces for all materials were similar for verbal, haptic, and visual presentation. 33 

However, linear discriminant classifiers also unveiled subtle differences in how soft materials 34 

are represented and predicted from different types of information. Specifically, we found that 35 

memory better predicted visual than haptic softness.  36 
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 44 

INTRODUCTION  45 

The material qualities of objects influence how we interact with them, we tend to indent soft 46 

things, we grasp fragile things gently, and apply somewhat more force when a slippery surface 47 

starts to slide from our hands. To learn about materials, we usually explore them with our 48 

hands. Through such explorations, associations between visual and haptic perception are 49 

established, and this knowledge is important for guiding and shaping future interactions 1–10. 50 

These associations are so strong that even when direct visual or haptic information is not 51 

available, we seem to be able to make statements about typical (or expected) material 52 

properties11. For instance, when we see the brand name of a hand cream, we may have certain 53 

expectations about the cream’s viscosity, stickiness, smell, translucency, and color. All this 54 

information is available to us through our semantic knowledge of hand cream12. In fact, there 55 

are many examples in research demonstrating the existence of strong multisensory 56 

associations. For example,  Adams et al.13 showed that the glossiness of a surface can be used 57 

as a proxy for judging its slipperiness13. Similarly, Paulun et al.14 showed that viscosity of 58 

liquids can be inferred from static images. In our own recent work, we showed that softness 59 

dimensions (viscosity, granularity, and surface softness15) that were derived from haptic rating 60 

experiments also apply to visually perceived materials in static (close-up images) and dynamic 61 

scenes (videos showing the manual exploration of materials)15. The high correspondence 62 

between static visual and haptic information suggests that, although the materials in the study 63 

were primarily defined through their mechanical and tactile properties, this information was 64 

also indirectly accessible through visual shape and texture cues alone. We argued that 65 

participants likely relied on their prior knowledge about the materials when rating tactile and 66 

mechanical properties, that is, the provided visual information activated the memory of a 67 

specific material, which allowed the participants to ‘fill in’ the ‘missing’ sensory information15.  68 



Yet, memory cannot only be used to fill in the blanks (i.e., supplement), it can also alter our 69 

perception. The memory color effect is one example where prior knowledge modulates color 70 

appearance16–18.  The typical color of an object (e.g., bananas are yellow) influences the way 71 

people see an actual color. Similarly, Metzger and Drewing19 found a memory softness effect: 72 

If participants believe that they probe the compliance of a harder material (e.g., a tennis ball) 73 

the same stimulus is perceived to be harder as compared to when they believe to probe a softer 74 

material (e.g., a sponge). Alley et al.1 showed expectations based on prior knowledge about the 75 

typical kinematic properties of a material affect how material properties are perceived in static 76 

and dynamic scenes. In Cavdan et al.15 we found that even by visual inspection alone people 77 

make reasonable judgements about haptic qualities (e.g., softness) of soft objects (e.g., sponge). 78 

This could be because interacting with many sponges of various soft qualities lead to the 79 

formation of memories of the material sponge which contains both visual and haptic properties. 80 

When we activate this specific semantic category (i.e., sponge) the typical visual and haptic 81 

properties of this material might be retrieved from memory.   82 

Here we want to directly investigate this material memory component when participants judge 83 

softness-related qualities of materials, when neither visual nor haptic information is available. 84 

Softness is an important mechanical property of materials that is primarily perceived through 85 

touch20–28, but can also be judged on the basis of visual information29–35.  In a previous study15 86 

we showed systematic similarities as well as differences between visually and haptically 87 

perceived softness. Here we compare visual and haptic softness to softness memory. We 88 

conducted an online experiment where 132 participants rated material properties based on 89 

adjectives, that were also used in our previous work3,15. Materials were only presented as 90 

words, in order to conjure up a specific memory or concept. Using a Principal Component 91 

Analysis (PCA) we determined the dimensionality of the memory-derived perceptual softness 92 

space and compare it to those derived from our earlier haptic and visual experiments3,15. Results 93 



showed that memory-derived softness is a multidimensional construct, with similar perceptual 94 

dimensions as haptic and visual softness. We also used linear discriminant classification to test 95 

whether material ratings from memory can be used to correctly classify materials when actually 96 

being judged haptically or visually 3,15. Classification analyses suggest that memory can be 97 

used to supplement softness-related material properties.  98 

RESULTS 99 

Perceptual softness space derived from memory 100 

Our first aim was to determine the dimensionality of the softness space derived from memory 101 

and to compare it to those derived from earlier haptic and visual experiments. To this end, we 102 

first assessed interparticipant consistency of individual ratings of 19 materials (presented as 103 

words, see Table 1 and methods for trial details) using 15 adjectives to check to what extent 104 

participants responded similarly to the individual stimuli. Sufficiently high similarity in 105 

responses would allow us to use average material-adjective ratings across participants in the 106 

PCA. Bartlett scores of the PCA, which indicate how each material is associated with the 107 

extracted dimensions, were used in Procrustes analyses to measure the similarity between the 108 

perceptual softness space derived from memory with those derived from visual and haptic 109 

experiments. Since this analysis yielded a high agreement between conditions (memory [this 110 

experiment], visual [static and dynamic] and haptic), we submitted the average responses from 111 

each condition to a combined PCA in order to assess the more fine-grained structural 112 

differences between conditions. Numerical results of these analyses are reported next. 113 

Consistency. Interparticipant correlations showed that only one of the participants was not 114 

consistent with all other participants (rmean = .20). We excluded this person from further 115 

analyses. Correlations between the remaining (131) participants were significant (p < .001) and 116 

ranged between .30 and .82 (rmean = .59) , and were similarly strong as in our earlier studies3,15, 117 



This suggests, that participants share similar softness memory constructs for our stimuli, and 118 

allowed us to proceed with the PCA after averaging the rating data across participants.  119 

Dimensionality. To determine the dimensionality of perceptual softness derived from memory 120 

we submitted the averaged ratings for the different materials to a covariance based principal 121 

component analysis (PCA). The Keyser-Meyer-Olkin (KMO) value was .53 and the Bartlett 122 

test of sphericity was significant, χ² (105) = 344.70, p < .01, which suggests that it was 123 

appropriate to conduct a PCA. Principal components were extracted based on the Kaiser-124 

criterion and rotated using the varimax method. Three extracted rotated components explained 125 

82.87% of the total variance. The first component which we called surface softness (high 126 

adjective loadings from: fluffy, hairy, velvety, soft, and hard) accounted for 34.6% of the 127 

variance. The second component viscosity (adjective loadings: wobbly, sticky, moist, and 128 

elastic) accounted for 24.97% of the variance. Finally, the third component granularity 129 

(adjective loadings: sandy, powdery, granular, rough, and smooth) accounted for 23.28% of 130 

the variance. Table 1 shows the rotated adjective loadings for the memory experiment along 131 

with those, obtained from our previous visual and haptic experiments. 132 



Table 1. Rotated adjective loadings for memory, static visual, dynamic visual, and haptic 133 

conditions. Colors indicate high adjective loads (> 40% of mean variance per adjective 134 

explained, which corresponds to loads of 0.64 memory, 0.68 static visual, 0.62 dynamic visual, 135 

0.74 haptic), or that an adjective loads higher on a specific factor than on others. Bold if loading 136 

is positive, italic if the loading is negative.  137 

It appears that the adjective loadings obtained from the memory experiment were most similar 138 

to those obtained from the static visual condition. Overall, the extracted components and 139 

loading patterns were similar to those obtained in our previous haptic and visual softness 140 

studies (see Cavdan et al.,15), where we found that surface softness, granularity, and viscosity 141 

were common to all haptic & static and dynamic visual conditions and explained most of the 142 

variance in ratings, whereas deformability only appeared in the dynamic visual and haptic 143 

conditions. Finally, roughness was only specific to the haptic condition15.  144 



In order to quantitatively assess the similarities between the three common components 145 

(surface softness, granularity, and viscosity) across memory, haptic, and the two visual spaces 146 

we performed a Procrustes analysis on the Bartlett scores of materials. From this analysis we 147 

calculated the sum of squared errors that remains after mapping between any two spaces.  148 

Overall, the error between conditions was low (memory and static visual: .12, memory and 149 

dynamic visual: .32, memory and haptic: .33) which indicates a good fit between the four 150 

softness spaces 36. We used a bootstrapping approach37 for significance testing. First, for every 151 

space comparison, we created 10000 pseudo Bartlett values by shuffling the respective 152 

empirical Bartlett values. Then, we calculated the Procrustes error for each empirical and 153 

pseudo comparisons. All empirical mapping errors were significantly lower than chance as they 154 

were within the first 2.5 percentile of the pseudo errors (equivalent of two-tail significance test 155 

with α= 0.05), meaning that the softness spaces were significantly similar to each other.   156 

Memory, vision, haptics – combined perceptual softness space  157 

After confirming the similarity between semantic, haptic, static visual, and dynamic visual 158 

spaces we conducted a combined PCA. This would help us to determine fine-grained 159 

differences between structural similarities or differences in the spaces. Mean ratings from all 160 

four condition were submitted to a single PCA. The KMO value was .71 and Bartlett’s test of 161 

sphericity was significant, χ² (105) = 1550.73, p < .01 suggesting that PCA was suitable for the 162 

averaged rating data across four conditions. Then we extracted the principle components for 163 

the combined data based on Kaiser-criterion and rotated them, using the varimax method. Four 164 

components accounted for 87.98% of the total variance (see Table 2). The first component, 165 

labelled surface softness, accounted for 30.50% of the variance. Adjectives loading high on 166 

this component were fluffy, velvety, soft, hairy, and hard. The second component, labelled 167 

granularity, accounted for the 26.52% of the variance. Here, the adjectives powdery, sandy, 168 



granular, inflexible, and elastic showed high loading. On the third component, which 169 

accounted for 22.25% of the variance, adjectives sticky, moist, and wobbly loaded highly and 170 

was thus labelled viscosity. Finally, the component labelled roughness explained 8.71% of the 171 

variance. On this component only the adjective rough and smooth loaded highly. 172 

Table 2. Rotated adjective loadings from the combined PCA analysis. Components determined 173 

based on high adjective loadings (>40% of the mean variance corresponding to loading .66 or 174 

highest on a specific dimension). Bold if loading is positive and italic if loading is negative.  175 
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Fluffy 1.19 -0.25 -0.34 -0.10 

Velvety 0.82 -0.06 -0.09 0.11 

Soft 1.02 -0.30 0.45 -0.09 

Hairy 0.83 -0.22 -0.37 -0.20 

Hard -0.73 0.40 -0.51 0.22 

Powdery -0.06 0.88 -0.03 -0.19 

Sandy -0.16 1.03 -0.12 -0.30 

Granular -0.41 1.10 -0.19 -0.11 

Inflexible -0.41 0.57 -0.22 0.35 

Elastic 0.32 -0.52 0.44 -0.30 

Sticky -0.16 -0.05 0.96 0.10 

Wobbly 0.04 -0.29 0.82 -0.02 

Moist -0.12 -0.04 0.94 0.23 

Smooth -0.16 -0.22 0.13 0.76 

Rough -0.37 0.48 -0.40 -0.57 

 176 

Next, with correlation analyses we directly tested the similarity between the memory - and  177 

other three conditions. To this end, Bartlett values of each condition were calculated from the 178 

combined PCA. A Bartlett value is the score that shows the loading of a material in each 179 



dimension (i.e., hand cream loading score per surface softness, granularity, viscosity, and 180 

roughness). The scores that are obtained from each condition are correlated with the memory 181 

scores (i.e., memory-haptic, memory-static, memory-dynamic).  182 

All correlations were significant at p < .001 level (Bonferroni-corrected for three tests).  Fig. 1 183 

shows the correlations between the extracted Bartlett scores of the four softness spaces: 184 

memory-haptic (r = .88), memory-static (r = .92), and memory-dynamic (r = .90).  These strong 185 

correlations indicate high similarity between memory and perception-based description spaces.  186 

Figure 1. Scatter plots of the correlation’s coefficients of Bartlett scores, correlation 187 

coefficients between conditions: a.  memory-haptic b. memory-static visual c. memory-188 

dynamic visual.  189 

Prediction of Material Softness from Different Domains  190 

PCA and Procrustes analysis showed that also memory softness – a softness space which is 191 

derived from memory – is a multidimensional construct and overall similarly organized as 192 

haptic, static visual, and dynamic visual softness. Such a differentiated softness space in 193 

memory could allow to supplement information when perceptual material information is 194 

ambiguous or missing. Here we tested to what extend visual and haptic softness can be 195 

predicted from memory softness. Predicting softness information could be realized at a coarse 196 

level through material dimensions (e.g., granular materials). That is to say, it could be possible 197 



to predict material granularity information from memory when one is asked to judge properties 198 

of granular materials.   199 

We tested this possibility of predicting material categories at a coarse level (i.e., material 200 

dimensions: granular, surface soft, viscous materials) by training a linear discriminant classifier 201 

(6-fold validation) for each condition (i.e., static visual, dynamic visual, haptic) to predict 202 

memory and vice versa. Each classifier was trained on adjective ratings of materials that loaded 203 

high in one of the three softness dimensions (see Supplementary Fig. 3). Specifically, we used 204 

the ratings from the following materials; surface softness: velvet, fur, and cotton balls; 205 

granularity: salt and sand; viscosity: hand cream and hair gel. 206 

 The results in Fig. 2 shows, that overall, classifiers performed better than chance (chance level 207 

= 100/3 = 33.3). The classifiers trained on visual and memory conditions predicted visual and 208 

memory conditions almost perfectly (all accuracies > 99%). However, prediction of the haptic 209 

condition from the visual or memory conditions and vice versa was lower (~45% accuracy, see 210 

Fig.2).  211 

More specifically, the classifier trained in haptic data frequently confused surface softness with 212 

granularity and viscosity, and confused viscosity with surface softness when classifying the 213 

softness dimensions of materials based on their ratings from memory (Fig. 2), and visual 214 

conditions (Supplementary Fig. 1).  215 



 Figure 2. Confusion matrices showing the softness dimension classification performance of 216 

Static, Memory, Haptic, and Dynamic linear discriminant classifiers trained on adjective 217 

ratings in the respective conditions. Material classification performances as follows. Memory 218 

classifier: Haptic: 46.43%, Dynamic: 99.52%, Static: 99.05%. Haptic classifier: Memory: 219 

36.42%, Dynamic classifier: Memory: 99.02%, Static classifier: Memory: 99.35%. x-axes 220 

show the predicted dimension while y-axes show the true dimension. 221 

 Taken together, the Procrustes analysis on Bartlett values of materials across common softness 222 

dimensions showed that material softness is mapped similar in haptic, memory, and visual 223 

domains, and the linear discriminant classifiers showed that for the most part the three common 224 

perceived dimensions softness are also classifiable across sensory and memory domains. 225 

However, high similarity in softness representations only suggest that softness maps (i.e., 226 

extracted softness spaces from memory, vision, and haptics) are organized similarly enough to 227 

allow supplement across domains. This explains, for example, why we imagine the feel of 228 

viscosity when we see a hair gel commercial and not granularity. However, being able to infer 229 

how a hair gel exactly feels on hand from a picture requires corresponding multisensory 230 



representation of hair gel’s soft qualities in memory, visual, and haptic domains. The material 231 

mapping errors in Procrustes analysis show that individual materials are similarly mapped 232 

across conditions. Thus, one could argue that if a material can be classified by its softness 233 

properties in one domain then it should also be classifiable in another domain. This would 234 

imply that not only sensory and memory softness representations are highly similar, but soft 235 

qualities of materials are represented closely enough to identify materials and possibly 236 

supplement missing information to infer their otherwise unavailable soft qualities.  237 

To test this hypothesis, we trained a second set of linear discriminant classifiers for each 238 

condition, again using the adjective ratings of the materials that are highly loaded to one 239 

softness dimension (i.e., sand) to directly classify materials in other conditions (6-fold 240 

validation). The classifiers trained on memory, static visual, and dynamic visual data were able 241 

to make cross-condition material classifications better than chance (Chance level = 100/7 = 242 

14.29%).  Although significant, the cross-classification performance of the classifier trained on 243 

haptic may be negligible as it could reliably classify only hand cream in other conditions.  244 

Whereas, other classifiers were not able to classify the materials by haptic qualities. The 245 

classification errors were due to confusing materials that are dominantly represented in the 246 

same softness dimension (e.g., hair gel and hand cream, both are viscous materials). 247 

Overall, performances of visual and memory support the idea that softness information in these 248 

domains can predict and supplement each other. 249 



Figure 3. Confusion matrices showing the material classification performance of Static, 250 

Semantic, Haptic, and Dynamic linear discriminant classifiers trained on material ratings in 251 

respective conditions. Material classification performances as follows. Memory classifier: 252 

Dynamic: 67.62%, Haptic: 14.29%, Static: 61.9%. Haptic classifier: Memory: 18.1%. 253 

Dynamic classifier: Memory: 68.05%. Static classifier: Memory: 58.02%. Numbers in each 254 

row add up to number of materials representing each dimension x number of participants in 255 

each classified condition. 256 

 257 

Discussion 258 

In our daily lives we interact with a vast range of materials, and this interaction generates 259 

multisensory information. Our perception, categorization, and interaction with materials are 260 

not only determined by this rich sensory information but also by our previous interactions with, 261 

and by our knowledge about a given material. In the current study, we tested whether memory-262 



derived softness dimensions are similar to perceived softness from haptic explorations, from 263 

visual images, or from movies of someone else exploring materials. Importantly, we found that, 264 

also memory of soft materials is represented by a multidimensional construct, that is highly 265 

similar to that obtained from visual and haptic conditions29,36,38,39,11, where judgements were 266 

found to  vary along surface softness, granularity, and viscosity.  267 

Through the basic structures of separately extracted perceptual spaces, correlations, and 268 

Procrustes analysis we showed that memory softness is judged slightly more similarly to visual 269 

static and visual dynamic softness compared to haptic softness. Specifically, the classification 270 

performances indicated that softness dimensions as well as specific materials are well 271 

predictable by softness judgments from memory to visual conditions and vice versa,  but not 272 

to the same degree from memory to haptic conditions and vice versa (see also Supplementary 273 

1). This is quite surprising, given that softness can be directly estimated from the physical 274 

properties of materials, while visual and memory softness are associative11. Therefore, one 275 

would expect haptic softness to be more similar to other conditions, since those spaces should 276 

be derived from haptic softness. Conversely, it could be argued that the visual and memory 277 

should be more similar to each other than haptic, since the latter can be used to estimate softness 278 

without depending on supplemental information from memory. Nevertheless, similarly 279 

organized softness representations may allow supplement at least across memory and visual 280 

domains where it is mostly needed. Future studies could directly study multisensory 281 

supplementing of softness by comparing the softness judgments of familiar and novel materials 282 

under ambiguous or impoverished sensory conditions.  283 

Participants in our previous studies3,15 judged the softness of materials through haptic or visual 284 

exploration, whereas in the current study, they only saw the written name of the materials. 285 

Therefore, their judgments were not dependent on direct visual or haptic information but 286 

instead on their knowledge and experience11. This might have created more variance in 287 



participants’ judgments, however, we found high agreement between participants’ softness 288 

judgements, suggesting that perceived softness dimensions were very similar across 289 

individuals, and that the softness construct for the memory materials were shared across 290 

participants. This similarity might be explained by the fact that the materials we used, were 291 

very familiar in the studied population. Using more diverse and less frequently used materials, 292 

might have led to different results.  293 

Memory Softness as a Multidimensional Construct 294 

Previously, we have shown that visually and haptically perceived softness is represented in 295 

highly similar multidimensional spaces with some fine-grained differences15. Building upon 296 

this we tested here, whether the knowledge of soft materials as triggered by the materials’ 297 

names (i.e., memory) has the same multidimensional structure. Participants were consistent in 298 

judging different qualities of soft materials from their names alone (cf. also11). Similarities in 299 

the descriptive space of the material properties (from PCAs) from haptic, static visual, dynamic 300 

visual, and memory conditions suggest that memory and perceptual representations of softness 301 

are related: Haptic, static visual, dynamic visual, and memory of softness maps into shared 302 

granularity, surface softness, and viscosity dimensions. In addition, when comparing 303 

knowledge-based softness ratings and Bartlett scores with that from sensory condition we find 304 

strong positive correlations and good fits in Procrustes analyses. The high correspondence 305 

between memory, visual, and haptic softness information may be arising from a common 306 

softness mapping that represent softness information across modalities. Alternatively, the high 307 

correspondence we observed can be explained by multiple similarly organized softness maps 308 

that represent softness information from different modalities. In this scenario, it could be that 309 

softness is primarily perceived and represented by (remembered) touch. However, this 310 

representation is closely followed by secondary domains such as vision and memory through 311 

associations and experience. The differences we observed in the dimensional structure of PCAs 312 



between haptic and memory/static visual conditions appears to support the latter option. While 313 

static visual and memory spaces resulted in only three dimensions (i.e., surface softness, 314 

granularity, and viscosity), deformability emerged in both haptic and dynamic conditions. The 315 

features people use to represent knowledge seems not only to consist of low-level image cues 316 

but seems to also include physical and mechanical properties of materials such as viscosity, 317 

softness, and surface softness1.  318 

However, interestingly, in the memory and static visual conditions the mechanical properties 319 

seem to exclude deformability. One possible explanation for this could be that people simply 320 

rely on static visual knowledge of materials when judging softness from names. Another 321 

possibility is that people rely on the same knowledge in static visual and memory conditions. 322 

Deformability is a kinematic property which can be obtained from dynamic shape and texture 323 

cues33,40,41 or material knowledge. If an assessment of a specific material attribute has not been 324 

made earlier, that information will be missing which might be the case for some attributes, such 325 

as accessing elasticity of hand cream. In contrast, dynamic visual input can provide information 326 

about the deformability of the materials1,33,40,42,43, especially if manual explorations of the 327 

materials can be observed (or made directly) 15,34,44.Taken together, we find that the softness 328 

space obtained from the memory condition is most similar to that obtained from the static visual 329 

condition. Both of these conditions might be lacking dynamic information that is readily 330 

available in dynamic vision and haptics.  331 

Supplementing Softness Information 332 

When judging material properties, sensory information from one sense can be insufficient or 333 

ambiguous. In such a case, sensory information from other senses can be drawn upon13,14, or  334 

memory of and prior experiences with materials45 can be used to make a given inference about 335 

a material property. However, in order to make inferences  the mapping between sources of 336 



information needs to be well-defined. For instance, if visual gloss can indicate haptic 337 

slipperiness13, visual gloss values need to be mapped to haptic slipperiness values in the 338 

perceptual system. Previous research seems to suggest that this might be the case. For example, 339 

Baumgartner et al. 29 have shown that major visual and haptic material dimensions are highly 340 

corresponding. In the current and a previous study15, we extended this finding by showing 341 

similar softness dimensions underly the softness representation of haptic, memory, static 342 

visual, and dynamic visual materials, and that materials were  similarly represented across these 343 

conditions.  344 

We argued that one  function of having  corresponding representations could be to allow to 345 

supplement softness information from other domains, especially memory. The high similarity 346 

in static and dynamic visual conditions15 and memory could allow supplementing missing 347 

dynamic information in static visual scenes.  This can be seen from participants’ ability to  348 

judge viscosity of liquids from static images14. These judgments are well explained by shape 349 

cues. The ability to infer viscosity from shape cues might be attributed  to the similarity 350 

between dynamic and static visual spaces. Alternatively, previous dynamic experience with 351 

liquids could explain this ability. In this case,  corresponding representations of softness 352 

determine how much of the softness information can be recovered from memorized sensory 353 

information triggered by the available cues indicating the same material. In this case, correctly 354 

identifying a material through sensory or memory cues allow the recovery of remaining 355 

properties of the material. However, based on the present data we cannot distinguish between 356 

these two options. In both cases, possessing highly similar material presentations across 357 

softness spaces is highly useful for accessing rich information that may not be available to 358 

senses. 359 

We tested whether having a similar softness representations provides utility for predicting 360 

softness dimensions between memory and the haptic and two visual conditions. The first set of 361 



linear classifiers trained on classifying granularity, surface softness, and viscosity of the 362 

materials showed that visual, haptic, and memory information on these dimensions is not only 363 

similar but also, can be used to classify softness information in other conditions with systematic 364 

differences reflecting the differences among softness spaces. However, it is important to note 365 

there the classification performances with haptic information was much lower than visual and 366 

memory classification performances. The systematic difference in classification performances 367 

for the haptic condition echoes the differences in adjective loadings in haptic condition 368 

compared to the other three (Table 1). This suggests there are subtle differences between haptic 369 

and other conditions in terms of how materials are represented by these softness dimensions. 370 

Despite of these differences, the first set of classifiers show that highly similar multisensory 371 

softness mapping between haptic, vision and memory allows to make coarse inferences at the 372 

dimension level about material properties using the cues available in these modalities. These 373 

corresponding perceptual dimensions might provide the foundation for coarsely judging the 374 

softness of materials from a large pool of sensory memory or cues that are present in the 375 

environment.  376 

 Quickly recognizing and placing materials to perceptual dimensions is important to 377 

shape our initial way of interaction with objects46. However, the way we interact with materials 378 

needs to be more fine-tuned since materials that are similarly represented in perceptual spaces 379 

might still have distinct properties. For instance, softness of a thin glass or a metal cup might 380 

be mapped more similarly than softness of a velvet but we would handle the thin glass more 381 

similarly to a velvet cloth than a metal cup. Therefore, supplementing specific material 382 

properties from the available sensory cues is necessary. The second set of classifiers trained 383 

for material classification showed that softness information gathered from memory, visual 384 

static, and visual dynamic information can be used to classify materials across these conditions. 385 

This high correspondence in softness representations between memory and visual conditions 386 



may allow coarse predictions at the dimensional level as well as direct material categorization. 387 

 While confusions within the same softness dimension are in line with previous 388 

findings11, we explain the differences between haptic and other conditions by the higher 389 

correspondence between visual and memory conditions than haptic condition. For instance, it 390 

appears that surface softness in haptics is mapped differently than surface softness in other 391 

conditions.  This discrepancy between haptics and the visual conditions might be explained by 392 

our daily exploration habits. In daily life, we usually explore fine structures not by closely 393 

looking as in close-up pictures but by touch in close contact. In line with this, Rakhin & Onkar47 394 

found strong positive correlation between haptic and visual exploration of textiles in terms of 395 

smoothness when close-up high resolution images are presented. However, this relationship 396 

between haptics and vision was weaker for the full image of the textiles. This might mean that, 397 

some fine-tuned visual texture information can only be captured with the optimal viewing 398 

distance. In the current study even though the close-up images were used in the static visual 399 

and close-up videos in the dynamic visual condition, these might still lack critical visual cues 400 

that would bring the visual conditions closer to the haptic condition. 401 

 The confusion errors of the material classifiers could help us understand the 402 

characteristics of supplementing softness information (see Fig. 3). For instance, when a 403 

material is misclassified, it is usually confused with another material that has high values on 404 

the same softness dimension. Moreover, material classification errors (Fig. 3) followed the 405 

dimension classifiers (Fig. 2), for example, we find in Fig. 2 that the dimensions of surface 406 

softness and viscosity were confused and similarly hairy and viscous materials were confused. 407 

This further supports that common dimensions underly the perceptual space of material 408 

softness: materials that are similarly mapped in these dimensions were also easier to confuse 409 

with each other.  410 

 411 



Conclusion 412 

In conclusion, people are consistent and reliable at judging softness from memory. The memory 413 

softness is similar to haptics, static visual, and dynamic visual spaces with the common 414 

dimensions of granularity, viscosity, and surface softness. The classification performances 415 

suggest that softness information from memory, visual static, and visual dynamic domains are 416 

well suited to supplement softness information when the sensory information is insufficient. 417 

Moreover, tight mapping of materials in softness spaces is crucial as it allows supplement 418 

material information evidenced by material classification across softness spaces. Finally, while 419 

our analysis suggests high correspondence across softness spaces they also pointed out subtle 420 

differences. 421 

    422 

Methods 423 

Participants 424 

A total of 132 students from Giessen University took part in the online experiment (96 female, 425 

36 male, Mage: 21.6). An additional 90 students participated in the previously reported 426 

conditions (static visual condition: 20 females, 10 males; Mage = 23.4, age range: 20-31; 427 

dynamic visual condition: 21 females; age range: 20-33; Mage = 25.1; haptic condition: 21 428 

females, 9 males; Mage: 23.6, age range: 18-38). All participants in the static visual, dynamic 429 

visual, and haptic conditions were right-handed according to self-reports. Participants in the 430 

haptic condition reported no sensory, motor, or cutaneous impairments. Participants in the 431 

visual conditions had normal or corrected-to-normal visual acuity and normal color vision48. 432 

The study was ethically approved by Local Ethics Committee of Faculty 06 at Justus Liebig 433 

University Giessen in accordance with Helsinki declaration49 except for pre-registration.  434 



Participant gave written informed consent before the experiments.  All participants received 435 

either 8 €/h or course credits for their participation.  436 

Stimuli  437 

Materials and adjectives were the same as Cavdan et al.3. Materials were chosen to score high 438 

on their respective dimension, adjectives were select to represent these dimensions (i.e., surface 439 

softness, granularity, viscosity, deformability, and roughness). The full list of material names 440 

and their corresponding dimensions are: deformability (sponge and playdough), viscosity 441 

(hand cream and hair gel), furriness (velvet, fur, and cotton balls), granularity (sand and salt), 442 

roughness (sandpaper and felt), control (stress balls, cranberries, aluminum foil, linen, lentils, 443 

pebbles, paper balls, and wool). The full list of adjectives and the corresponding dimensions 444 

are as follows: furriness (fluffy, hairy, soft, and velvety), viscosity (moist, sticky, and wobbly), 445 

granularity (granular, sandy, and powdery), deformability (hard, inflexible, and elastic), and 446 

roughness (rough and smooth). In the haptic experiment, the roughness dimension has been 447 

used as a control dimension3 in order to test the validity of the experimental paradigm, because 448 

this dimension is well validated in active touch.  449 

As already mentioned, the same materials and adjectives were used as in the previous haptic 450 

and visual experiments3,15. Below we briefly summarize how they were previously presented: 451 

19 real materials were used in the haptic experiment. Participants freely explored these 452 

materials while we recorded their hand movements. For the previous static visual condition 453 

still images were taken for all 19 materials which were placed on a green fabric. Traces of hand 454 

explorations were left whenever possible (e.g., run through marks for salt) in order to increase 455 

the availability of shape cues.  Close-up images were taken at 3840 × 2160 pixels resolution 456 

which was reduced to size of 2049 × 1464 pixels after postprocessing. For the previous 457 

dynamic visual condition, previously recorded manual explorations of real materials were used. 458 



During manual explorations we found that people adapt hand movements based on material, 459 

task, and the interaction between material and task3 . Thus, combination of two hand 460 

movements are preferred while exploring some materials and one hand movement is preferred 461 

while exploring the others. For instance, people frequently used run thorough in combination 462 

with rotate while exploring granular materials while using only rubbing for furry materials. 463 

Therefore, the most frequent one or two hand movements were determined and movies 464 

following those patterns were selected randomly. For each material, videos of three different 465 

people were selected in order to avoid biases from individual exploration styles. Videos were 466 

video clips of 6 seconds (180 frames) with the resolution at 1012 × 1080 pixels. The resulting 467 

video set consisted of 57 videos (19 materials × 3 sets). Details of the movies and still images 468 

can be found in Cavdan et al.15. 469 

Design and Procedure 470 

An online experiment was conducted (using testable.org) to test how people judge softness of 471 

different materials from only memory information. In the beginning of the experiment 472 

participants received written instructions stating that they would be receiving a list of adjectives 473 

describing different material qualities. In each trial an adjective was presented on the 474 

participant’s screen for two seconds followed by a material name. Participants rated how much 475 

that adjective applies to the material on a five-point scale (1: does not apply, 5: strongly 476 

applies). The order of adjectives and materials was randomized. The same procedure was 477 

followed in the previous haptic and visual studies with the differences only in the stimulus 478 

presentation (see Fig. 4). In the visual static condition, participants pressed the space button 479 

after the adjective had been presented. Then an image appeared and stayed on the screen for 2 480 

seconds. In the dynamic visual condition, after pressing the space button, a manual exploration 481 

video was presented. In the haptic experiment, after pressing the space button, a beep sound 482 

signaled the start of 4 seconds exploration duration and participants freely and actively 483 



explored the materials. During the exploration their vision was blocked with a curtain. Another 484 

beep signaled the end of exploration period and participant asked to disengage the exploration. 485 

The task of the participant was always to rate the applicability of an adjective to the presented 486 

material.  487 

 488 

 489 

Figure 4. Time course of a trial across conditions. In all conditions, an adjective to be rated 490 

was presented on the screen first. After pressing a button, the name of a material is presented 491 

on the screen for 2 seconds in the semantic, a static image presented in the static visual, a 6 492 

second movie clip showing manual exploration is presented in the dynamic visual condition. 493 

In the haptic condition, a beep sound signaled the start of 4 seconds of exploration, and another 494 



beep signaled the end of the trial. In all conditions, participants indicated how much a given 495 

adjective applies to the material on 5-point Likert scale. 496 
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