1.Wang ZY, Liu JG, Li H, Yang HM: Pharmacological Effects of Active Components of Chinese Herbal Medicine in the Treatment of Alzheimer’s Disease: A Review. Am J Chin Med 2016, 44(8):1525–1541.
2.Reitz C, Mayeux R: Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers. Biochem Pharmacol 2014, 88(4):640–651.
3.Briggs R, Kennelly SP, O’Neill D: Drug treatments in Alzheimer’s disease. Clin Med (Lond) 2016, 16(3):247–253.
4.Hopkins AL: Network pharmacology: the next paradigm in drug discovery. Nature Chemical Biology 2008, 4(11):682–690.
5.Li S, Zhang B: Traditional Chinese medicine network pharmacology: theory, methodology and application. Chin J Nat Med 2013, 11(2):110–120.
6.Su Y, Wang Q, Wang C, Chan K, Sun Y, Kuang H: The treatment of Alzheimer’s disease using Chinese medicinal plants: from disease models to potential clinical applications. J Ethnopharmacol 2014, 152(3):403–423.
7.Yu B, Zhou C, Zhang J, Ling Y, Hu Q, Wang Y, Bai K: Latest Study on the Relationship between Pathological Process of Inflammatory Injury and the Syndrome of Spleen Deficiency and Fluid Retention in Alzheimer’s Disease. Evid Based Complement Alternat Med 2014, 2014:743541.
8.Cho JH, Jung JY, Lee BJ, Lee K, Park JW, Bu Y: Epimedii Herba: A Promising Herbal Medicine for Neuroplasticity. Phytother Res 2017, 31(6):838–848.
9.Chen M, Wu J, Luo Q, Mo S, Lyu Y, Wei Y, Dong J: The Anticancer Properties of Herba Epimedii and Its Main Bioactive Componentsicariin and Icariside II. Nutrients 2016, 8(9).
10.Kim HY, Song HN, Davaatseren M, Chang HJ, Chun HS: Endoplasmic reticulum stress induced by an ethanol extract of Coicis semen in Chang liver cells. BMC Complement Altern Med 2018, 18(1):100.
11.Jin J, Wang H, Hua X, Chen D, Huang C, Chen Z: An outline for the pharmacological effect of icariin in the nervous system. European Journal of Pharmacology 2019, 842:20–32.
12.Ru J, Li P, Wang J, Zhou W, Li B, Huang C, Li P, Guo Z, Tao W, Yang Y et al: TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J Cheminform 2014, 6:13.
13.Traditional Chinese medicine system pharmacology database and analysis platform [http://tcmspw.com/tcmsp.php] Accessed in February 2020
14.Huang J, Cheung F, Tan HY, Hong M, Wang N, Yang J, Feng Y, Zheng Q: Identification of the active compounds and significant pathways of yinchenhao decoction based on network pharmacology. Mol Med Rep 2017, 16(4):4583–4592.
15.Uniprot
https://www.uniprot.org/] Accessed in February 2020
16.GeneCards
https://www.genecards.org/] Accessed in February 2020
17.Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y et al: The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Current Protocols in Bioinformatics 2016, 54(1).
18.Draw Venn Diagram website
http://bioinformatics.psb.ugent.be/webtools/Venn/] Accessed in February 2020
19.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13(11):2498–2504.
20.STRING version: 11.0
https://string-db.org/] Accessed in February 2020
21.Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P et al: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research 2019, 47(D1):D607-D613.
22.Metascape
www.metascape.org] Accessed in February 2020
23.Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK: Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019, 10(1):1523.
24.DAVID version: 6.8.
https://david.ncifcrf.gov/] Accessed in February 2020
25.Huang da W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44–57.
26.Li WW, Gao XM, Wang XM, Guo H, Zhang BL: Icariin inhibits hydrogen peroxide-induced toxicity through inhibition of phosphorylation of JNK/p38 MAPK and p53 activity. Mutat Res 2011, 708(1–2):1–10.
27.Khan H, Ullah H, Aschner M, Cheang WS, Akkol EK: Neuroprotective Effects of Quercetin in Alzheimer’s Disease. Biomolecules 2019, 10(1).
28.Yang E-J, Kim G-S, Jun M, Song K-S: Kaempferol attenuates the glutamate-induced oxidative stress in mouse-derived hippocampal neuronal HT22 cells. Food & Function 2014, 5(7).
29.Kim JK, Choi SJ, Cho HY, Hwang HJ, Kim YJ, Lim ST, Kim CJ, Kim HK, Peterson S, Shin DH: Protective effects of kaempferol (3,4’,5,7-tetrahydroxyflavone) against amyloid beta peptide (Abeta)-induced neurotoxicity in ICR mice. Biosci Biotechnol Biochem 2010, 74(2):397–401.
30.Yu TX, Zhang P, Guan Y, Wang M, Zhen MQ: Protective effects of luteolin against cognitive impairment induced by infusion of Abeta peptide in rats. Int J Clin Exp Pathol 2015, 8(6):6740–6747.
31.Lee S, Youn K, Jun M: Major compounds of red ginseng oil attenuate Abeta25–35-induced neuronal apoptosis and inflammation by modulating MAPK/NF-kappaB pathway. Food Funct 2018, 9(8):4122–4134.
32.de Andrade Teles RB, Diniz TC, Costa Pinto TC, de Oliveira Júnior RG, Gama e Silva M, de Lavor ÉM, Fernandes AWC, de Oliveira AP, de Almeida Ribeiro FPR, da Silva AAM et al: Flavonoids as Therapeutic Agents in Alzheimer’s and Parkinson’s Diseases: A Systematic Review of Preclinical Evidences. Oxidative Medicine and Cellular Longevity 2018, 2018:1–21.
33.Matsuda S, Nakagawa Y, Tsuji A, Kitagishi Y, Nakanishi A, Murai T: Implications of PI3K/AKT/PTEN Signaling on Superoxide Dismutases Expression and in the Pathogenesis of Alzheimer’s Disease. Diseases 2018, 6(2).
34.Gerschütz A, Heinsen H, Grünblatt E, Wagner AK, Bartl J, Meissner C, Fallgatter AJ, Al-Sarraj S, Troakes C, Ferrer I et al: Neuron-Specific Alterations in Signal Transduction Pathways associated with Alzheimer’s Disease. Journal of Alzheimer’s Disease 2014, 40(1):135–142.
35.Lee JK, Kim NJ: Recent Advances in the Inhibition of p38 MAPK as a Potential Strategy for the Treatment of Alzheimer’s Disease. Molecules 2017, 22(8).
36.Kandimalla R, Reddy PH: Multiple faces of dynamin-related protein 1 and its role in Alzheimer’s disease pathogenesis. Biochim Biophys Acta 2016, 1862(4):814–828.
37.Blair LJ, Sabbagh JJ, Dickey CA: Targeting Hsp90 and its co-chaperones to treat Alzheimer’s disease. Expert Opin Ther Targets 2014, 18(10):1219–1232.
38.Dezfulian M: A new Alzheimer’s disease cell model using B cells to induce beta amyloid plaque formation and increase TNF alpha expression. Int Immunopharmacol 2018, 59:106–112.
39.Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M: <p>Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics</p>. International Journal of Nanomedicine 2019, Volume 14:5541–5554.
40.Moussa C, Hebron M, Huang X, Ahn J, Rissman RA, Aisen PS, Turner RS: Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. Journal of Neuroinflammation 2017, 14(1).
41.Lakshmana MK, Rehker J, Rodhe J, Nesbitt RR, Boyle EA, Martin BK, Lord J, Karaca I, Naj A, Jessen F et al: Caspase–8, association with Alzheimer’s Disease and functional analysis of rare variants. Plos One 2017, 12(10).
42.Nam HY, Nam JH, Yoon G, Lee JY, Nam Y, Kang HJ, Cho HJ, Kim J, Hoe HS: Ibrutinib suppresses LPS-induced neuroinflammatory responses in BV2 microglial cells and wild-type mice. J Neuroinflammation 2018, 15(1):271.
43.Pillai JA, Maxwell S, Bena J, Bekris LM, Rao SM, Chance M, Lamb BT, Leverenz JB, Alzheimer’s Disease Neuroimaging I: Key inflammatory pathway activations in the MCI stage of Alzheimer’s disease. Ann Clin Transl Neurol 2019, 6(7):1248–1262.
44.Sabogal-Guaqueta AM, Munoz-Manco JI, Ramirez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gomez GP: The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 2015, 93:134–145.
45.Wang Y, Wu C, Han B, Xu F, Mao M, Guo X, Wang J: Dexmedetomidine attenuates repeated propofol exposure-induced hippocampal apoptosis, PI3K/Akt/Gsk–3beta signaling disruption, and juvenile cognitive deficits in neonatal rats. Mol Med Rep 2016, 14(1):769–775.
46.Xiang W, Chao ZY, Feng DY: Role of Toll-like receptor/MYD88 signaling in neurodegenerative diseases. Rev Neurosci 2015, 26(4):407–414.
47.Kong X, Yuan Z, Cheng J: The function of NOD-like receptors in central nervous system diseases. J Neurosci Res 2017, 95(8):1565–1573.
48.Iyalomhe O, Swierczek S, Enwerem N, Chen Y, Adedeji MO, Allard J, Ntekim O, Johnson S, Hughes K, Kurian P et al: The Role of Hypoxia-Inducible Factor 1 in Mild Cognitive Impairment. Cell Mol Neurobiol 2017, 37(6):969–977.
49.Zhang F, Jiang L: Neuroinflammation in Alzheimer’s disease. Neuropsychiatr Dis Treat 2015, 11:243–256.
50.Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G: Neuroinflammation pathways: a general review. Int J Neurosci 2017, 127(7):624–633.
51.Rahimifard M, Maqbool F, Moeini-Nodeh S, Niaz K, Abdollahi M, Braidy N, Nabavi SM, Nabavi SF: Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res Rev 2017, 36:11–19.
52.Zaplatic E, Bule M, Shah SZA, Uddin MS, Niaz K: Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci 2019, 224:109–119.
53.Solanki I, Parihar P, Mansuri ML, Parihar MS: Flavonoid-based therapies in the early management of neurodegenerative diseases. Adv Nutr 2015, 6(1):64–72.