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Abstract

Carbon stable isotope breath tests offer new opportunities to better

understand gastrointestinal function in health and disease. However,

it is often not clear how to isolate information about a gastrointesti-

nal or metabolic process of interest from a breath test curve, and

it is generally unknown how well summary statistics from empirical

curve fitting correlate with underlying biological rates. We developed a

framework that can be used to make mechanistic inference about the

metabolic rates underlying a 13C breath test curve, and we applied it to

a pilot study of 13C-sucrose breath test in 20 healthy adults. Starting

from a standard conceptual model of sucrose metabolism, we deter-

mined the structural and practical identifiability of the model, using

algebra and profile likelihoods, respectively, and we used these results
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2 Mechanistic inference for 13C breath test curves

to develop a reduced, identifiable model as a function of a gamma-

distributed process, a slower, rate-limiting process, and a scaling term

related to the fraction of the substrate that is exhaled as opposed

to sequestered or excreted through urine. We demonstrated how the

identifiable model parameters impacted curve dynamics and how these

parameters correlated with commonly used breath test summary mea-

sures. Our work develops a better understanding of how the underlying

biological processes impact different aspect of 13C breath test curves,

enhancing the clinical and research potential of these 13C breath tests.

Keywords: carbon-13, stable isotope, breath test, sucrose, identifiability,
environmental enteric dysfunction

Stomach

Small 

intestine
Liver

Slow 

pool

Plasma

Fast 

pool

pulmonary 

excretion

urinary 

excretion

Tracer metabolism in a 13C breath test Standard summary measures may 

not adequately inform underlying 

metabolism

Cumulative 

dose recovered 

by 90 min…

…does not 

constrain 

later 
dynamics

Introduction

Carbon stable isotope breath tests offer new opportunities to better under-
stand gastrointestinal function in health and disease [1]. These tests provide a
dose of non-radioactive 13C-labeled substrate, which is digested, absorbed and
metabolized, appearing on the breath as 13CO2. As the range of labeled sub-
strates that are commercially available grows, from whole-molecule labeling to
position-specific (atom-level) labeling, 13C breath tests can be developed to
target a wide range of specific gut processes, such as digestion, absorption, or
oxidation, with a correspondingly wide range of potential clinical applications.

Beyond one or two clinical tests with clear diagnostic criteria, the uses of
13C breath tests have remained primarily limited to research, in part because
standard methods to characterize 13C breath test curves often reflect a com-
plicated mix of both the underlying biological process of interest and other
aspects of metabolism. For this reason, the most successful 13C breath tests
have relatively simple dynamics—such as the 13C urea breath for detection of
Helicobacter pylori—or are carefully designed to ensure that the biological pro-
cess of interest is the rate-limiting process. For example, the 13C-octanoic acid
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breath test is based on the fact that medium-chain fatty acids are absorbed
immediately on entering the duodenum, which causes gastric emptying to be
the rate-limiting step [2]. In the 13C-galactose test of hepatic function, the
rate-limiting step is the hepatic clearance of galactose [3].

However, in other cases, it is not clear how to isolate information about
a gastrointestinal or metabolic process of interest from a breath test curve
(serial measurements of 13CO2 concentration in the breath over time). Breath
test curves can be characterized by empirical curve fitting and by summary
measures, often themselves derived from curve fitting results. However, these
metrics do not necessarily correspond directly to biological processes. Curve
fitting models of the percent dose recovery rate (PDR), here denoted y(t),
include an empirical gamma function [4]

y(t) = atb exp(−ct), (1)

and the following function derived from an empirical assumption about gastric
emptying [5, 6],

y(t) =
d

dt
m [1− exp(−kt)]

β
= mkβ exp(−kt) [1− exp(−kt)]

β−1
. (2)

These methods can be applied to 13C breath test curves, often with reason-
able fits. However, the success of an empirical model only indicates that it
is sufficiently flexible to capture features of the curve, not that it can offer
mechanistic insight. Moreover, while many breath test curve summary mea-
sures have been proposed, e.g., cumulative percent dosed recovered (cPDR)
by time t, peak PDR, time to peak PDR, and time to recover 50% of the dose
(cPDR-50), their connection to specific processes of interest is weak. Neverthe-
less, certain summary measures are typically preferable to others for certain
inferences, suggesting that there is some mechanistic connection between the
biological rates and the dynamics captured by the summary measures. For
instance, the time to peak PDR has been shown to out-perform the time to
recovery of 50% of the dose for gastric emptying [7].

In this analysis, we return to pharmacokinetic modeling fundamentals to
develop a framework that can be used to make mechanistic inference about the
metabolic rates underlying a 13C breath test curve. We also demonstrate how
these mechanistic parameters isolate aspects of breath test curve dynamics and
how they correlate with standard curve summary measures. We illustrate this
framework using 13C sucrose breath test (13C-SBT) curves from 20 healthy
volunteers. The 13C-SBT has been proposed as a measure of intestinal brush-
border sucrase function to assess environmental enteric dysfunction (EED) [8].
EED is a syndrome characterized by villous atrophy (also called villous blunt-
ing), inflammation, and increased permeability of the small intestine [9, 10]
and is thought to be ubiquitous among the 2 billion children and adults who
lack access to improved water or sanitation in low- and middle-income coun-
tries [11]. Prior studies have suggested that sucrase activity is disrupted in
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EED [12], as well as in celiac disease (CD) and other gastrointestinal disorders
with functional similarities to EED [13–16]. Accordingly, understanding how
13C-SBT curves reflect healthy or disrupted sucrase activity may have impor-
tant clinical and global public health applications, making it an appropriate
motivating example for this theoretical work.

Methods

Data

Twenty health adults were recruited to participate in a proof-of-concept 13C-
SBT study. Participants were recruited by advertisement in the Glasgow area,
aged between 18–65 years with no history of gastrointestinal symptoms or dis-
ease. The cohort mean (standard deviation) BMI was 22.0 (3.5) kg/m2, mean
age was 22.8 (4.6) years and male-to-female ratio was 10/10. Participants gave
informed consent, and the study was approved by the University of Glasgow
College of Medical, Veterinary & Life Sciences Research Ethics Committee
(Application Number: 200170060). Because the biological process of interest
in this test is intestinal sucrase activity, the tracer was given as a small, liq-
uid dose (50mg 13C-sucrose in 100ml water) to minimize delay from gastric
emptying.

Isotope abundance in the samples was measured as δ13C, the relative
difference in parts per thousand between the sample and the internation-
ally accepted calibration standard ratio (R=0.0112372) of 13C/12C [17]. This
measure was converted to ppm 13C,

ppm 13C =
106

1 + 1
(

δ13C

1,000
+1

)

·R

. (3)

Excess ppm 13C over baseline was converted to percent dose recovered (PDR)
per hour,

PDR(t) =
100 ·

(

ppm 13C at time t− ppm 13C at time 0
)

·VCO2

106 · dose of 13C (mmol)
, (4)

where VCO2
is a subject-specific estimate of CO2 production (mmol/hour)

based on the participant’s estimated body surface area and sex [18].

Mathematical model

We use a standard conceptual model of carbon substrate (here, sucrose)
metabolism as a starting point for a compartmental, ordinary differential
equation model of a 13C substrate breath test. In this conceptual model
(Figure 1a), the ingested tracer enters the stomach and passes to the small
intestine (gastric emptying). For the motivating example, sucrase-isomaltase
secreted in the brush-border at the villous tips cleaves sucrose into glucose
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and fructose, facilitating active transport for glucose and fructose moieties
into the blood, where the substrate moves to the liver via the hepatic por-
tal. The substrates are oxidized in the liver through a series of intermediary
metabolic processes and converted to bicarbonate. Bicarbonate kinetics are
typically modeled with a fast pool and a slow pool [19]. Transfer to the slow
pool, representing long-term processes such as lipid storage, is often consid-
ered to be irreversible on the time scale of a breath test. Plasma bicarbonate
has two excretion pathways, urinary and pulmonary. Through the 13C breath
test, pulmonary excretion of 13CO2 is observed.
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Fast 

pool

ingestion
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𝜌𝜌43 𝜌𝜌34 𝜌𝜌30𝜌𝜌36 𝜌𝜌12 𝜌𝜌23 𝜌𝜌30
𝜌𝜌30 1/κ − 1

These three rates have values 𝜌𝜌, 𝜌𝜌, and π𝜌𝜌, but their 

order (which is which) is unknown.

a) b)

Fig. 1 a). A conceptual model of carbon breath test kinetics includes physical transport,
metabolism, bicarbonate kinetics, and excretion. b) A structurally and practically identifi-
able model of carbon breath test kinetics.

Given the nature of the liquid sucrose tracer and the physiology of the
stomach, we model the residence time in the stomach as a time-delay (although
no time delay was needed for these participants) and all other processes as mass
action. The fraction of the 13C dose in each of the small intestine, liver, plasma
bicarbonate, fast bicarbonate pool, and slow bicarbonate pool are denoted by
x1 through x5, respectively. Let ρij be the rate of transfer from compartment
xi to xj . Let ρ30 be the pulmonary excretion and ρ36 the urinary excretion
rates of bicarbonate from plasma. Then, the ordinary differential equations are
as follows.

dx1

dt
= −ρ12x1,

dx2

dt
= ρ12x1 − ρ23x2,

dx3

dt
= ρ23x2 − (ρ30 + ρ34 + ρ35 + ρ36)x3 + ρ43x4,

dx4

dt
= ρ34x3 − ρ43x4,

dx5

dt
= ρ35x3.

(5)

The initial conditions of this model are x1(0) = 100 and all other xi ̸=1(0) = 0.
Through the breath test, we have the following measurement equation for PDR
at time t,

y(t) = ρ30x3(t) (6)
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We denote the full parameter set as θ. When we want to emphasize the
dependence of the output on the parameters, we will write y(θ, t).

Identifiability and model reduction

In the context of determining the health of the small intestine and ultimately
diagnosing EED, the aim of the 13C-SBT is to infer the value of ρ12, the rate of
metabolism in the small intestine, given y(t). But, before estimating the value
of a model parameter from observed data, we first need to determine whether
that parameter is identifiable, that is, whether there is a unique value of the
parameter associated with the best fit of the proposed mechanistic model to
the available data. If a parameter is not identifiable, i.e., multiple values or a
range of values of the parameter can explain the data equally well, then we can
find a simpler, reduced model that similarly fits the data but whose parameters
are all identifiable. For example, if our model was y = (m1+m2)x+b for some
(x, y)-pair data, parameter b would be identifiable, but parameters m1 and m2

would not be. However, we could reduce our model by defining a new paramter
m := m1 +m2. Unfortunately, identifiability and model reduction are not so
straightforward for even modestly complex differential equation models.

We distinguish between structural identifiability, which asks whether a
parameter can be determined given perfect measurement of the model out-
put [20–22], and practical identifiability, which asks whether a parameter can
be measured given actual data [23]. A parameter may be structurally but not
practically identifiable because of excessive noise, insufficiently regular mea-
surement, or other reasons. Structural identifiability analysis is often a useful
first step because it can determine identifiable parameter combinations, whose
values are identifiable even if the constituent parameters are not individually
identifiable and which may aid in model reduction. After structural identifia-
bility is determined, practical identifiability analysis determines the real-world
identifiability and uncertainty in parameter estimates given a level of signifi-
cance (e.g., 95% confidence). If practical identifiability determines systematic
lack of identifiability because of the nature of data collection (e.g., inabil-
ity to observe certain characteristics of an output trajectory due to the time
scales [24]), further model reduction is possible.

To determine the structural identifiability of our model parameters when
observing y(t), we first found an input–output equation of the model [25–27].
An input–output equation is a monic polynomial equation in terms of the
measured input and output variables and their derivatives. The coefficients
of an input–output equation represent the identifiable parameter combina-
tions of the model for the given measurement. We used Wolfram Mathematica
v11.3 (Wolfram Research; Champaign, Illinois) to determine an input–output
equation for the model and measurement in Eqs (5) and (6).

To determine practical identifiability, we used profile likelihoods to deter-
mine how dependent the model fit to the data was on the specific values of
the parameters. Profile likelihoods, which can be used to determine likelihood-
based confidence intervals, vary the fixed value of one parameter while
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determining the best fit (minimum negative log-likelihood) when fitting the
remaining parameters [23, 24, 28]. If the likelihood-based confidence interval
for a parameter has infinite width (for a given level of significance), then the
parameter is not practically identifiable. Here, we used a normal log-likelihood
as function of the parameters θ.

log(L(θ)) = −
n

2
log(2π)−

n

2
log(σ2)−

1

2σ2

∑

i

(y(θ, ti)− zi)
2 (7)

where n is the number of data points and ti is the time at which measure-
ment zi was taken. The variance σ

2 is estimated as 1

n−1

∑

i(y(θ, ti)− zi)
2 and

thus depends on θ. Denote the maximum-likelihood estimate as θ̂. Denote the
maximum likelihood when the ith parameter is fixed to value θi as L(θ̂j ̸=i, θi)
and call it the profile likelihood of θi. The likelihood based confidence interval
at level of significance α is {θi : log(L(θ̂))− log(L(θ̂j ̸=i, θi) < ∆α}, where ∆α

is χ2(α, df)/2 where χ2(α, df) is the chi-squared distribution with a number
of degrees of freedom equal to the number of parameters and α is the level
of significance [23]. In layman’s terms, the profile likelihood tracks how much
worse the “best” fit of the model to the data is as we constrain one parame-
ter away from its maximum-likelihood estimate, and the level of significance
determines the level of “how much worse of a fit” corresponds to the bounds
of our confidence interval for θi.

We made simplifying assumptions based on the profile likelihoods to arrive
at a series of reduced models. For parameters that are structurally identifiable
but not practically identifiable, the choices of simplifying assumptions may be
partially subjective, with multiple potential reductions. We explain our specific
assumptions and justifications in the Results.

After arriving at a reduced, practically identifiable model, we compared fits
of the original model and each of the reduced models to each of the 20 breath
test curves. We analyzed our final, reduced model by comparing the dynam-
ics of the simulated breath curves as a function of each of the reduced model
parameters in turn. We also calculated the correlations of the values of the
reduced model parameters fit to each of the 20 breath tests with each of four
breath test curve summary measures (cPDR at 90 min, peak PDR, time to
peak PDR, and time to cPDR-50) to assess how well these summary measures
reflect the underlying mechanistic parameters. Model simulations and opti-
mization were performed in R v4.0 (R Foundation for Statistical Computing;
Vienna, Austria).
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Results

Structural identifiability

We algebraically solve for an input–output equation for the model in Eq. 5
and the measurement model in Eq. 6,

0 =
d4y

dt4
+ (ρ12 + ρ23 + ρ30 + ρ34 + ρ35 + ρ36 + ρ43)

d3y

dt3

+ (ρ12ρ23 + ρ12ρ30 + ρ12ρ34 + ρ12ρ35 + ρ12ρ36 + ρ12ρ43

+ ρ23ρ30 + ρ23ρ34 + ρ23ρ35 + ρ23ρ36 + ρ23ρ43 + ρ30ρ43 + ρ35ρ43 + ρ36ρ43)
d2y

dt2

+ (ρ12ρ23ρ30 + ρ12ρ23ρ34 + ρ12ρ23ρ35 + ρ12ρ23ρ36 + ρ12ρ23ρ43

+ ρ12ρ30ρ43 + ρ23ρ30ρ43 + ρ12ρ35ρ43 + ρ23ρ35ρ43 + ρ12ρ36ρ43 + ρ23ρ36ρ43)
dy

dt
+ (ρ12ρ23ρ30ρ43 + ρ12ρ23ρ35ρ43 + ρ12ρ23ρ36ρ43)y.

(8)

This equation has four coefficients, which are four identifiable parameter
combinations as a function of six parameters, meaning that the six parame-
ters cannot be individually, uniquely determined by observing y(t). Toward
the goal of understanding and simplifying these parameters combinations, we
introduce two reparameterized parameters, α = ρ30+ρ34+ρ35+ρ36+ρ43 and
β = ρ43(ρ35+ρ30+ρ36). These reparameterizations simplify the input–output
equation,

0 =
d4y

dt4
+ (ρ12 + ρ23 + α)

d3y

dt3

+ (β + ρ12ρ23 + α(ρ12 + ρ23))
d2y

dt2

+ (αρ12ρ23 + β(ρ12 + ρ23))
dy

dt
+ (βρ12ρ23)y.

(9)

The map from the four parameters {α, β, ρ12, ρ23} to the four coefficients of
this input–output equation is not one-to-one, but there are only finitely many
solutions. Hence, these parameter combinations are locally identifiable.

We also have information from the initial conditions of y(t) and its deriva-

tives. The initial conditions of y and dy
dt

are 0, but the initial condition of d2y
dt2

is ρ12ρ23ρ30 and the initial condition of d3y
dt3

is −ρ12ρ23ρ30(α+ρ12+ρ23−ρ43).
Altogether, a minimal set of locally identifiable parameter combinations is then
{ρ12, ρ23, ρ30, ρ35+ρ36, ρ34, ρ43, }. Parameters ρ12, ρ23, ρ30, ρ34, and ρ43 retain
their original interpretations, but, because the parameters are only locally and
not globally identifiable, we do not necessarily know which rate value belongs
to which biological process. Parameter combination ρ3− := ρ30 + ρ35 is the
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rate of the tracer leaving the body through urine or being sequestered in a
bicarbonate pool. This last combination represents the fact that we cannot
distinguish between tracer that has been sequestered in the slow bicarbonate
pool and tracer that has been excreted in urine if we measure only pulmonary
excretion. A structurally identifiable version of (5) is thus as follows.

dx1

dt
= −ρ12x1,

dx2

dt
= ρ12x1 − ρ23x2,

dx3

dt
= ρ23x2 − (ρ34 + ρ30 + ρ3−)x3 + ρ43x4,

dx4

dt
= ρ34x3 − ρ43x4,

y(t) = ρ30x3(t).

(10)

The two take-aways from the structural identifiability analysis are that the
slow bicarbonate pool is indistinguishable from urinary excretion and that
even if we determine the values of the underlying biological rates, we cannot
determine their order (e.g., we will not know which of the biological processes
corresponds to the slowest, limiting rate).

Practical identifiability

Even if the above set of parameters and parameters combinations are struc-
turally identifiable, they may not be practically identifiable from real-world
breath test curves. To illustrate the practical identifiability of the model, we
use data from the 13C-SBT and determine the profile likelihoods of each of
the structurally identifiable parameters. Each set of data, along with the cor-
responding best fit by the full, structurally identifiable model (Eq (10)), are
shown in Fig. 2. This plot also includes fits from a series of reduced models
developed below.

In Fig. S1, we demonstrate that all parameters in the full structurally iden-
tifiable model are practically unidentifiable given real data, with the possible
exception of ρ12 and ρ23. Moreover, none of the relationships with the other
parameters along these profiles are indicative of practically identifiable param-
eter combinations, e.g., no two parameters vary together in a way that suggests
that their sum or product is constant. However, we do see that parameter ρ43
can be sent to 0 or ∞ with negligible loss of fit, suggesting that the dynamics
of the fast bicarbonate kinetics do not meaningfully impact the breath test
trajectory. For simplicity, we reduce our model by assuming ρ43 = ρ34 = 0.
Finally, we define κ := ρ30/(ρ30+ρ3−) to be the fraction of bicarbonate that is
exhaled on the breath; this parameterization is convenient because it demon-
strates that although ρ30 and ρ3− can take multiple values depending on ρ12
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Fig. 2 13C sucrose breath test trajectories for 20 adults, with fits from the full structurally
identifiable model (Eq (10)) and reduced models (Eq (11)). With only a few exceptions, the
reduced models are indistinguishable from the full model.

and ρ23, there is a fixed relationship between them.

dx1

dt
= −ρ12x1,

dx2

dt
= ρ12x1 − ρ23x2,

dx3

dt
= ρ23x2 − ρ30x3/κ,

y(t) = ρ30x3(t).

(11)
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The fit to each individual’s breath test trajectory are shown in Figure 2
(Reduced model 1). The fits from Reduced model 1 reproduce the Full model
fits in nearly all cases, confirming that the dynamics of the fast bicarbonate
pool can be neglected.

We next compute the profile likelihoods for the four parameters in the
model in Eq. (11) in Fig S2. Parameter κ is identifiable, which is sensible since
it describes the asymptote of the cPDR. However, we find that ρ12, ρ23, and
ρ30/κ, which we know are only locally identifiable, are indeed interchangeable,
so that they take 3 (possibly repeated) values between them. Only two local
minima are observed for the three parameters for many plots, indicating that
the likelihood wells for two of the rates have merged. Although for each indi-
vidual’s breath trajectory the likelihood profiles may prefer the two larger or
two smaller values to be repeated (share the same value), we find that it is suf-
ficient and more convenient to constrain the model so that the larger value is
repeated. Thus, in our final model reduction in Eq (12), without loss of gener-
ality, we assume that the first step is the slowest, i.e., we set ρ = ρ23 = ρ30/κ
and πρ = ρ12 where π ≤ 1. Here, π defines how much smaller the lower rate is
than the higher rates. It is important to note again that, because the parame-
ters are only locally identifiable, we cannot determine which rate corresponds
to which biological process. That is, we cannot determine which process has
the limiting rate. In this reduced model,

dx1

dt
= −πρx1,

dx2

dt
= πρx1 − ρx2,

dx3

dt
= ρx2 − ρx3,

y(t) = κρx3(t).

(12)

The fit to each individual’s breath test trajectory are shown in Figure 2
(Reduced model 2), and the confirmation that the parameters are identifiable
is given in Fig S3. The fits from Reduced model 2 reproduce the Full model fits
in nearly all cases. This model also has a closed form solution. When π < 1,

y(t) =
100κπρ

(π − 1)2
(exp(−πρt) + ((π − 1)ρt− 1) exp(−ρt)) (13)

The formula for the cumulative percent dose recovered is which has a
horizontal asymptote of 100κ as t → ∞.

Practically, this reduced model indicates that a single breath test curve can
be summarized as resulting from a faster, gamma-distributed process and a
slower, exponential process (in some order, possibly with the slower, exponen-
tial process occurring in-between portions of the other process). The fraction of
the tracer that will be exhaled as opposed to sequestered or otherwise excreted
scales the overall PDR. This final, reduced model is summarized in Figure 1b.
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Fig. 3 (a–c) Breath test curve simulations setting ρ, πρ, and κ to their mean values and
then varying one parameter at a time, respectively. (d–f) Scaled versions of the simulations
in (a–c), see text.
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Fig. 4 Breath test curve simulations demonstrating that the dynamics of the early portion
of the curve do not constrain the later curve. Here ρ and κ are chosen for each value of πρ
in a way that preserves the dynamics up to 90 minutes.

Model dynamics

To understand how each of the 3 parameters ρ, πρ, and κ impact the dynamics
of the breath curve, we first take the mean values of each parameter across
the 20 trajectories (ρ̄= 1.97, π̄ρ= 0.32, κ̄=0.82). Then we vary one parameter
while keeping the other two constant. The range of dynamics is shown in
Fig 3a–c. In Fig 3d–f, we scale the curves in Fig 3a–c appropriately (by (π̄ρ(π−
1)2)/(πρ(π̄− 1)2) in (a), by π̄/π in (b), and by κ̄/κ in (c)). The scaled figures
highlight that ρ impacts the rate of increase, πρ controls the rate of decline,
and κ is a vertical scaling factor.

These curves further suggest that the early part of the curve may not be
informative for πρ. Indeed, in Figure 4, we see that we can choose values of ρ
and κ such that the early part of the curve (first 90 minutes) does not constrain
the later part of the curve. This result suggests that certain summary measures
may not be informative for certain underlying processes.
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Fig. 5 Correlations between mechanistic model parameters estimated from 20 breath test
curves and the corresponding summary measures of those curves.

Summary measures

Here, we compare the model parameters ρ, πρ, and κ estimated for each of
the 20 breath test curves to the estimated values of each of the four breath-
test curve summary measures: cumulative PDR at 90 min, peak PDR, time
to peak PDR, and time to recover 50% of the dose (cPDR-50). Best fit lines
and correlation coefficients are given in Fig 5. Note that only those 11 breath
curves that achieved 50% dose recovery within 5 hours were included in the
correlation analysis of that cPDR-50. Parameter ρ, which controls the early
phase of the curve, was most strongly correlated with the time to peak PDR
(R = −0.75) and was moderately correlated with cumulative PDR recovered
at 90 minutes (R = 0.56). No summary measure was strongly correlated with
πρ, the parameter that controls the late phase of the curve, and even the weak
correlations were drive by one or two points. Parameter κ, the fraction of the
dose that will be recovered, which acts as a vertical scaling parameter, was
strongly correlated (R = −0.78) with time to recovering 50% of the dose; other
correlations were weaker and driven by one or two points.

Discussion

Our work provides an alternative, mechanistic modeling approach to empirical
curve fitting and summary measures when analyzing 13C substrate breath
test curves. A three-parameter model—based on an underlying assumption
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of substrate passage through an exponential, rate-limiting process; a gamma-
distributed process; and a scaling factor representing the fraction of the tracer
that would be recovered—can be fit to 13C breath curve data such that each
parameter has a uniquely identifiable value. Although this work was illustrated
using a 13C sucrose tracer, it is broadly applicable to most 13C substrate breath
tests, since the metabolic pathways are broadly similar.

One important conclusion of our identifiability analysis is that a single
breath test curve alone cannot necessarily resolve all the underlying metabolic
processes that occur as part of substrate metabolism. Indeed, we found that
a 3-parameter model with a simplifying assumption about the fast processes
fit nearly all 13C-SBT curves as well as the full 6-parameter model. This
result should be expected as the 3-parameter empirical models in Eqs (1)
and (2) are typically flexible enough to capture breath test curve dynamics.
This limitation of not being able to fully resolve the underlying transport and
metabolism is not a limitation of the mechanistic approach and is instead a
limitation inherent to the breath test itself: the breath test curve does not
contain enough information on its own to support inference about all aspects
of the metabolism, and, indeed, we should not expect it to. To further disag-
gregate key metabolic processes, other data—such as serial measurements of
plasma 13C-bicarbonate or multiple breath tests repeated with different sub-
strates on the same individual—would be required. On the other hand, if the
goal is to translate characteristic curve dynamics into interpretable clinical
information about an individual’s underlying health or disease state, our mech-
anistic approach ensures that the amount of information that can meaningfully
extracted from the breath curve is maximized.

Our approach also reveals some limitations of current practices for 13C sub-
strate breath tests and offers approaches to mitigate and surmount them. Using
our model-based approach to evaluate breath curves likely has advantages
over conventional approaches, because model parameters, unlike conventional
summary measures, have a mechanistic interpretations. Notably, summary
measures, while attractive for their simplicity, appeared to be only somewhat
correlated with the actual mechanistic rates underlying the breath curve. Some
metabolic processes, including the rate-limiting step, appear to be poorly cap-
tured by all of the summary measures investigated. The summary measures
such cPDR at 90 min, peak PDR, and time to cPDR-50, were all associated
with the scaling parameter κ, reflecting the fraction of the plasma bicarbon-
ate excreted on the breath (as opposed to excreted in urine or sequestered).
However, in most 13C breath test applications, this scaling factor is not the
metabolic process of interest. The rate ρ was inversely correlated with time
to peak PDR, and so this summary measure may be useful if the fast process
is shown to be the process of interest. Even so, the model we presented here
can be used to estimate these parameters directly, making breath curves more
readily interpretable.
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Our results also have implications for breath test administration. For
instance, it may also be necessary to adjust the length of test duration depend-
ing on which underlying rate is of interest, e.g., longer tests may be needed
to measure the limiting rate more accurately. By understanding the dynamics
as a function of underlying metabolic rates, we can better design our testing
procedures and our analysis plans.

Our work may need to be adjusted for other specific applications, which
is why we presented the model reduction approach in full, so that it can be
adapted for other applications as needed. One limitation of this analysis is that
we assumed instantaneous gastric emptying because of the application of the
small, liquid tracer. This work may need to be adapted to account for gastric
emptying in the case of other tracer formats, e.g., when administered as part
of a meal. To enhance the interpretation of breath test curves and develop a
clinically meaningful diagnostic for the health of an underlying process, it will
also be important to determine which aspects of the 13C metabolic pathway
affect the mechanistic parameters we have identified here as capturing the
breath test dynamics. This determination can be accomplished using multiple
experiments designed to isolate different aspects of the metabolism. There is
also a need to understand which aspects of the metabolism are folded into
a single parameter and to characterize within-person (i.e., day-to-day) and
between-person variation in these rates. This information would improve our
ability to design breath tests to isolate specific aspects of the metabolism and
to develop clinically meaningful thresholds for parameter values.

Conclusion

We developed a new approach to biological inferences from 13C breath test
curves and connected specific aspects of curve dynamics to underlying biolog-
ical rates. Better understanding how underlying biological processes impact
different aspects of the breath curve enhances the clinical and research
potential of the 13C-SBT, and other breath tests like it.
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