A, G., Wahr, J., & Zhong, S. (2013). Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophysical Journal International, 192(2), 557–572. https://doi.org/10.1093/gji/ggs030
Agarwal, V, Akyilmaz, O., Shum, C. K., Feng, W., Yang, T.-Y., Forootan, E., Syed, Tajdarul H., & Uz, M. (n.d.). Effective Machine Learning-Aided Downscaling of Satellite Gravimetry Estimated Groundwater Level in Central Valley, California. Journal of Hydrology.
Agarwal, Vibhor. (2021). Machine Learning Applications for Downscaling Groundwater Storage Changes Integrating Satellite Gravimetry And Other Observations. The Ohip State University.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Cao, G., & Zheng, C. (2016). Signals of short-term climatic periodicities detected in the groundwater of North China Plain. Hydrological Processes, 30(4), 515–533. https://doi.org/10.1002/HYP.10631
Cao, G., Zheng, C., Scanlon, B. R., Liu, J., & Li, W. (2013). Use of flow modeling to assess sustainability of groundwater resources in the North China Plain. Water Resources Research, 49(1), 159–175. https://doi.org/10.1029/2012WR011899
Changming, L., Jingjie, Y., & Kendy, E. (2010). Groundwater Exploitation and Its Impact on the Environment in the North China Plain. Water International, 26(2), 265–272. https://doi.org/10.1080/02508060108686913
Chen, J., Li, J., Zhang, Z., & Ni, S. (2014). Long-term groundwater variations in Northwest India from satellite gravity measurements. Global and Planetary Change, 116, 130–138. https://doi.org/10.1016/j.gloplacha.2014.02.007
Cheng, M. K., & Ries, J. R. (2018). Monthly estimates of C20 from 5 SLR satellites based on GRACE RL06 models. https://podaactools.jpl.nasa.gov/drive/files/allData/grace/docs/TN-11_C20_SLR.txt
Dramsch, J. S. (2020). 70 years of machine learning in geoscience in review. Advances in Geophysics, 61, 1-55. https://doi.org/10.1016/bs.agph.2020.08.002
Famiglietti, J.S., 2014. The global groundwater crisis. Nature Climate Change 2014 4:11 4, 945–948. https://doi.org/10.1038/nclimate2425
Faunt, C. C. (2009). USGS Professional Paper 1766: Groundwater Availability of the Central Valley Aquifer, California. https://pubs.usgs.gov/pp/1766/
Feng, W., Shum, C., Zhong, M., & Pan, Y. (2018). Groundwater Storage Changes in China from Satellite Gravity: An Overview. Remote Sensing, 10(5), 674. https://doi.org/10.3390/rs10050674
Feng, W., Zhong, M., Lemoine, J.-M., Biancale, R., Hsu, H.-T., & Xia, J. (2013). Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resources Research, 49(4), 2110–2118. https://doi.org/10.1002/WRCR.20192
Han, S., Yang, Y., Lei, Y., Tang, C., & Moiwo, J. P. (2008). Seasonal groundwater storage anomaly and vadose zone soil moisture as indicators of precipitation recharge in the piedmont region of Taihang Mountain, North China Plain. Hydrology Research, 39(5–6), 479–495. https://doi.org/10.2166/NH.2008.117
Hengl, T., Jesus, J. M. de, Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., & Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE, 12(2), e0169748. https://doi.org/10.1371/JOURNAL.PONE.0169748
Hu, R. L., Yue, Z. Q., Wang, L. C., & Wang, S. J. (2004). Review on current status and challenging issues of land subsidence in China. Engineering Geology, 76(1–2), 65–77. https://doi.org/10.1016/J.ENGGEO.2004.06.006
Hu, Y., Moiwo, J. P., Yang, Y., Han, S., & Yang, Y. (2010). Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District, North China Plain. Journal of Hydrology, 393(3–4), 219–232. https://doi.org/10.1016/J.JHYDROL.2010.08.017
Huang, Z., Pan, Y., Gong, H., Yeh, P. J.-F., Li, X., Zhou, D., & Zhao, W. (2015). Subregional-scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain. Geophysical Research Letters, 42(6), 1791–1799. https://doi.org/10.1002/2014GL062498
Jingli, S., Ling, L., Yali, C., & Zhaoji, Z. (2013). Groundwater Flow Simulation and its Application in Groundwater Resource Evaluation in the North China Plain, China. Acta Geologica Sinica - English Edition, 87(1), 243–253. https://doi.org/10.1111/1755-6724.12045
Kusche, J. (2007). Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. Journal of Geodesy 2007 81:11, 81(11), 733–749. https://doi.org/10.1007/S00190-007-0143-3
Li, X., Li, G., & Zhang, Y. (2014). Identifying Major Factors Affecting Groundwater Change in the North China Plain with Grey Relational Analysis. Water 2014, Vol. 6, Pages 1581-1600, 6(6), 1581–1600. https://doi.org/10.3390/W6061581
Li, X., Ye, S.-Y., Wei, A.-H., Zhou, P.-P., & Wang, L.-H. (2017). Modelling the response of shallow groundwater levels to combined climate and water-diversion scenarios in Beijing-Tianjin-Hebei Plain, China. Hydrogeology Journal 2017 25:6, 25(6), 1733–1744. https://doi.org/10.1007/S10040-017-1574-4
Long, D., Yang, W., Scanlon, B. R., Zhao, J., Liu, D., Burek, P., Pan, Y., You, L., & Wada, Y. (2020). South-to-North Water Diversion stabilizing Beijing’s groundwater levels. Nature Communications 2020 11:1, 11(1), 1–10. https://doi.org/10.1038/s41467-020-17428-6
Milewski, Thomas, Seyoum, & Rasmussen. (2019). Spatial Downscaling of GRACE TWSA Data to Identify Spatiotemporal Groundwater Level Trends in the Upper Floridan Aquifer, Georgia, USA. Remote Sensing, 11(23), 2756. https://doi.org/10.3390/rs11232756
MLR. (2009). Groundwater regime in major cities of China. http://www.mlr.gov.cn/
Moiwo, J. P., Tao, F., & Lu, W. (2013). Analysis of satellite-based and in situ hydro-climatic data depicts water storage depletion in North China Region. Hydrological Processes, 27(7), 1011–1020. https://doi.org/10.1002/hyp.9276
Pan, Y., Zhang, C., Gong, H., Yeh, P. J.-F., Shen, Y., Guo, Y., Huang, Z., & Li, X. (2017). Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China. Geophysical Research Letters, 44(1), 190–199. https://doi.org/10.1002/2016GL071287
Parr, T., Wilson, J. D., & Hamrick, J. (2020). Nonparametric Feature Impact and Importance. ArXiv, 1–17. http://arxiv.org/abs/2006.04750
Rabus, B., Eineder, M., Roth, A., & Bamler, R. (2003). The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57(4), 241–262. https://doi.org/10.1016/S0924-2716(02)00124-7
Rahaman, M., Thakur, B., Kalra, A., Li, R., & Maheshwari, P. (2019). Estimating High-Resolution Groundwater Storage from GRACE: A Random Forest Approach. Environments, 6(6), 63. https://doi.org/10.3390/environments6060063
Rodell, M., Famiglietti, J. S., Chen, J., Seneviratne, S. I., Viterbo, P., Holl, S., & Wilson, C. R. (2004). Basin scale estimates of evapotranspiration using GRACE and other observations. Geophysical Research Letters, 31(20), 20504. https://doi.org/10.1029/2004GL020873
Sakura, Y., C, T., Yoshioka, R., & Ishibashi, H. (2003). Intensive use of groundwater in some areas of China and Japan. In M. Llamas & E. Custodio (Eds.), Intensive Use of Groundwater: Challenges and Opportunities.
Save, H. (2019). CSR Grace RL06 Mascon Solutions. Texas Data Repository Dataverse, 1.
Save, H., Bettadpur, S., Tapley, B.D., 2016. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res.-Sol. Earth 121 (10), 7547–7569.
Shu, Y., Villholth, K. G., Jensen, K. H., Stisen, S., & Lei, Y. (2012). Integrated hydrological modeling of the North China Plain: Options for sustainable groundwater use in the alluvial plain of Mt. Taihang. Journal of Hydrology, 464–465, 79–93. https://doi.org/10.1016/J.JHYDROL.2012.06.048
Siebert, S., Henrich, V., Frenken, K., & Burke, J. (2010). Update of the Global Map of Irrigation Areas to version 5. http://www.fao.org/3/I9261EN/i9261en.pdf
Smith, R., Knight, R., & Fendorf, S. (2018). Overpumping leads to California groundwater arsenic threat. Nature Communications, 9(1), 1–6. https://doi.org/10.1038/s41467-018-04475-3
Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical Bayesian optimization of machine learning algorithms. Advances in Neural Information Processing Systems, 4, 2951–2959. https://arxiv.org/abs/1206.2944v2
Swenson, S., Chambers, D., & Wahr, J. (2008). Estimating geocenter variations from a combination of GRACE and ocean model output. Journal of Geophysical Research: Solid Earth, 113(B8), 8410. https://doi.org/10.1029/2007JB005338
Tamanyu, S., Muraoka, H., & Ishii, T. (2009). Geological interpretation of groundwater level lowering in the North China Plain. Bulletin of the Geological Survey of Japan, 60(1–2), 105–115. https://doi.org/10.9795/BULLGSJ.60.105
Wada, Y., van Beek, L.P.H., van Kempen, C.M., Reckman, J.W.T.M., Vasak, S., Bierkens, M.F.P., 2010. Global depletion of groundwater resources. Geophysical Research Letters 911 37. https://doi.org/10.1029/2010GL044571
Wada, Y., Wisser, D., Bierkens, M.F.P., 2014. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth System Dynamics 5, 914 15–40. https://doi.org/10.5194/ESD-5-15-2014
Wang, J., Huang, J., Blanke, A., Huang, Q. Q., & Rozelle, S. (2007). The agricultural groundwater revolution: opportunities and threats to development. In M. Giordano & K. G. Villholth (Eds.), The agricultural groundwater revolution: opportunities and threats to development.
Wang, L., Chen, C., Du, J., & Wang, T. (2017). Detecting seasonal and long-term vertical displacement in the North China Plain using GRACE and GPS. Hydrology and Earth System Sciences, 21(6), 2905–2922. https://doi.org/10.5194/HESS-21-2905-2017
Wang, S., Song, X., Wang, Q., Xiao, G., Liu, C., & Liu, J. (2009). Shallow groundwater dynamics in North China Plain. Journal of Geographical Sciences, 19(2), 175–188. https://doi.org/10.1007/S11442-009-0175-0
Yin, W., Han, S., Zheng, W., Yeo, I., Hu, L., Tangdamrongsub, N., & Ghobadi-Far, K. (2020). Improved water storage estimates within the North China Plain by assimilating GRACE data into the CABLE model. Journal of Hydrology, 590, 125348. https://doi.org/10.1016/j.jhydrol.2020.125348
Zhang, G., Fei, Y., Wang, J., Yan, M., Yu, C., Wang, G., Wang, H., Feng, H., Liu, Z., & Liu, K. (2012). Adaptation between Irrigation Agriculture and Groundwater in North China Plain.
Zhang, G., Zheng, W., Yin, W., & Lei, W. (2021). Improving the Resolution and Accuracy of Groundwater Level Anomalies Using the Machine Learning-Based Fusion Model in the North China Plain. Sensors, 21(46). https://doi.org/10.3390/s21
Zhang, J., Liu, K., & Wang, M. (2021). Downscaling Groundwater Storage Data in China to a 1-km Resolution Using Machine Learning Methods. Remote Sensing 2021, Vol. 13, Page 523, 13(3), 523. https://doi.org/10.3390/RS13030523
Zhang, Y., Schaap, M. G., & Zha, Y. (2018). A High‐Resolution Global Map of Soil Hydraulic Properties Produced by a Hierarchical Parameterization of a Physically Based Water Retention Model. Water Resources Research, 54(12), 9774–9790. https://doi.org/10.1029/2018WR023539
Zhang, Z., Fei, Y., Chen, Z., Zhao, Z., Xie, Z., Wang, Y., Miao, J., Yang, L., Shao, J., & Jin, M. (2009). Investigation and Assessment of Sustainable Utilization of Groundwater Resources in the North China Plain. Geological Publishing House: Beijing, China.
Zheng, C., Liu, J., Cao, G., Kendy, E., Wang, H., & Jia, Y. (2010). Can China Cope with Its Water Crisis?—Perspectives from the North China Plain. Groundwater, 48(3), 350–354. https://doi.org/10.1111/J.1745-6584.2010.00695_3.X
Zhou, C., Gong, H., Chen, B., Zhu, F., Duan, G., Gao, M., & Lu, W. (2016). Land subsidence under different land use in the eastern Beijing plain, China 2005-2013 revealed by InSAR timeseries analysis. GIScience & Remote Sensing, 53(6), 671–688. https://doi.org/10.1080/15481603.2016.1227297