1 Tonsfeldt, K. J., Mellon, P. L. & Hoffmann, H. M. Circadian Rhythms in the Neuronal Network Timing the Luteinizing Hormone Surge. Endocrinology 163, doi:10.1210/endocr/bqab268 (2021).
2 Silveira, M. A., Burger, L. L., DeFazio, R. A., Wagenmaker, E. R. & Moenter, S. M. GnRH Neuron Activity and Pituitary Response in Estradiol-Induced vs Proestrous Luteinizing Hormone Surges in Female Mice. Endocrinology 158, 356-366, doi:10.1210/en.2016-1771 (2016).
3 Kriegsfeld, L. J. et al. The Roles of RFamide-Related Peptide-3 in Mammalian Reproductive Function and Behaviour. Journal of Neuroendocrinology 22, 692-700, doi:10.1111/j.1365-2826.2010.02031.x (2010).
4 Gotlieb, N., Moeller, J. & Kriegsfeld, L. J. in Developmental Neuroendocrinology (eds Susan Wray & Seth Blackshaw) 413-446 (Springer International Publishing, 2020).
5 Wang, L. & Moenter, S. M. Differential Roles of Hypothalamic AVPV and Arcuate Kisspeptin Neurons in Estradiol Feedback Regulation of Female Reproduction. Neuroendocrinology 110, 172-184, doi:10.1159/000503006 (2020).
6 Schafer, D., Kane, G., Colledge, W. H., Piet, R. & Herbison, A. E. Sex- and sub region-dependent modulation of arcuate kisspeptin neurones by vasopressin and vasoactive intestinal peptide. Journal of Neuroendocrinology 30, e12660, doi:10.1111/jne.12660 (2018).
7 Smith, M. J., Jennes, L. & Wise, P. M. Localization of the VIP2 Receptor Protein on GnRH Neurons in the Female Rat. Endocrinology 141, 4317-4320, doi:10.1210/endo.141.11.7876 (2000).
8 Kriegsfeld, L. J., Leak, R. K., Yackulic, C. B., LeSauter, J. & Silver, R. Organization of suprachiasmatic nucleus projections in Syrian hamsters (Mesocricetus auratus): An anterograde and retrograde analysis. Journal of Comparative Neurology 468, 361-379, doi:https://doi.org/10.1002/cne.10995 (2004).
9 Kriegsfeld, L. J., Jennings, K. J., Bentley, G. E. & Tsutsui, K. Gonadotrophin-inhibitory hormone and its mammalian orthologue RFamide-related peptide-3: Discovery and functional implications for reproduction and stress. Journal of Neuroendocrinology 30, e12597, doi:https://doi.org/10.1111/jne.12597 (2018).
10 Russo, K. A. et al. Circadian Control of the Female Reproductive Axis Through Gated Responsiveness of the RFRP-3 System to VIP Signaling. Endocrinology 156, 2608-2618, doi:doi:10.1210/en.2014-1762 (2015).
11 Palm, I. F., van der Beek, E. M., Wiegant, V. M., Buijs, R. M. & Kalsbeek, A. Vasopressin induces a luteinizing hormone surge in ovariectomized, estradiol-treated rats with lesions of the suprachiasmatic nucleus. Neuroscience 93, 659-666, doi:https://doi.org/10.1016/S0306-4522(99)00106-2 (1999).
12 Rosas, G. et al. The Neural Signals of the Superior Ovarian Nerve Modulate in an Asymmetric Way the Ovarian Steroidogenic Response to the Vasoactive Intestinal Peptide. Frontiers in physiology 9, 1142, doi:10.3389/fphys.2018.01142 (2018).
13 Lehman, M. et al. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. The Journal of Neuroscience 7, 1626-1638, doi:10.1523/jneurosci.07-06-01626.1987 (1987).
14 Meyer-Bernstein, E. L. et al. Effects of Suprachiasmatic Transplants on Circadian Rhythms of Neuroendocrine Function in Golden Hamsters**This work was supported by NIH Grants MH-44132, KO2-MH-00914, and F32-HD-07673. A preliminary report of this research was presented at the 23rd Annual Meeting of the Society for Neuroscience (Neurosci Abstr 19:236.17, 1993). Endocrinology 140, 207-218, doi:10.1210/endo.140.1.6428 (1999).
15 Loh, D. H. et al. Disrupted Reproduction, Estrous Cycle, and Circadian Rhythms in Female Mice Deficient in Vasoactive Intestinal Peptide. Journal of Biological Rhythms 29, 355-369, doi:10.1177/0748730414549767 (2014).
16 Piet, R., Dunckley, H., Lee, K. & Herbison, A. E. Vasoactive intestinal peptide excites GnRH neurons in male and female mice. Endocrinology 157, 3621-3630, doi:doi:10.1210/en.2016-1399 (2016).
17 Kriegsfeld, L. J., Silver, R., Gore, A. C. & Crews, D. Vasoactive intestinal polypeptide contacts on gonadotropin-releasing hormone neurones increase following puberty in female rats. J Neuroendocrinol 14, 685-690, doi:10.1046/j.1365-2826.2002.00818.x (2002).
18 Christian, C. A. & Moenter, S. M. Vasoactive Intestinal Polypeptide Can Excite Gonadotropin-Releasing Hormone Neurons in a Manner Dependent on Estradiol and Gated by Time of Day. Endocrinology 149, 3130-3136, doi:doi:10.1210/en.2007-1098 (2008).
19 Ward, D. R. et al. Innervation of Gonadotropin-Releasing Hormone Neurons by Peptidergic Neurons Conveying Circadian or Energy Balance Information in the Mouse. PLOS ONE 4, e5322, doi:10.1371/journal.pone.0005322 (2009).
20 de la Iglesia, H. O., Meyer, J. & Schwartz, W. J. Lateralization of circadian pacemaker output: Activation of left- and right-sided luteinizing hormone-releasing hormone neurons involves a neural rather than a humoral pathway. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 7412-7414, doi:10.1523/jneurosci.23-19-07412.2003 (2003).
21 Sun, Y., kyei, K., Shu, J. & Neal-Perry, G. Intracerebroventricular Infusion of Vasoactive Intestinal Peptide Rescues the Luteinizing Hormone Surge in Middle-Aged Female Rats. Frontiers in Endocrinology 3, doi:10.3389/fendo.2012.00024 (2012).
22 Mills, J. & Kuohung, W. Impact of circadian rhythms on female reproduction and infertility treatment success. Current opinion in endocrinology, diabetes, and obesity 26, 317-321, doi:10.1097/med.0000000000000511 (2019).
23 Shao, S., Zhao, H., Lu, Z., Lei, X. & Zhang, Y. Circadian Rhythms Within the Female HPG Axis: From Physiology to Etiology. Endocrinology 162, doi:10.1210/endocr/bqab117 (2021).
24 Kahan, A. et al. Light-guided sectioning for precise in situ localization and tissue interface analysis for brain-implanted optical fibers and GRIN lenses. Cell Reports 36, doi:10.1016/j.celrep.2021.109744 (2021).
25 Jones, J. R., Simon, T., Lones, L. & Herzog, E. D. SCN VIP neurons are essential for normal light-mediated resetting of the circadian system. The Journal of Neuroscience, doi:10.1523/jneurosci.1322-18.2018 (2018).
26 Todd, W. D. et al. Suprachiasmatic VIP neurons are required for normal circadian rhythmicity and comprised of molecularly distinct subpopulations. Nature Communications 11, 4410, doi:10.1038/s41467-020-17197-2 (2020).
27 Vosko, A. et al. Role of vasoactive intestinal peptide in the light input to the circadian system. European Journal of Neuroscience 42, 1839-1848, doi:https://doi.org/10.1111/ejn.12919 (2015).
28 Kuhlman, S. J., Silver, R., Le Sauter, J., Bult-Ito, A. & McMahon, D. G. Phase Resetting Light Pulses Induce Per1 and Persistent Spike Activity in a Subpopulation of Biological Clock Neurons. The Journal of Neuroscience 23, 1441-1450, doi:10.1523/jneurosci.23-04-01441.2003 (2003).
29 Kahan, A., Kassraian, P., Altermatt, M. & Gradinaru, V. Immediate Responses to Ambient Light in the Suprachiasmatic Nucleus Reveal Distinct Activity Profiles and Retinal Connectivity for SCN VIP Neurons. Under review, doi: http://dx.doi.org/10.2139/ssrn.4052008 (2022).
30 P Williams, W., G Jarjisian, S., Mikkelsen, J. & Kriegsfeld, L. Circadian Control of Kisspeptin and a Gated GnRH Response Mediate the Preovulatory Luteinizing Hormone Surge. Vol. 152 (2011).
31 Jamieson, B. B., Bouwer, G. T., Campbell, R. E. & Piet, R. Estrous Cycle Plasticity in the Central Clock Output to Kisspeptin Neurons: Implications for the Preovulatory Surge. Endocrinology 162, doi:10.1210/endocr/bqab071 (2021).
32 Clarkson, J. et al. Definition of the hypothalamic GnRH pulse generator in mice. Proc Natl Acad Sci U S A 114, E10216-e10223, doi:10.1073/pnas.1713897114 (2017).
33 Campos, P. & Herbison, A. E. Optogenetic activation of GnRH neurons reveals minimal requirements for pulsatile luteinizing hormone secretion. Proceedings of the National Academy of Sciences 111, 18387-18392, doi:10.1073/pnas.1415226112 (2014).
34 Gusmao, D. O. et al. Pattern of gonadotropin secretion along the estrous cycle of C57BL/6 female mice. Physiological Reports 10, e15460, doi:https://doi.org/10.14814/phy2.15460 (2022).
35 Uhlén, P. Spectral Analysis of Calcium Oscillations. Science's STKE 2004, pl15-pl15, doi:doi:10.1126/stke.2582004pl15 (2004).
36 SMITH, M. S., FREEMAN, M. E. & NEILL, J. D. The Control of Progesterone Secretion During the Estrous Cycle and Early Pseudopregnancy in the Rat: Prolactin, Gonadotropin and Steroid Levels Associated with Rescue of the Corpus Luteum of Pseudopregnancy12. Endocrinology 96, 219-226, doi:10.1210/endo-96-1-219 (1975).
37 Vida, B. et al. Oestrogen receptor alpha and beta immunoreactive cells in the suprachiasmatic nucleus of mice: distribution, sex differences and regulation by gonadal hormones. J Neuroendocrinol 20, 1270-1277, doi:10.1111/j.1365-2826.2008.01787.x (2008).
38 Fatehi, M. & Fatehi-Hassanabad, Z. Effects of 17β-Estradiol on Neuronal Cell Excitability and Neurotransmission in the Suprachiasmatic Nucleus of Rat. Neuropsychopharmacology 33, 1354-1364, doi:10.1038/sj.npp.1301523 (2008).
39 Wilson, M. E. et al. Age differentially influences estrogen receptor-α (ERα) and estrogen receptor-β (ERβ) gene expression in specific regions of the rat brain. Mechanisms of Ageing and Development 123, 593-601, doi:https://doi.org/10.1016/S0047-6374(01)00406-7 (2002).
40 Tackenberg, M. C., Hughey, J. J. & McMahon, D. G. Optogenetic stimulation of VIPergic SCN neurons induces photoperiodic-like changes in the mammalian circadian clock. European Journal of Neuroscience 54, 7063-7071, doi:https://doi.org/10.1111/ejn.15442 (2021).
41 Mazuski, C. et al. Entrainment of Circadian Rhythms Depends on Firing Rates and Neuropeptide Release of VIP SCN Neurons. Neuron 99, 555-563.e555, doi:10.1016/j.neuron.2018.06.029 (2018).
42 Jones, J. R., Tackenberg, M. C. & McMahon, D. G. Manipulating circadian clock neuron firing rate resets molecular circadian rhythms and behavior. Nat Neurosci 18, 373-375, doi:10.1038/nn.3937 (2015).
43 Marder, E. Grandmother elephants. eLife 2, e01140, doi:10.7554/eLife.01140 (2013).
44 Summa, K. C., Vitaterna, M. H. & Turek, F. W. Environmental Perturbation of the Circadian Clock Disrupts Pregnancy in the Mouse. PLOS ONE 7, e37668, doi:10.1371/journal.pone.0037668 (2012).
45 Shindo, M., Miyado, K., Kang, W., Fukami, M. & Miyado, M. Efficient Superovulation and Egg Collection from Mice. Bio-protocol 12, doi:10.21769/BioProtoc.4439 (2022).
46 Yoshinaka, K. et al. Effect of different light–dark schedules on estrous cycle in mice, and implications for mitigating the adverse impact of night work. Genes to Cells 22, 876-884, doi:10.1111/gtc.12522 (2017).
47 Nir, I. & Hirschmann, N. Effect of constant light and darkness on pituitary and serum gonadotropin and sex hormone levels of parturient rats. Journal of Neural Transmission 55, 157-168, doi:10.1007/BF01243758 (1982).
48 CAMPBELL, C. S. & SCHWARTZ, N. B. The Impact of Constant Light on the Estrous Cycle of the Rat*. Endocrinology 106, 1230-1238, doi:10.1210/endo-106-4-1230 (1980).
49 Venner, A. & Fuller, P. M. 0163 Investigating the Role of Vasoactive Intestinal Peptide-Containing Neurons of the Ventromedal Preoptic Area in Sleep-Wake Control. Sleep 43, A64-A64, doi:10.1093/sleep/zsaa056.161 (2020).
50 Toy, S. et al. A study on sex estimation by using machine learning algorithms with parameters obtained from computerized tomography images of the cranium. Scientific Reports 12, 4278, doi:10.1038/s41598-022-07415-w (2022).
51 Cirillo, D. et al. Sex and gender differences and biases in artificial intelligence for biomedicine and healthcare. npj Digital Medicine 3, 81, doi:10.1038/s41746-020-0288-5 (2020).
52 Wahba, L. R., Perez, B., Nikhil, K., Herzog, E. D. & Jones, J. R. Circadian rhythms in multiple behaviors depend on sex, neuropeptide signaling, and ambient light. bioRxiv, 2022.2008.2018.504454, doi:10.1101/2022.08.18.504454 (2022).
53 van Putten, M., Olbrich, S. & Arns, M. Predicting sex from brain rhythms with deep learning. Sci Rep 8, 3069, doi:10.1038/s41598-018-21495-7 (2018).
54 Sano, K. et al. Deep learning-based classification of the mouse estrous cycle stages. Scientific Reports 10, 11714, doi:10.1038/s41598-020-68611-0 (2020).
55 Wolcott, N. S. et al. Automated classification of estrous stage in rodents using deep learning. bioRxiv, 2022.2003.2009.483678, doi:10.1101/2022.03.09.483678 (2022).
56 Calderón, G., Carrillo, C., Nakano, M., Acevedo, J. & Hernández, J. E. in Pattern Recognition. (eds Karina Mariela Figueroa Mora et al.) 261-268 (Springer International Publishing).
57 Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-Cell RNA-Seq Reveals Hypothalamic Cell Diversity. Cell Reports 18, 3227-3241, doi:https://doi.org/10.1016/j.celrep.2017.03.004 (2017).
58 Albers, H. E., Walton, J. C., Gamble, K. L., McNeill, J. K. t. & Hummer, D. L. The dynamics of GABA signaling: Revelations from the circadian pacemaker in the suprachiasmatic nucleus. Front Neuroendocrinol 44, 35-82, doi:10.1016/j.yfrne.2016.11.003 (2017).
59 Wen, S. a. et al. Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nature Neuroscience, doi:10.1038/s41593-020-0586-x (2020).
60 Cheikh Hussein, L. E., Fontanaud, P., Mollard, P. & Bonnefont, X. Nested calcium dynamics support daily cell unity and diversity in the suprachiasmatic nuclei of free-behaving mice. bioRxiv, 2021.2012.2014.472553, doi:10.1101/2021.12.14.472553 (2021).
61 Piet, R., Fraissenon, A., Boehm, U. & Herbison, A. E. Estrogen Permits Vasopressin Signaling in Preoptic Kisspeptin Neurons in the Female Mouse. The Journal of Neuroscience 35, 6881-6892, doi:10.1523/jneurosci.4587-14.2015 (2015).
62 Moralia, M.-A., Quignon, C., Simonneaux, M. & Simonneaux, V. Environmental disruption of reproductive rhythms. Frontiers in Neuroendocrinology, 100990, doi:https://doi.org/10.1016/j.yfrne.2022.100990 (2022).
63 Wang, Y. et al. Rotating shift work and menstrual characteristics in a cohort of Chinese nurses. BMC Women's Health 16, 24, doi:10.1186/s12905-016-0301-y (2016).
64 Lawson, C. C. et al. Rotating shift work and menstrual cycle characteristics. Epidemiology (Cambridge, Mass.) 22, 305-312, doi:10.1097/EDE.0b013e3182130016 (2011).
65 Lawson, C. C. et al. Work schedule and physically demanding work in relation to menstrual function: the Nurses' Health Study 3. Scandinavian Journal of Work, Environment & Health 41, 194-203 (2015).
66 Christian, C. A., Mobley, J. L. & Moenter, S. M. Diurnal and estradiol-dependent changes in gonadotropin-releasing hormone neuron firing activity. Proceedings of the National Academy of Sciences 102, 15682-15687, doi:10.1073/pnas.0504270102 (2005).
67 Goto, T. & Miyamichi, K. Dynamics of Pulsatile Activities of Arcuate Kisspeptin Neurons in Aging Female Mice. bioRxiv, 2022.2008.2008.503241, doi:10.1101/2022.08.08.503241 (2022).
68 Cetin, A., Komai, S., Eliava, M., Seeburg, P. H. & Osten, P. Stereotaxic gene delivery in the rodent brain. Nature Protocols 1, 3166-3173, doi:10.1038/nprot.2006.450 (2006).
69 Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates. (Harvard, 2004).
70 Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nature Neuroscience 20, 1172-1179, doi:10.1038/nn.4593 (2017).
71 Tervo, D. Gowanlock R. et al. A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons. Neuron 92, 372-382, doi:https://doi.org/10.1016/j.neuron.2016.09.021 (2016).
72 Challis, R. C. et al. Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nature Protocols 14, 379-414, doi:10.1038/s41596-018-0097-3 (2019).
73 Cho, J. R. et al. Dorsal Raphe Dopamine Neurons Modulate Arousal and Promote Wakefulness by Salient Stimuli. Neuron 94, 1205-1219.e1208, doi:https://doi.org/10.1016/j.neuron.2017.05.020 (2017).
74 Lerner, Talia N. et al. Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits. Cell 162, 635-647, doi:10.1016/j.cell.2015.07.014 (2015).
75 Kim, C. K. et al. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nature Methods 13, 325-328, doi:10.1038/nmeth.3770 (2016).
76 McLean, A. C., Valenzuela, N., Fai, S. & Bennett, S. A. L. Performing Vaginal Lavage, Crystal Violet Staining, and Vaginal Cytological Evaluation for Mouse Estrous Cycle Staging Identification. e4389, doi:doi:10.3791/4389 (2012).
77 McHenry, J. A. et al. Hormonal gain control of a medial preoptic area social reward circuit. Nat Neurosci 20, 449-458, doi:10.1038/nn.4487 (2017).
78 Brown, L., Hasan, S., Foster, R. & Peirson, S. COMPASS: Continuous Open Mouse Phenotyping of Activity and Sleep Status [version 1; referees: 3 approved, 1 approved with reservations]. Vol. 1 (2016).
79 Gouveia, K. & Hurst, J. L. Improving the practicality of using non-aversive handling methods to reduce background stress and anxiety in laboratory mice. Scientific Reports 9, 20305, doi:10.1038/s41598-019-56860-7 (2019).
80 Ke, M.-T., Fujimoto, S. & Imai, T. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. 16, 1154, doi:10.1038/nn.3447 (2013).
81 Berens, P. Circular Statistics Toolbox (Directional Statistics), <https://www.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox-directional-statistics> (2022).