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Abstract
Autophagy, an intracellular process of self-digestion, has been shown to modulate in�ammatory
responses. In the present study, we determined the effects of autophagy on in�ammatory response
induced by supernatant of psoriatic dermal mesenchymal stem cells (p-DMSCs). Human umbilical vein
endothelial cells (HUVECs) were treated with supernatant of p-DMSCs cultures to induce in�ammation
and treated with rapamycin (RAPA) to induce autophagy. Expression levels of mRNA for in�ammatory
cytokines and BIRC2 were compared in HUVECs with vs. without induction of autophagy with rapamycin
(RAPA) by PCR, while cell apoptosis was assessed by �ow cytometry and caspase-3 activity assay kit. We
found that induction of autophagy with RAPA decreased expression levels of IL6, IL8 and CCL20, in
addition to reduction in in�ammation-induced apoptosis in HUVECs; Expression levels of LC3, p62, p-p38
MAPK (Thr180/Tyr182), p-mTOR (Ser2445) and p-ULK1 (Ser555) proteins were measured by Western
blotting. We found RAPA increased LC3 , while decreasing p62 expression. Likewise, expression levels of
p-p38 MAPK and p-mTOR proteins were markedly decreased by the treatment with RAPA; Finally, we
evaluated thenitric oxide (NO) content, NO synthase (NOS) activity and cell angiogenesis. RAPA treatment
increased the NO content and the NOS activity, and inhibited angiogenesis. Through the experimental
results, we speculated that induced of autophagy can improve the function of endothelial cells in
psoriasis, suggesting approaches to induce autophagy can be used to ameliorate psoriasis.

Introduction
Autophagy is an evolutionarily conserved catabolic process that degrades cytoplasmic materials and
provides a substrate for energy metabolism during nutrient de�ciency and metabolic stress in order to
maintain cellular homeostasis and adapt to adverse environments (Jiao Liu et al, 2020; Younis Hazari et
al, 2020; Beth Levine et al, 2008; Lorenzo Galluzzi et al, 2014; Romana T Netea-Maier et al, 2016).
Alterations of autophagy are associated with a number of in�ammatory diseases, including psoriasis
(Dennis J Wu et al, 2017; Xue Mei Li et al, 2020). A large number of studies have shown that autophagy
and autophagy-related proteins are involved in immune regulation, such as intracellular bacterial
clearance, secretion of in�ammatory cytokines, antigen presentation and lymphocyte development
(Dennis J Wu et al, 2017; Yuan Cao et al, 2019). Autophagy is initiated by inducing autophagy genes for
microtubule-associated protein light chain 3 (LC3), Beclin-1 and other autophagy related proteins, which
all play an important role in the maintenance cell homeostasis under physiological and pathological
conditions (Douglas R Green et al, 2011; Beth Levine et al, 2011; Qiuhong Zhang et al, 2013).

The regulation of autophagy is a very complex process. Mammalian target of rapamycin (mTOR),
phospinositide 3-kinase (PI3K)/ Akt, MAPK and other pathways are considered as major regulatory
pathways of autophagy and have been widely studied (Zhifen Yang et al, 2010; Zhifen Yang et al, 2010).
Mammalian rapamycin mechanistic target is a typical inhibitor of autophagy, which is related to growth
factor nutrient and energy signals. Rapamycin can inhibit mTOR complex 1 (mTORC1), which effectively
inhibits autophagy by phosphorylating ULK1. In addition to regulation of autophagy, the mTORC1
signaling pathway also regulates various processes in innate immune cells through various mechanisms
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such as metabolic protein translation and antigen presentation (Jung Hwa Ko et al, 2017). In addition,
mitogen-activated protein kinase (MAPK) signaling pathway regulated cell growth and differentiation.
MAPK pathway is also considered to be the main regulation pathway of autophagy (Xinbing Sui et al,
2014).

Psoriasis is a chronic, multifactorial, immune-mediated skin disease (Alan Menter, 2016). Psoriasis is
considered as a systemic disease because psoriatic in�ammation is involved both cutaneous and
extracutaneous tissues (Zeinab Aryanian et al, 2021). Previous studies demonstrated that abnormal
autophagy contributes dermal angiogenesis (Felix Locker et al, 2018), neovascularization, and
extravasation of in�ammatory cells into the lumen in psoriasis (K A Rubina et al, 2017). Since autophagy
de�ciency can induce the production of proin�ammatory cytokines by increasing the expression of p62
(María-José Barrera et al, 2021), in�ammation in psoriatic endothelial cells could also be linked to altered
autophagy. Therefore, we studied here the regulatory role of autophagy in in�ammation, apoptosis and
endothelial cell function in vitro.

Materials And Methods
Materials

Materials and sources were as following: EBM-2 (Lonza, Germany,lot NO.: 9MB833), rapamycin (Solarbio,
Beijing, Lot. No.: 1018N033),trypsin solution (Gibco Invitrogen, New York, USA, lot NO.: 1563418),eECL
Western Blot Kit (CWBIO, Beijing, China, Lot NO.:20507), SB203580 (Med Chem Express, New Jersey, CAS
No.: 152121-47-6), Chloroquine (CQ) (Med Chem Express, New Jersey, CAS No.: 54-05-7), BD matrigel
(Corning, NewYork, USA, lot No.: 6172007), Annexin V-FITC/PI Apoptosis Assays Kit (KeyGenBio TECH,
Nanjing, China, Cat. NO.: KGA107), capase-3 Kit (Beyotime, Shanghai, China, Lot NO.: 070320200803), NO
Kit (JianCheng, Nanjing, China, NO.: A013-2-1), NOS Kit (JianCheng, Nanjing, China, NO.: A014-2-2), DAPI
(Solarbio, China, lot-no.20170412). Antibodies against β-actin, LC3, p62 were obtained from Abcam
(Cambridge, England). p38 MAPK (8690), p-p38 MAPK (Thr180/Tyr182; 4511), ULK1 (8054), p-ULK1
(Ser555, 5869), mTOR (2983) and p-mTOR (Ser2445; 5536) were obtained from Cell Signaling
Technology (Bossdun, USA ).

Cell culture and treatment

Human umbilical vein endothelial cells (HUVECs) and psoriatic dermal mesenchymal stem cells (p-
DMSCs) were cultured as described previously (Ling Zhou et al, 2021). Supernatant of p-DMSCs culture
was collected and stored in 4℃ refrigerators. HUVECs at about 70%-80% con�uency were treated with p-
DMSC supernatant for 4h (p-HUVEC). Prior to the treatment with p-DMSC supernatant, autophagy of
HUVECs was induced by incubation of HUVECs with 200nM rapamycin (RAPA) in EBM-2 for 1h (R-p-
HUVEC).

Quantitative RT-PCR (qRT-PCR)
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Quantitative RT-PCR was used to assess the expression levels of IL6, IL8, CCL20 and BIRC2 in HUVECs
with and without RAPA treatment, as described previously (Ruixia Hou et al, 2013). Total RNA was extract
from control, p-HUVEC and R-p-HUVEC. RNA was reversely transcribed into cDNA. For the PCR assay,
cDNA was mixed with QuantiTect SYBR Green PCR Master Mix, primers, and RNase-Free Water, and
tested on Step One™. Primers information is shown in Table 1.

 
 

Table 1
Primers used for RT-PCR

Gene Primers

β-actin

 

IL-6

 

IL-8

 

CCL20

 

BIRC2

For: GCAAATGCTTCTAGGCGGACT

Rev: CAATCTCATCTCGTTTTCTGCG

For: GAC AAA GCC AGA GTC ATT CAG AG

Rev: TTG GAT GGT CTT GGT CCT TAG CC

For: TTGGCAGCCTTCCTGATTTC

Rev: AACTTCTCCACAACCCTCTGCA

For: ATTGTGCGTCTCCTCAGTAAAAA

Rev: TGTGATGCTTAAACAAAGCAAAC

For:  GAATCTGGTTTCAGCTAGTCTGG

Rev: GGTGGGAGATAATGAATGTGCAA

Immuno�uorescence

Cells on chamber slide were washed with PBS for 3 times, followed by �xation with 4% paraformaldehyde
and permeation with 0.5%Triton x-100 for 20min at room temperature. After blocking with serum, cells
were incubated with primary antibody LC3 (1:1000) overnight at 4℃. Afterward cells were incubation
with secondary antibody for 1h. After DAPI staining, immuno�uorescence staining was observed under
an immuno�uorescence microscope.

Western Blotting

Total protein was extracted from HUVECs for Western blot analysis. Cells were collected and lysed with
ice-cold lysis buffer. Protein samples were bathed in metal bath for 10min at 95℃. LC3 was detected by
traditional Western Blot. Brie�y, a total of 20µg protein was loaded for Western blot assay. Electrophoresis
was carried out using 12% separation glue and the transfer condition was 70V for 1.5h. Blotting was
incubated overnight with LC3 rabbit primary antibody at 4℃, followed by washing with Tris-buffered
saline containing 0.1% Tween for 3 times. The membrane was then incubated with a second antibody
conjugated to horseradish peroxidase for 1h at room temperature. eECL Western Blotting reagent was
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used to detect the labeled proteins. Imaging was performed using the Protein Simple Fluor Chem Q
imaging system (Protein Simple, USA).

Protein Simple was used to detect the expression levels of p62, p38 mitogen-activated protein kinase
(p38 MAPK), phosphorylated p38 MAPK, unc-51 like kinase 1 (ULK1), phosphorylated ULK1, mammalian
target of rapamycin (mTOR) and phosphorylated mTOR. Protein samples and monoclonal antibodies
against p62, p38 MAPK, p-p38 MAPK, ULK1, p-ULK1, mTOR, p-mTOR (antibody ratio 1:100) were added
according to manufacturer's instructions, tested on WES system.

Apoptosis was detected by �ow cytometry

After digestion and collection, cells were washed twice with PBS and centrifugated at 2000rpm for 5min.
The cells were resuspended with 500µL Binding Buffer, followed by addition of 5µL Annexin V-FITC and
5µL Propidium Iodide. After incubation at room temperature for 5-15min in dark, apoptosis was detected
by �ow cytometry.

Measurement of caspase-3 activity

The cells were collected and the protein was extracted by adding 100µL lysate per 2*106 cells. Protein
concentrations were measured by Bradford's method and caspase-3 activity was detected with caspase-3
activity assay kit according to the manufacturer’s instructions.

NO/NOS
Expression of NO and NOS activity were detected with respective kits. Assay was performed according to
the manufacturer’s protocol. The absorbance of OD value was measured at wavelength of 550nm with a
microplate reader.

Angiogenesis experiment

The angiogenesis experiment was performed as described previously (Ling Zhou et al, 2018). Precooled
tip was used to add BD matrigel glue to 96-well plate, 50µL/well. Afterward the cells were digested and
inoculated with 1*104cells/cm2 for 24h, and then cultured at 37℃and 5% CO2 for 6h. Under the
microscope, �ve �elds were randomly selected to count the numbers of junction and mesh. The data were
expressed as percentages of control, and the control was set at 100%.

Statistic analysis

One way ANOVA with Tukey’ s multiple comparisons was used to determine signi�cant differences when
three or more groups were compared, while an unpaired t test was used to determine signi�cance
between two groups. p < 0.05 was considered statistically signi�cant. All analyses were performed using
SPSS.
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Results
1. Induction of autophagy alleviates in�ammation induced by supernatant of p-DMSCs

Because activation of autophagy can inhibit in�ammation in croakers (Bo Yang et al, 2021), we �rst
assessed here whether induction of autophagy can also inhibit in�ammation in HUVECs. HUVEC
in�ammation was induced by incubation with supernatant of psoriatic mesenchymal stem cell culture (p-
DMSC supernatant) for 4h. As seen in Fig. 1a, addition of p-DMSC supernatant to HUVEC culture
signi�cantly increased expression levels of mRNA for IL-6, IL-8 and CCL20, whereas induction of
autophagy with RAPA lowered the expression levels of IL-6, IL-8 and CCL20 mRNA to the levels
comparable to that of the controls. To ascertain whether RAPA induces autophagy, we measured
expression levels of autophagy-associated biomarkers in the HUVEC cultures. As expected, RAPA
treatment markedly increased the ratio of LC3I/LC3II protein (Fig. 1b, c), while decreasing p62 expression
(Fig. 1d, e). In parallel, RAPA treatment increased �uorescence intensity of LC3 (Fig. 1f, g). The results
show that RAPA induces autophagy, likely contributing to the alleviation of the p-DMSCs supernatant-
induced in�ammation in HUVECs.

2. Autophagy inhibits in�ammation-induced apoptosis

Autophagy and apoptosis, different forms of cell death, interact with each other. Autophagy can
antagonize apoptosis by promoting cell survival (Masakazu Hamada et al, 2017). We next determined
whether autophagy can inhibit apoptosis of HUVECs. Flow cytometry showed a signi�cant increase in p-
HUVEC apoptosis (both early and late apoptosis) compared to the controls (Fig. 2a-d). Induction of
autophagy with RAPA (R-p-HUVEC) signi�cantly reduced apoptosis (both early and late apoptosis).
Correspondingly, expression levels of BIRC2 mRNA, an inhibitor of apoptosis, were dramatically increased
in R-p-HUVEC compared with p-HUVEC (Fig. 2e). In contrast, caspase-3 activity was signi�cantly
decreased following the treatment of p-HUVECs with RAPA (Fig. 2f), indicating an inhibition of apoptosis.
These results indicate that autophagy inhibits in�ammation-induced apoptosis in HUVECs.

3. Autophagy inhibits in�ammation through the p38 MAPK/mTOR pathway

p38 MAPK pathway plays an important role in autophagy (Yannan Liu et al, 2019; Yingli He et al, 2018).
ULK is the only core protein with serine/threonine kinase activity in autophagy signaling pathway. ULK1
complex acts as a bridge between upstream nutrient or energy receptor mTOR and downstream
autophagosome in vivo. Phosphorylated ULK1 has long been considered a key regulator of autophagy
(Chenyao Wang et al, 2018). To assess the involvement of p38 MAPK-mTOR-ULK1 signaling in the
regulation of in�ammation by autophagy, we measured expression levels of LC3, p62, p38 MAPK, p-p38
MAPK (Thr180/Tyr182), mTOR, p-mTOR (Ser2448), ULK1 and p-ULK1 (Ser555). p-HUVEC displayed
signi�cantly higher expression levels of LC3  (Fig. 3a, b) and p62 (Fig. 3c) compared with controls. RAPA
treatment increased the ratio of LC3 /LC3I in R-p-HUVEC while decreasing p62 expression, indicating an
induction of autophagy. Chloroquine (CQ) can inhibit autophagy by lysosomal acidi�cation and
subsequently blocks the fusion of the autophagosome with lysosome, leading to the accumulation of
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autophagosome. Inhibition of autophagy with CQ increased both the ratio of LC3 / LC3I and p62
expression (Fig. 3a-c), indicating autophagy initiation is normal, but autophagy �ow is disrupted.
Inhibition of p38 MAPK with SB203580 increased LC3  protein expression while decreasing p62
expression, indicating enhanced autophagy (Fig. 3a-c). In addition, the expression levels of both p-p38
MAPK and p-mTOR in R-p-HUVEC and SB-R-p-HUVEC were signi�cantly decreased compared with p-
HUVEC (Fig. 3d, f), and the expression of p-p38 MAPK in SB-R-p-HUVEC was signi�cantly decreased
compared with R-p-HUVEC (Fig. 3d), indicating that p38 MAPK is a negative regulator of autophagy. In
contrast, inhibition of autophagy with CQ increased expression levels of p-mTOR in RAPA-treated p-
HUVECs (Fig. 3f). On the other hand, p38 MAPK inhibitor increased the expression of p-ULK1 in RAPA-
treated p-HUVEC while autophagy inhibitor, CQ, decreased p-ULK1 (Fig. 3e). The results show that RAPA-
induced autophagy negatively regulates in�ammation through the p38 MAPK/mTOR pathway.

4. Induction of autophagy improves the function of in�amed endothelial cells

Dysfunctions in psoriatic endothelial cells include increased pro-in�ammatory response, decreased
vasodilation, vasogenesis and thrombosis (Laura Mercurio et al, 2020). The decreased vasodilation is
attributable to the reduced production of nitric oxide (NO) (Billie K Alba et al, 2018). Therefore, we
detected NO content and NOS activity in HUVECs. As can be seen in Fig. 4a & b, both NO content and
NOS activity declined signi�cantly in p-HUVECs vs. normal controls. Induction of autophagy with RAPA
signi�cantly increased both NO content and NOS activity in p-HUVECs, while inhibition of autophagy
reversed the effect of RAPA on both NO content and NOS activity, indicating that autophagy increases NO
content and NOS activity in p-HUVECs.

Finally, we assessed whether the in�uence of autophagy on HUVEC function is re�ected in angiogenesis,
an abnormality in psoriasis. Our results showed that the numbers of both junction and mesh were
increased and mean mesh areas were decreased in p-HUVECs in comparison to normal controls (Fig. 4c,
d). Inhibition of autophagy overcame the effect of RAPA on the formations of junction and mesh, mean
mesh areas in p-HUVECs. In contrast, neither the numbers of junction nor mesh or mean areas of mesh
differed signi�cantly in R-p-HUVECs treated with or without p38 MAPK inhibitor. Taken together, these
results demonstrate that autophagy improves the function of in�amed endothelial cells via inhibition of
p38 MAPK.

Discussion
The psoriasis-involved skin is characterized by increased blood vessels and angiogenesis, suggesting the
pathogenic role of blood vessels and endothelial cells in psoriasis. So far, the studies on the role of
endothelial cells in the pathogenesis of psoriasis are limited although regulation of CARD14+ ECs in
production of cytokines and chemokines (IL-8 and CXCL1 etc.) has been documented (Jamie L Harden et
al, 2014). However, the pathomechanisms of endothelial cell in�ammation in psoriasis have not been
well de�ned. Since it is di�cult to culture psoriatic endothelial cells from psoriatic skin, we established a
psoriatic endothelial cell model by incubation of HUVECs with the culture supernatant of p-DMSCs. This
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model exhibits some phenotypes of psoriatic endothelial cells such as increased expression levels of IL-6,
IL-8 and CCL20. We show here that altered autophagy contributes, at least in part, to the development of
in�ammation in psoriatic endothelial cells.

Autophagy, also called programmed type II death, is a conserved degradation of the cells, removing
unnecessary or dysfunctional components through a lysosome-dependent regulated mechanism, which
is different from apoptotic programmed type death (Yufeng Xi et al, 2020; Dmitri V Krysko et al, 2008).
Autophagy and in�ammation are highly intertwined cellular processes (Beth Levine et al, 2011).
Autophagy exerts anti-in�ammatory property by regulating innate immune signaling pathway and
in�ammatory body activity (Vojo Deretic et al, 2013; James Harris et al, 2011). Moreover, autophagy can
also be activated during the occurrence of in�ammation. Autophagy not only affects the relief of
infectious diseases and the pathological process of in�ammatory diseases, but also can inhibit
in�ammatory response to the damages of non-infectious tissues (Vojo Deretic et al, 2018). Growing
evidences indicate that autophagy dysfunction not only causes psoriasis, but also aggravates the
in�ammation in the pathogenesis of psoriasis. Autophagy-related proteins regulate multiple immune
functions, including secretion of in�ammatory cytokines, bacterial clearance and lymphocyte
development. Because of the possible pathogenic role of autophagy in psoriasis, it could be a target in
the treatment of psoriasis (Hongpeng Lv et al, 2021). Correspondingly, in the present study, we
demonstrate induction of autophagy inhibits in�ammation and apoptosis in HUVECs.

The mechanism by which autophagy inhibits in�ammation are not clear. But evidence points to the
involvement of p38 MAPK/mTOR signaling pathway. MAPK is an important cellular transduction
pathway, regulating cell growth and differentiation. Recent studies have shown that p38 MAPK, an
intracellular signal transduction molecule, regulates a variety of in�ammatory responses, including the
expression of pro-in�ammatory cytokines, leukocyte adhesion and chemotaxis. MAPK signaling
pathways are involved in the regulation of autophagy (Shu-Ting Pan et al, 2015). Autophagy is a
catabolic pathway regulated by a complex signal network. p38 MAPK is a stress-activated protein kinase
because it is frequently activated in response to in�ammatory responses induced by various
environmental stresses (e.g., REDOX stress, UV irradiation of cytokines, heat shock and osmotic shock),
which is a key process in the host defense system. Moreover, p38 MAPK regulates cell cycle, promoting
apoptosis, differentiation and senescence (Yan Zhao et al, 2020) and inhibits basic autophagy by
blocking Atg9 (Jemma L Webber et al, 2010). Furthermore, ULK1 is a key upstream regulator of
autophagy (Yingli He et al, 2018). p38α MAPK can directly phosphorylate ULK1 and inhibit ULK1 kinase
activity, leading to destruction of ULK1 functional complex with ATG13, consequently resulting in reduced
autophagy. In the present study, we showed that p38 MAPK was activated by in�ammation, and
induction of autophagy reduced the phosphorylation of p38 MAPK. Additionally, mTOR is a
serine/threonine protein kinase and a key negative regulator of autophagy initiation (Andrea Williams et
al, 2008). It phosphorylates an important autophagy protein ULK1 and inhibits its activity, thereby
preventing the formation of ULK1-ATG13-FIP200 complex and inhibiting autophagy (Ian G Ganley et al,
2009). Finally, mTOR signaling pathway inhibits autophagy by phosphorylating the transcription factor
EB and preventing its nuclear translocation from expressing autophagy genes (Rei Unno et al, 2020). Our
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results showed that either induction of autophagy or inhibition of p38 MAPK lowered expression levels of
p-mTOR. Thus, autophagy-induced inhibition of in�ammation is in part via inhibition of p38 MAPK-
mTOR-ULK1 signaling pathways.

Considering the correlation between NO/NOS and endothelial cell function, we assessed the expression
levels of NO and the activity of NOS. NO, synthesized by NOS, has a variety of physiological and
pathological functions. NO is essential for maintaining microvascular endothelial cell function and
vascular homeostasis by inducing vasodilation and inhibiting platelet adhesion and aggregation (Hiroki
Saito et al, 2018). Under in�ammatory conditions, the physiological activity of eNOS may be impaired,
leading to a so-called uncoupled state characterized by the production of superoxide O2− instead of NO
(Susanne Karbach et al, 2014). Therefore, the bioavailability of NO in patients with psoriasis is reduced,
leading to systemic microvascular dysfunction. Reduced bioavailability of nitric oxide impaired
endothelium-dependent vasodilation (Susanne Karbach et al, 2014). The results of the present study
showed that induction of autophagy increased NO expression and NOS activity, and stimulated
endothelial angiogenesis. In agreement with our �ndings, other studies showed that autophagy
stimulates No production (Cezar Rangel Pestana et al, 2015), but the speci�c mechanism remains to be
elucidated.

Conclusion
In this study, we established a psoriatic endothelial cell model to investigate the effects of autophagy on
in�ammation and apoptosis of HUVEC. Induction of autophagy can inhibit in�ammation and apoptosis,
while improving endothelial cell functions in HUVECs treated with p-DMSC supernatant, mediated in part
by p38 MAPK/mTOR signaling pathway. Induction of autophagy can improve the function of endothelial
cells in psoriasis, potentiating the utility of approaches to enhance autophagy in the treatment of
psoriasis.

Abbreviations
p-DMSCs
Psoriatic dermal mesenchymal stem cells
HUVECs
Human umbilical vein endothelial cells
LC3
Light chain 3
p38 MAPK
p38 Mitogen-activated protein kinase
ULK1
unc-51 like kinase 1, mTOR:mammalian target of rapamycin, RAPA:Rapamycin
CQ
Chloroquine
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Nitric oxide
EGM-2
Endothelial cell growth medium-2.
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Figure 1

Induction of autophagy alleviates in�ammationin HUVECs. In�ammation of HUVECs was induced by
addition of p-DMSC supernatant to the cultures, while autophagy was induced by the treatment of
HUVECs with Rapamycin. 1a. Expression levels of mRNA for IL6, IL8 and CCL20; 1b & c. Expression levels
of LC3 protein and ratio of LC3I/LC3II; 1d & e. Expression levels of p62 protein; 1f & g. Expression of LC3
assessed by immuno�uorescence. n=5, *p<0.05, **p<0.01.
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Figure 2

Induction of autophagy inhibits apoptosisin HUVECs. 2a-c. Cell apoptosis assessed by �ow cytometry;
2d. Quantitative data of percentage of apoptotic cells; 2e. Expression levels of BIRC2 mRNA, and 2f.
caspase-3 activity. n=5, *p<0.05, **p<0.01.
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Figure 3

Autophagy-induced inhibition of in�ammation is via p38 MAPK/mTOR signaling pathway.3a is the
representative images of western blot; 3b & c are quantitative diagrams of expression levels of LC3 and
p62; 3d, e & f are quantitative diagrams of expression levels of p-p38 MAPK, p-ULK1, and p-mTOR,
respectively. n=5, *p<0.05, **p<0.01.
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Figure 4

Autophagy improves endothelial cell function. 4a & b show NO levels and NOS activity, respectively; 4c
and d display representative images of angiogenesis and quantitative diagrams of angiogenesis in
HUVEC culture, respectively. n=5, *p<0.05, **p<0.01.


