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While new light sources allow for unprecedented resolution in experiments with X-rays, a theo-
retical understanding of the scattering cross-section is lacking. In the particular case of strongly
correlated electron systems, numerical techniques are quite limited, since conventional approaches
rely on calculating a response function (Kramers-Heisenberg formula) that is obtained from a per-
turbative analysis of scattering processes in the frequency domain. This requires a knowledge of a
full set of eigenstates in order to account for all intermediate processes away from equilibrium, lim-
iting the applicability to small tractable systems. In this work, we present an alternative paradigm,
recasting the problem in the time domain and explicitly solving the time-dependent Schrödinger
equation without the limitations of perturbation theory: a faithful simulation of the scattering
processes taking place in actual experiments, including photons and core electrons. We show how
this approach can yield the full time and momentum resolved Resonant Inelastic X-Ray Scattering
(RIXS) spectrum of strongly interacting many-body systems. We demonstrate the formalism with
an application to Mott insulating Hubbard chains using the time-dependent density matrix renor-
malization group method, which does not require a priory knowledge of the eigenstates and can
solve very large systems with dozens of orbitals. This approach can readily be applied to systems
out of equilibrium without modification and generalized to other spectroscopies.

I. INTRODUCTION

Recent advances in experiments with light have paved
the way to a new age in the study of elementary exci-
tations of correlated matter[1–5]. High intensity X-ray
sources, ultrafast pulses, and detectors with enhanced
resolution for photon scattering measurements[1, 4, 6]
have driven a continuous improvement of techniques such
as X-ray absorption (XAS) and emission (XES) spectro-
scopies [7–9], resonant inelastic X-ray scattering (RIXS)
[1, 4, 6, 10] as well as their corresponding dynamical ver-
sions (e.g. non-equilibrium or NE-XAS and time-resolved
tr-RIXS). In particular, the possibility to probe with en-
ergy and momentum resolution excitations arising from
charge, spin and orbital degrees of freedom has made
RIXS the favorite tool to study the spectrum of solids
and complex materials, including transition-metal com-
pounds [11–15], Mott and anti-ferromagnetic insulators
and unconventional high Tc superconductors [16–21].

This fruitful period has also been marked by theoret-
ical efforts to understand more in depth the scattering
processes and the nature of the dynamical correlation
functions probed by these experiments[1]. In this re-
spect, uncovering various aspects underlying the excita-
tion spectrum of a system is associated to the calculation
of dynamical correlation functions, a task that, to date,
remains challenging. The limitations of available tech-
niques to compute spectral properties in strongly cor-
related systems away from equilibrium has curbed fur-
ther theoretical progress [22]. For instance, the Bethe
Ansatz [23] and Dynamical Mean-Field Theory (DMFT)
[24] are restricted to relatively simple model Hamilto-
nians, whereas time-dependent Density Functional The-

ory (TD-DFT) [8] covers weakly coupled regimes. Ex-
act digonalization (ED), which has been the most em-
ployed numerical tool to calculate of the spectrum of
solids and complex materials [10–14, 25–39], provides ac-
cess to small clusters and limits the momentum resolu-
tion.

The main limiting factor in these calculations is that
core hole spectroscopies such as RIXS involve interme-
diate processes that can only be accounted for with an
explicit knowledge of all the eigenstates of the system,
requiring a full diagonalization of the Hamiltonian. Re-
cently, Nocera et al. introduced a novel framework [40]
based on the dynamical density matrix renormalization
group (dDMRG)[41–43] aiming at extending the range
of RIXS (and XAS) computations to systems beyond the
reach of exact diagonalization (ED). Even though cluster
sizes much bigger than ED were reached, the algorithm
proposed in Ref. 40 requires a number of DMRG simu-
lations scaling linearly in the size of the system, making
the computation of the entire RIXS spectrum a difficult
task for challenging Hamiltonians.

In this work, we propose an alternative approach in
which the calculation of spectrum is recast as a scattering
problem that can be readily solved by means the time-
dependent DMRG method in a framework that does not
require a full set of eigenstates of the Hamiltonian of the
system. As we describe below, we explicitly introduce
incident photons and core orbitals in the problem and
numerically solve for the time evolution of the system
accounting for the photon absorption and spontaneous
emission in real time. This powerful formulation over-
comes all the hurdles imposed by previous methods that
work in the frequency domain and rely on explicitly ob-
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FIG. 1. In a RIXS experiment, a core electron is excited into
the valence band (a). After some time, an electron decays
back into the core orbital, emitting a photon and leaving the
system in an excited state, (b) and (c).

taining dynamical spectral functions by means of gener-
alized Fermi golden rules (Kramers-Heisenberg formula)
in the frequency domain.
The paper is organized as follows: in Sec. II we review

the principles of light-matter interactions taking place in
X-ray experiments. With this foundation, we then intro-
duce our approach and show how to recast the calcula-
tion of the spectrum as a time-dependent scattering prob-
lem. We describe a practical implementation for RIXS
in Sec. III. We present results using the time-dependent
density matrix renormalization group method (tDMRG)
[44–47] in Sec. IV for a one-dimensional Mott insulator
described by a Hubbard chain, a model which has been
widely used to simulate RIXS in cuprates. Finally, we
discuss our findings and implications in Sec. V.

II. LIGHT-MATTER INTERACTIONS

We hereby briefly review the basic ideas describing
an X-ray scattering experiment and provide a theoret-
ical background to put the problem in context. Since
X-rays are a highly energetic beam of photons, we repre-
sent them through a vector potential:

A(r) =
∑

k,λ

Akekλ(bkλe
ikr + b†

kλe
−ikr), (1)

where Ak =
√

2πc2/Vsωk is the normalized amplitude
in volume Vs, with ωk = c|k|. The polarization unit
vectors ekλ (λ=1,2) point in directions perpendicular to
the propagation of the photons with momentum k, rep-
resented by the conventional bosonic creation and anni-
hilation operators b†, b. The full Hamiltonian including
the solid and the radiation field is written as

H = H0 +Hph + V, (2)

where H0 describes the electrons and nuclei in the solid,

and Hph =
∑

k,λ ωk(b
†
k,λbk,λ + 1/2). The light-matter

interaction is given by

V =
e

mc

∑

i

pi ·A(ri) +
e

2mc

∑

i

σi · ∇ ×A(ri), (3)

where the first term accounts for the interaction of the
electric field with the momentum p of the electrons and
the second term describes the magnetic field acting on
the electron spin σ. In the following, we will ignore the
magnetic interaction as well as higher order terms that
are not included in this expression. Therefore, replacing
the quantized vector operator (1) leads to:

V =
e

mc

∑

i

∑

k,λ

Ak(b
†
k,λek,λ · pie

ikRi + h.c.) (4)

=
∑

k,λ

(b†
k,λDk,λ + h.c.) (5)

where we have assumed the dipole limit in which eik·r ≃
eik·Ri where Ri is the position of the ion to which elec-
tron i is bound, and we have introduced the dipole oper-
ator

Dk,λ =
∑

i

e

mc
Akek,λ · pie

ik·Ri . (6)

We start our discussion of the scattering processes by
first considering a case in which a photon with momen-
tum k, energy ωk and polarization ek,λ is absorbed, leav-
ing the system energetically excited. The possible final
states will be determined by the allowed dipolar transi-
tions. In particular, one finds:

⟨n′l′m′|pi|nlm⟩ ≠ 0 ⇐⇒ ∆l = ±1 and ∆m = 0,±1

where ∆l = l′ − l and ∆m = m′ −m, and l represents
the orbital angular momentum with projection m. In
the process we are interested in, this operator will cre-
ate a core-hole excitation. In particular, we focus on the
Cu L-edge (2p → 3d) transition in a typical X-ray scat-
tering experiment on a transition metal oxide cuprate
material[48]. In this case,

Dk,λ =
∑

i,σ,α

(eik·RiΓλ
αd

†
i,σpi,α,σ + h.c.), (7)

where d† adds an electron to the valence band (3dx2−y2)
and pα creates a hole in a 2pα orbital. The coefficients
Γλ
α are determined by the matrix elements of the dipole

operator, Γλ
α ∝ ⟨2pα|ek,λ · r|3dx2−y2⟩ = 1, where we have

expressed the dipole operator in terms of the position
operator r[1]. It is typically assumed that the core hole is
strongly localized and only one Cu 2pα orbital is involved
in the process.
After the excitation is created, the conduction elec-

trons will experience a local Coulomb potential −Uc in
the presence of the core hole and Hamiltonian (2) is mod-
ified accordingly:

H = H0 +Hc +Hph + V, Hc = −Uc

∑

i

ndi(1− npi),

V = Vin + Vout, Vout = V †
in (8)

Vin =
∑

k,λ

bk,λDk,λ =
∑

k,λ

bk,λ
∑

i

eik·RiDi,λ,
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FIG. 2. Schematic geometries used in the numerical calcula-
tions: (a) The local spectrum is measured adding one core or-
bital and emitted photon; (b) The momentum resolved RIXS
calculation requires translational invariance, and an extended
“detector” with one source and probe photon orbital per site;
(c) in the semiclassical approach, the source photon is re-
placed by a classical field.

with Di,λ =
∑

α,σ Γ
λ
αd

†
i,σpiα,σ and np =

∑

σ p
†
σpσ, and

it is important to notice that the p orbital can only be
double or single occupied, but never empty since that
would imply a two photon process.
Due to the large local spin-orbit coupling in the core

2p orbital (of the order of 20eV at the Cu L-edge) the 2p
orbitals split by their total angular momentum j, corre-
sponding to the L2 (j̃ = 1/2) and L3 (j̃ = 3/2) transi-
tion edges. Because the energy separation between the
two resonances is much larger than the core-hole life-
time broadening, we neglect the possibility of interfer-
ence between the two edges, such that we have either
Dk,λ ≃ D

k,λ,j̃=1/2 or Dk,λ ≃ D
k,λ,j̃=3/2. As a conse-

quence, neither the spin nor the orbital angular momen-
tum of the 2p band are good quantum numbers in the
scattering process, but only the total angular momentum
is conserved, allowing for orbital and spin “flip” processes
at the Cu-L edge RIXS[10, 48]. We shall elaborate on this
below.

III. TIME-RESOLVED RIXS

Resonant inelastic X-ray scattering (RIXS) is a high
order process that can be described as a combination of
X-ray absorption (XAS) and X-ray emission spectroscopy
(XES), in which the system absorbs a photon with energy
ωin and emits another one with energy ωout. We hereby
focus on the so-called “direct RIXS” processes, see Fig.1
and Fig. 1 in Ref.12). As a consequence, the photon
loses energy and the electrons in the solid end up in an
excited state with momentum k′ − k and energy ∆ω =
ωout − ωin. While in principle the resulting spectrum is
a function of two frequencies, the incident photon ωin is
tuned to match one of the absorption edges, hence the
resonant nature of the process. The final response is then

determined by measuring the final occupation of the ωout

mode.
RIXS can be formulated in terms of a single photon

being absorbed or emitted by the system. We consider
the system locally connected to two photon orbitals, one
with energy ωin that will serve as the “source” for ab-
sorption, and a second one with energy ωout will be the
“detector” for emission and is initially empty. Since we
are interested in obtaining the momentum resolved spec-
trum we need extended probe and sources[49]. This can
be implemented in two different but equivalent setups,
that we proceed to describe below.

A. Photon-in, photon-out description

In this setup, illustrated in Fig.2(b), each site will have
a core-orbital, a source orbital, and a probe or detector
orbital. Since the system is translational invariant, total
momentum will be conserved. The problem is described
by the Hamiltonian:

H = H0 +Hc + ωin

∑

i

nb,s,i + ωout

∑

i

nb,d,i + V,

V = Vin + Vout; Vout = V †
in,

Vin =
∑

σ,σ′=↑,↓

V σσ′

in

V σσ′

in =
∑

i

(Γσσ′

s bs,i + Γσσ′

d bd,i)d
†
iσ′piσ,

Hc = −Uc

∑

iσ

(1− npiσ)ndi, (9)

where we have introduced couplings Γσσ′

s/d that can be

turned on and off selectively depending of the case of in-
terest, as we describe below. For instance, in the absence
of spin-orbit interaction, only Γσσ

s/d will be non-zero. Oth-

erwise, the spin projection is no longer a good quantum
number and the core-electron is allowed to flip spin when
it is excited.
At time t = 0, the problem is initialized with the core-

orbitals double-occupied, the probe orbitals empty, and
a single source photon with momentum kin. This can be
done by means of a projector:

Hsource = −|kin⟩⟨kin|+ λ
∑

ij

nb,s,inb,s,j ,

where the second term multiplied by a large positive con-
stant λ > 0 represents a boson-boson repulsion that en-
sures that there is only one photon overall. This is nec-
essary because the total Hamiltonian does not conserve
photon number. We observe that since there is only one
photon at play, only one core-electron will be excited at
most at any given time. The full calculation proceeds as
follows: the energy ωin is set to the transition edge and
tDMRG simulations are carried out in parallel for each
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FIG. 3. Depiction of the possible processes accounted for by
our formulation of the direct RIXS problem: The incident
photon has energy ωin, and the “detector” is tuned to a tar-
get energy ωout. The color arrows indicate processes in which
a spin flip is involved, due to the spin orbit term. The (b)→(c)
path represents a process without spin orbit in which the fi-
nal state of the band has the same quantum numbers as the
original one. The (e) path corresponds to a spin-flip after ab-
sorption, while (d) and (f) undergo a spin-flip after emission.
The final state can reverse the spin flip (d),(f) or leave the
band with a different spin (c),(g). There is a similar cascade
of processes related to these by time-reversal.

value of ωout. The full spectrum is obtained by measur-
ing the momentum distribution function of the detector

at time tprobe, nb,d(k) = 1/N2
∑

mn e
ik(Rm−Rn)b†d,mbd,n.

B. Semi-classical description

In order to reduce the computational complexity of the
problem, we hereby introduce a semi-classical approach
to completely eliminate the source degree of freedom.
This alternative approach prescinds from the incoming
photon and source orbitals and reduces the cost of the
simulation exponentially.

The premise relies on the fact that –unlike spontaneous
emission– the absorption process can be described semi-
classically without using quantum photons by means of
a classical field coupled to the dipole operator or, equiv-
alently, in the form of a “gate potential”:

H = H0 +Hc + ωout

∑

i

nb,d,i + ωin

∑

i

np,i + V,

V = Vin + Vout; Vout = V †
in,

Vin =
∑

σ,σ′=↑,↓

V σσ′

in

V σσ′

in = Γσσ′

d

∑

l

bd,ld
†
lσ′plσ + Γσσ′

s

∑

l

d†lσ′plσ,

Hc = −Uc

∑

iσ

(1− npiσ)ndi, (10)

where the “gate voltage” ωin acts on all the core elec-
tronic states and we include a “hopping” term between
the core states p and the conduction states d. Notice that
this is a modification of the chain geometry, where the
incoming photons are replaced by the voltage term. In
our calculations we take ωin corresponding to the XAS
transition edge. As time evolves, due to energy and mo-
mentum conservation, core electrons with energy ωin will
be able to “tunnel” to the conduction/valence band, same
as before. It can be easily shown that both formulations
are mathematically equivalent, something that we have
also corroborated numerically (not shown): results from
the quantum and semi-classical approaches are indistin-
guishable.
An important consideration to take into account is

that, since we are interested in a single photon process,
only one core electron is can be excited to the conduction
band at a time. This is naturally accounted for by the
quantum mechanical formulation in Sec.III A with the
source photons explicitly included. Therefore, the core
orbitals can never be found empty, and only single and
double occupied states are allowed. In practice, this can
be done by either not including these states in the ba-
sis, or by adding a very large energy cost to states with
empty core orbitals.

C. Measurement protocol

The goal is to measure the momentum distribution
function of the detector ⟨ψ(t)|nb,d(k)|ψ(t)⟩ after the scat-
tering term is turned on (see Fig.2). We hereby focus
on the implementation using the semi-classical descrip-
tion. Explicitly, one proceeds by carrying out a time-
dependent simulation with the probe orbitals empty, and
the core orbitals double occupied. The initial state of the
electronic system may or may not be an eigenstate and
could be very far from equilibrium, since this approach
applies regardless of the case. By setting Γσσ′

s = Γττ ′

d =
Γ, and all others set to zero, one evolves the system in
time to obtain a wave-function |ψσσ′,ττ ′(t)⟩. The result-
ing contributions to the spectrum can be split into spin
conserving and non-conserving ones:

I∆S=0
RIXS = ⟨ψ↑↑,↑↑|nb,d|ψ↑↑,↑↑⟩, (11)

IinterferenceRIXS = ⟨ψ↑↑,↑↑|nb,d|ψ↓↓,↓↓⟩, (12)

I∆S=1
RIXS = ⟨ψ↑↑,↓↑|nb,d|ψ↑↑,↓↑⟩. (13)

The first expression, Eq.(11) involves the path (a)-(b)-(c)
in Fig.3, while Eq.(12) the “interference” between this
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FIG. 4. Momentum resolved RIXS spectrumn for a Hubbard
chain with U = 8, Uc = 1.5, Γ = 0.2 and L = 64 sites, showing
only the direct spin conserving channel.

process and the one related by time-reversal symmetry
with the “down” electron. The term Eq.(13) originates
from the (a)-(b)-(d) channel, that results in a net spin
flip in the conduction band in the presence of spin-orbit
coupling. It is easy to see that these are the only distinct
contributions, since all others are related by time-reversal
symmetry.
By turning the couplings Γ on and off, this protocol

allows us to measure each of the terms individually, in-
cluding the interference Eq.(12) and the spin-flip con-
tributions in Eq.(13). To account for all the terms,
a total of four independent calculations would be re-
quired (notice that the interference term (12) involves
two different wave-functions). However, setting all the

Γσσ′

s = Γσσ′

d = Γ will yield the total RIXS spectrum au-
tomatically from a single time-dependent simulation.

IV. RESULTS

A. Momentum resolved RIXS

With the probe extended to the entire volume of the
system, we resolve the momentum dependence of the
spectrum, as seen in Fig.4 (We show only results for
the “direct” term, I∆S=0

RIXS , Eq.(11)). We take U = 8,
U0 = 1.5 and tuned ωin = 4.47 to the transition edge
for this value of U and kept 400 DMRG basis states.
The dispersive features clearly allow us to identify dif-
ferent contributions. First, we note a bright low energy
band that resembles the standard two-spinon continuum
characterizing the low energy magnetic excitations spec-
trum of antiferromagnetic 1D spin-chain cuprates, such
as Sr2CuO3 and SrCuO2. These have been experimen-
tally investigated both using RIXS at the Cu L-edge[48]
and neutron scattering spectroscopy[50, 51]. Particularly
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FIG. 5. RIXS results using a time-dependent scattering ap-
proach for a Mott insulating Hubbard chain of length L = 64
with U = 8 and Uc = 1.5 and tprobe = 30. Panels show (a) the
direct contribution, (b) interference term, (c) spin-flip term,
and (d) full spectrum, also following its evolution as a func-
tion of time. dDMRG results are also shown for comparison.

evident is the sharp, large intensity peak at k = 0, ω = 0
which represents the elastic peak, typical of RIXS exper-
iments. We note that while this peak can easily be sub-
tracted off in RIXS dDMRG calculations[52], this cannot
be done in our tunneling approach, except in an ad-hoc
way.
Finally, we highlight the upper excitation band at ω ∈

[6t, 10t], centered around ω ≃ 8t, which describes particle
hole (holon-doublon) excitations to the upper Hubbard
band. Our results show a much better quality compared
to dDMRG calculations at high energies, as in this case
dDMRG precision deteriorates because it needs to con-
verge over a big Krylov subspace[41, 53–55]. In particu-
lar, even though much less intense than the low energy
spin excitation band, our approach can clearly resolve
interesting features of the holon-doublon band, which
can be fit by a cosine-like dispersion E ≃ 8t − 2t cos(k),
plus an incoherent background at large momentum trans-
fers. Our approach can therefore be of great help in the
interpretation of RIXS experiments in low-dimensional
cuprates where, besides magnetic excitations, also charge
excitations play an important role, such as in correlated
charge-density wave states[56, 57].

B. Single site spectrum

In order to gain more insight on the features and con-
tributions at different energy scales, we now focus on a
single site setup to calculate the local RIXS spectrum
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FIG. 6. (a) Spin conserving and (b) non-conserving RIXS
channels for a Mott insulating Hubbard chain with U = 8,
Uc = 1.5, Γ = 0.1, L = 64 sites, for different probing times
tprobe. The inelastic features at low energies emerge after a
characteristic time for the electrons to break and decay into
spinons and doublons.

for the Mott insulating Hubbard chain. In this case, we
use the geometry depicted in Fig.2(a), with a single core
orbital and detector. Results obtained using the time-
dependent scattering approach with m = 300 DMRG
states are shown in Fig.5, compared to data obtained
with dDMRG for the same system size and m = 800
states. The overall agreement is qualitatively very good,
but the dDMRG results clearly suffer from poor preci-
sion particularly at high energies, as pointed out above.
The discrepancies can be attributed to the fact that the
time-evolved wave-function contains higher order contri-
butions.

In agreement with the momentum resolved features
described earlier, the resulting spectrum contains signa-
tures of a broad high-energy band, and a narrower low
energy band with larger concentrated weight. The elastic

0 2 4 6 8 10

0

0.2

0.4

0.6

ω

Uc = 10.0 ωin =−11.65

Uc = 4.0 ωin = 0.066

Uc = 1.5 ωin = 4.47

FIG. 7. RIXS results (without spin-orbit interaction) for a
Mott insulating Hubbard chain with U = 8, L = 64 sites,
and different values of the core-hole potential Uc measured at
time tprobe = 30.

contribution has been removed from the dDMRG data,
implying that this low energy band indeed corresponds to
spectral weight in the gap. While this can be confusing, it
is readily explained in terms of multi spinon excitations
with ∆Sz = 0 produced by even number of spin flips
and not changing the number of electrons [23]. While a
Mott insulator has a charge gap, the spin excitations are
gapless, a manifestation of spin-charge separation in one
spatial dimension. Clearly, there are no available states
within the Mott gap. The high energy features corre-
spond to holon-doublon excitations that transfer spectral
weight from the lower into the upper Hubbard band. In
a Mott insulator away from equilibrium one can imagine
high-order processes in which an electron in the band de-
cays into the core orbital, simultaneously creating a par-
ticle hole excitation with an additional doublon in the
upper Hubbard band. The decay of the doublon into
spinons is unlikely, due to the weak spinon dispersion
and the vanishing coupling between charge and spin [58–
60](long doublon lifetime has also been observed in higher
dimensions [61–64]).

C. Core-hole lifetime and dependence of the

lineshape

The core-hole lifetime is in general also controlled by
non-radiative decay mechanisms due to electronic cor-
relations, such as Auger decay. Even though it is be-
lieved that the core-hole lifetime is an intrinsic prop-
erty of atom, it was recently demonstrated that it can
be tuned in certain cases by employing thin films x-ray
planar cavities[65].
Unlike dDMRG, where the core-hole lifetime is intro-
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duced as an artificial damping in the Kramers-Heisenberg
formula, in our approach the core-hole lifetime is an in-
trinsic property of the problem and is determined by the
magnitude of the light-matter interaction Γ. In particu-
lar, the inverse core-hole bare linewidth for radiative de-
cay is given by ℏτcore−hole = π

∑

k
|Γk|

2δ(ϵk − ϵc − ωin),
where ϵk is the energy of the valence band electrons while
ϵc is the core-level energy.[2]. In fact, the lifetime of the
core-hole, while short, is actually momentum and energy
dependent, and is intrinsically accounted for by our for-
mulation. In our calculations, the lineshape for a fixed
Γ will be determined by the time lapsing between the
moment the photon source is turned on, and the emit-
ted photon is measured by the detector, our tprobe for a
smaller value of Γ. In Fig.6 we show RIXS results as a
function of the probing time tprobe. As seen in Fig.6, dif-
ferent features evolve with different characteristic times.
At short times we observe the development of an elastic
peak with little spectrum in the gap. This corresponds
to an excitation being created at the transition edge and
immediately recombining by emitting a photon, without
energy loss and time to break into spinons, yielding only
an elastic signal at ω = 0. On the other hand, if we allow
the system to evolve under the action of the core-hole
potential between absorption and emission, the resulting
attractive force will bind the doublon to the core orbital
and create spin domain walls (spinons), that will propa-
gate throughout the system. This is observed in the same
figure, where the higher energy features in the spectrum
evolve and become better resolved as we increase tprobe.

We point out that other factors that are not accounted
by our formulation can play a role in the core-hole lifetime
of actual materials, that can be very short due to non-
radiative recombination mechanisms such as Auger[66,
67]. In our formulation, this effects could be included
through a “core bath”, as suggested in Ref.68.

D. Dependence on the core-hole potential

Finally, we observe that the magnitude of Uc affects the
relative spectral weight between the high and low energy
bands. This is demonstrated in Fig.7, where we show the
RIXS spectra obtained by varying Uc from 1.5 to 10. For
large Uc, the core hole and a single doublon form a tightly
bound state localized at the position of the core-orbital,
effectively cutting the system in two. In the limit of Uc →
∞, scattering with this potential induces holon-doublon
excitations transferring weight into the upper Hubbard
band, with a consequent increase in the spectral signal at
high energies, while barely affecting the spectrum at low
energies that originates from the spin degree of freedom.
Our numerical results can be understood in direct anal-

ogy with those obtained in indirect RIXS [69]: given the
very small recombination rate of the holon-doublon after
the absorption process, our data strongly suggest that the
core-hole-holon-doublon bound state has a lifetime larger
than the bare core-hole one. In fact, the doublon state

is playing the role of the spectator (unoccupied) conduc-
tion band level in standard indirect RIXS. Indeed, in in-
direct RIXS, by increasing the core-level interaction Uc,
and therefore increasing the incident energy at resonance,
the spectral weight of charge (holon-doublon) excitations
increases relative to that one of spin excitations.

V. CONCLUSIONS

We have introduced a time-dependent scattering ap-
proach to core-hole spectroscopies that allows one to
carry out numerical calculations without the full knowl-
edge of the excitation spectrum of the system. The appli-
cability of the method is demonstrated by means of time-
dependent DMRG calculations. Results for the Hubbard
model are achieved with minimal effort on large sys-
tems using a fraction of the states –and simulation time–
required by the dDMRG formulation. Unlike dDMRG
and other approaches such as ED and DMFT that rely
on explicitly calculating dynamical response functions
based on the Kramers-Heisenberg formula, our time-
dependent calculations are not limited by perturbation
theory and contain contributions from higher order pro-
cesses. Momentum resolution is obtained by means of
extended source and probe, and an exponential speed
up can be obtained by modeling the absorption process
semi-classically by means of an oscillating field or, equiv-
alently, of a “gate potential” term. In addition, our time-
dependent approach can be readily applied without mod-
ification to non-equilibrium situations in which the elec-
tronic band is not in the ground state.

Our method differs from others in one notorious aspect:
while the general approach essentially consists of first
calculating a spectrum corresponding to an infinite core-
hole lifetime, and then convoluting this spectrum with
a Lorentzian lifetime broadening, in our time-dependent
simulations there is no way to control the internal dynam-
ics of the system and the core-hole lifetime is basically
determined by the probing time tprobe. At long times we
always observe the emergence of low energy states that
can be associated to gapless multi-spinon excitations.

Our formulation opens the door to the numerical study
of core-hole spectroscopies in strongly correlated sys-
tems away from equilibrium using exact many-body ap-
proaches such as as tDMRG. The results obtained by
these means give one access to transient regimes and al-
low one to resolve different excitation and decay mech-
anisms in real time. These ideas can easily be imple-
mented within other numerical frameworks, such as time-
dependent DMFT.
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Appendix A: RIXS

While we carry out exact numerical simulations of
the full non-equilibrium problem, one can show that
our time-dependent scattering approach is equivalent
to the standard RIXS response based on the Kramers-
Heisenberg formula in the perturbative limit. The second
order contribution is proportional to:

IRIXS(ωin, ωout, t) =
∑

σσ′σ′′

∑

ττ ′τ ′′

∫ t

0

dt2

∫ t2

0

dt1

∫ t

0

dt′2

∫ t′
2

0

dt′1⟨V
τ ′′τ ′

out (t′1)V
τ ′′τ
in (t′2)nb,dV

σ′′σ
out (t2)V

σ′′σ′

in (t1)⟩

=
∑

σσ′

∑

ττ ′

∑

σ′′,τ ′′

(Γτ ′′τ
s Γτ ′′τ ′

d Γσ′′σ′

d Γσ′′σ
s )Iττ

′,σ′σ
RIXS (A1)

where

Iττ
′,σ′σ

RIXS =
∫ t

0
dt2

∫ t2
0
dt1

∫ t

0
dt′2

∫ t′
2

0
dt′1e

i(ωin+E0)(t
′

1
−t1)⟨ϕ0|d0τe

iH′

c
(t′

2
−t′

1
)d†0τ ′e−iH0(t

′

2
−t2)d0σ′e−iH′

c
(t2−t1)d†0σ|ϕ0⟩.

where H ′
c = H0−Ucnd0 and |ϕ0⟩ is the initial state of the

electronic bands. In this expression nb,d kills all contribu-
tions of terms in Vout that leave a photon on the source:
only combinations that leave the detector with a photon
in the same final and the core orbital double occupied

state will survive. Using the fact that the initial state
is a product state, we can trace out the core orbital and
the photons, obtaining an expression that only depends
on the band electrons.

IRIXS(ωout, t) =

∫ t

0

dt1

∫ t1

0

dt2

∫ t

0

dt′1

∫ t′
1

0

dt′2⟨Vout(t
′
1)Vin(t

′
2)b

†
k′bk′Vout(t2)Vin(t1)⟩

=

∫ t

0

dt2

∫ t2

0

dt1

∫ t

0

dt′2

∫ t′
2

0

dt′1e
i(ωin+E0)(t

′

1
−t1)⟨Voute

iH(t′
2
−t′

1
)Vine

−iHt′
2b†

k′bk′eiHt2Voute
−iH(t2−t1)Vin⟩

→ 4π2
∑

f

∣

∣

∣

∣

∣

∑

n

⟨f |Dk′ |n⟩⟨n|Dk|0⟩

(ω + E0 − En + iη)

∣

∣

∣

∣

∣

2

δ(ωin − ωout + E0 − Ef ), (A2)

where we have taken the large t limit in the last step. In
this expression, the eigenstates |n⟩ belong to the inter-
mediate Hamiltonian in the presence of the core-hole po-

tential, while the eigenstates |f⟩ are a full basis of the un-
perturbed electronic Hamiltonian without the core-hole
(notice that the Hamiltonian H0 does not include a hy-
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bridization between p and d orbitals, hence the parti-
cle numbers Np and Nd are conserved quantities). We
observe that the energy difference ∆ω = ωout − ωin =
Ef−E0 is transferred to the electrons in the band. There-
fore, the energy lost by the photon is pumped into the
system. In the absence of spin-orbit coupling, the states
|f⟩ will have the same spin and particle number as the
ground state, hence they can represent a particle-hole
excitation, or a spin excitation with an even number of
spin flips such that ∆Sz = 0. On the other hand, the
spin-orbit interaction can introduce spin-flip processes as
depicted in Fig.2. These can result in the electronic band

having a final state with a total spin different than the
initial one, ∆Sz = ±1. In this case, the RIXS spectrum
will reflect both neutral particle-hole excitations and spin
excitations with an odd number of spin flips.
We finally point out that, in order to account for the

finite lifetime η of the electron-hole pair, a real damping
phase exp (−η∆t) is conventionally added to the evolu-
tion operator between the occurrences of Vin and Vout,
that translates into an artificial broadening of the spec-
trum that mimics the finite duration of the core-hole life-
time. In the sections below we proceed to elaborate on
these aspects of the problem and expand the discussion.
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