Ali A, Yan E-R, Chen HYH, Chang SX, Zhao Y-T, Yang X-D et al 2016. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences 13:4627–4635. https://doi.org/10.5194/bg-13-4627-2016
APG IV, 2016. An update of the Angiosperm Group classification for the orders and families of flowering plants: APG IV. Biol. J. Linnean. Soc. 141, 399–436.
Arroyo-Rodríguez V, Melo FPL, Martínez-Ramos M, Bongers F, Chazdon RL, Meave JA et al (2017) Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol Rev 92:326–340. https://doi.org/10.1111/brv.12231
Balestrin D, Martins SB, Schoorl JM, Lopes AT, Fonseca AC (2019) Phytosociological study to define restoration measures in a mined area in Minas Gerais, Brazil. Ecol Eng 135:8-16 https://doi.org/10.1016/j.ecoleng.2019.04.023
Bastin J-F, Barbier N, Réjou-Méchain M, Fayolle A, Gourlet-Fleury S, Maniatis D et al, (2015) Seeing Central African forests through their largest trees. Sci Rep 5:13156. https://doi.org/10.1038/srep13156
Benayas JMR, Newton AC, Diaz A, Bullock JM (2009) Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325:1121–1124. https://doi.org/10.1126/science.1172460
Bonan GB, (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449. https://doi.org/10.1126/science.1155121
Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, et al (2015) Long-term decline of the Amazon carbon sink. Nature 519:344–360. https://doi.org/10.1038/nature14283.
Budowski G (1965) Distribution of Tropical American Rain Forest species in the light of successional processes. Turrialba 15: 40–42.
Campos PV, Villa PM, Nunes JA, Schaefer CEGR, Poremsbki S, Neri AV (2018) Plant diversity and community structure of Brazilian Páramos. J Mount Sci 15:1186–1198. https://doi.org/10.1007/s11629-017-4674-7
Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, et al (2014) Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67. https://doi.org/10.1890/13-0133.1
Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WB et al (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Glob Chang Biol 20: 3177–3190. https://doi.org/10.1111/gcb.12629
Chazdon RL (2014) Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation. The University of Chicago Press, Chigado and London.
Chazdon RL, Broadbent EN, Rozendaal DMA, Bongers F, Zambrano AMA, Aide TM, et al (2016) Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2:1–10. https://doi.org/10.1126/sciadv.1501639
Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
Colwell RK, Chao A, Gotelli NJ, Lin SY, Mao CX, Chazdon RL et al (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5:3–21. https://doi.org/10.1093/jpe/rtr044
Crawley, MJ 2013. The R Book-Second Edition.
de Paula MD, Costa CPA, Tabarelli M (2011) Carbon storage in a fragmented landscape of Atlantic forest: the role played by edge- affected habitats and emergent trees. Trop Conserv Sci 4:349–358. https://doi.org/10.1177/194008291100400310
Dinno A (2017) Package ‘dunn.test’: Dunn’s Test of Multiple Comparisons Using Rank Sums. CRAN Repos.
Fauset S, Johnson MO, Gloor M, Baker TR, Monteagudo A, Brienen RJ et al (2015) Hyperdominance in Amazonian forest carbon cycling. Nat Commun 6:6857. https://doi.org/10.1038/ncomms7857
Fox J, Weisberg S, Adler D, Bates D, Baud-Bovy G, Ellison S et al (2016) Package ‘car’: Companion to Applied Regression. In: CRAN Repos.
Gandolfi S, Leitão HF, Bezerra CLF (1995) Levantamento florístico e caráter sucessional das espécies arbustivo-arbóreas de uma floresta semidecídua no município de Guarulhos, SP. Rev Brasil de Biol 55:753–767. http://www.lcb.esalq.usp.br/publications/articles/1995/1995rbbv55n4p753-767.pdf
Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J et al (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478:378–381. https://doi.org/10.1038/nature10425
Golos PJ; Dixon KW (2014) Waterproofing topsoil stockpiles minimizes viability decline in the soil seed bank in an arid environment. Rest Ecol 22: 495–501. https://doi.org/10.1111/rec.12090
Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics. For Ecol Manage 148:185–206. https://doi.org/10.1016/S0378-1127(00)00535-1
Hadley W (2015) R ggplot2 package: an implementation of the grammar of graphics. Available at http:// ggplot2.org , https:// github.com/ hadley/ ggplot2.
Houghton R (2012) Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Curr Opin Environ Sustainab 4:597–603. https://doi.org/10.1016/j.cosust.2012.06.006
Hsieh TC, Ma KH, Chao A (2016) Package “iNEXT”: iNterpolation and EXTrapolation for species diversity. Methods Ecol Evol 7:1451–1456. https://doi.org/10.1111/2041-210X.12613
Jacobs DF, Oliet JA, Aronson J, Bolte A, Bullock JM et al (2015) Restoring forests: What constitutes success in the twenty-first century? New Forests 46:601–614. https://doi.org/10.1007/s11056-015-9513-5
Liang J, Crowther TW, Picard N, Wiser S, Zhou M et al (2017) Positive biodiversity-productivity relationship predominant in global forests. Science 354: aaf8957. https://doi.org/10.1126/science.aaf8957
Liebsch D, Marques MCM, Goldenberg R (2008) How long does the Atlantic Rain Forest take to recover after a disturbance? Changes in species composition and ecological features during secondary succession. Biol Conserv 141:1717–1725. https://doi.org/10.1016/j.biocon.2008.04.013
Lohbeck M, Bongers F, Martinez-Ramos M, Poorter L (2016) The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape. Ecology 97:2772–2779. https://www.jstor.org/stable/44081854
Magnago LFS, Magrach A, Laurance WF, Martins SV, Meira-Neto JAA, Simonelli M et al (2015) Would protecting tropical forest fragments provide carbon and biodiversity cobenefits under REDD+?. Glob Chang Biol 21:3455–3468. https://doi.org/10.1111/gcb.12937
Martins SV (2018) Alternative forest restoration techniques. In: Viana H (Ed). New perspectives in forest science. London: IntechOpen. p.131-148.
Meiners SJ, Cadotte MW, Fridley JD, Pickett ST, Walker LR (2015) Is successional research nearing its climax? New approaches for understanding dynamic communities. Funct Ecol 29:154–164. https://doi.org/10.1111/1365-2435.12391
Mitchard ETA (2018) The tropical forest carbon cycle and climate change. Nature 559:527-534 https://doi.org/10.1038/s41586-018-0300-2
Myers N, Fonseca GAB, Mittermeier RA, Da Fonseca GA, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853.
Oksanen J, Blanchet FG, Kindt R, Legendre P, O’hara RB, Simpson GL et al (2018) Package ‘vegan’: Community Ecology Package. R. Packag ver 20–8.
Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993. https://doi.org/10.1126/science.1201609
Peres CA, Thaise E, Schietti J, Desmoulière SJ, Levi T (2016) Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc Natl Acad Sci 113:892–897. https://doi.org/10.1073/pnas.1516525113
Pijl L. van der (1982) Principles of dispersal in higher plants, v.3, 1982.
Poorter L, Rozendaal DMA, Bongers F, Almeida-Cortez JS Zambrano AM, Álvarez FS et al (2019) Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat Ecol Evol 3:928-934 https://doi.org/10.1038/s41559-019-0882-6
Poorter L, van der Sande MT, Arets EJMM, Ascarrunz N, Enquist BJ, Finegan B et al (2017) Biodiversity and climate determine the functioning of Neotropical forests. Glob Ecol Biogeogr 26:1423–1434. https://doi.org/10.1111/geb.12668
Poorter L, Bongers F, Aide TM, Zambrano AMA, Balvanera P, Becknell JM et al (2016) Biomass resilience of Neotropical secondary forests. Nature 530:211–214. https://doi.org/10.1038/nature16512
Poorter L, van der Sande MT, Thompson J, Arets EJMM, Alarcón A, Álvarez-Sánchez J et al (2015) Diversity enhances carbon storage in tropical forests. Glob Ecol Biogeogr 24:1314–1328. https://doi.org/10.1111/geb.12364
Pütz S, Groeneveld J, Henle K, Knogge C, Martensen AC, Metz M et al (2014) Long-term carbon loss in fragmented Neotropical forests. Nat Commun 5:5037. https://doi.org/10.1038/ncomms6037
R Core Team (2018) R: A language and environment for statistical computing. R Found. Stat. Comput.
Reich PB (2014) The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275–301. https://doi.org/10.1111/1365-2745.12211
Ribeiro SC, Jacovine LAG, Soares CPB, Martins SM, Nardelli AMB, Souza AL (2010) Quantificação de biomassa e estimativa de estoque de Carbono em uma capoeira da zona da mata mineira. Rev Árvore 34: 495–504.
Ribeiro SC, Jacovine LAG, Soares CPB, Martins SM, Souza AL, Nardelli AMB (2009) Quantificação de biomassa e estimativa de estoque de Carbono em um floresta madura no município de viçosa, Minas Gerais. Rev Árvore 33: 917–926.
Rodrigues AC, Villa PM, Viana NA 2019a Fine-scale topography shape richness, community composition, stem and biomass hyperdominant species in Brazilian Atlantic forest. Ecol Indic 102:208–217. https://doi.org/10.1016/j.ecolind.2019.02.033
Rodrigues AC, Villa PM, Ali A, Ferreira-Junior W, Viana NA 2019b Fine-scale habitat differentiation shapes the composition, structure and aboveground biomass but not species richness of a tropical Atlantic forest. J For Res https://doi.org/10.1007/s11676-019-00994-x
Rohr JR, Bernhardt E, Cadotte MW, Clements W (2018) The ecology and economics of restoration: when, what, where, and how to restore ecosystems. Ecol Soc 23:15. https://doi.org/10.5751/ES-09876-230215
Rozendaal DMA, Bongers F, Aide TM, Alvarez-Dávila E, Ascarrunz N, Balvanera P et al (2019) Biodiversity recovery of Neotropical secondary forests. Sci Adv 5:eaau3114. https://doi.org/10.1126/sciadv.aau3114
Rozendaal DMA, Chazdon RL (2015) Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica. Ecol Appl 25:506–516. https://www.jstor.org/stable/24432319
Santos BA, Peres CA, Oliveira MA, Grillo A, Alves-Costa CP, Tabarelli M (2008) Drastic erosion in functional attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. Biol Conserv 141:249–260. https://doi.org/10.1016/j.biocon.2007.09.018
Santo-Silva EE, Almeida WR, Melo FPL, Zickel CS, Tabarelli M (2012) The nature of seedling assemblages in a fragmented tropical landscape: Implications for forest regeneration. Biotropica 45:386–394. https://doi.org/10.1111/btp.12013
Santo-Silva EE, Almeida WR, Tabarelli M, Peres CA (2016) Habitat fragmentation and the future structure of tree assemblages in a fragmented Atlantic forest landscape. Plant Ecol 217:1129–1140. https://doi.org/10.1007/s11258-016-0638-1
Scarano FR, Ceotto P (2015) Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change. Biodivers Conserv 24:2319–2331. https://doi.org/10.1007/s10531-015-0972-y
Ssekuubwa E, Muwanika VB, Esaete J, Tabuti JRS, Tweheyo M (2019) Colonization of woody seedlings in the understory of actively and passively restored tropical moist forests Rest Ecol 27: 148–157 http://onlinelibrary.wiley.com/doi/10.1111/rec.12850/suppinfo
Staggemeier VG, Cazetta E, Morellato LPC (2017) Hyperdominance in fruit production in the Brazilian Atlantic rain forest: the functional role of plants in sustaining frugivores. Biotropica. 49:71–82. https://doi.org/10.1111/btp.12358
Stuble KL, Stephen EF, Truman PY (2017) Every restoration is unique: testing year effects and site effects as drivers of initial restoration trajectories. J Appl Ecol 54:1051–1057. https://doi.org/10.1111/1365-2664.12861
Swinfield T, Roki A, Ferry A, Rhett DH (2016) Accelerating tropical forest restoration through the selective removal of pioneer species. For Ecol Manag 381:209–216. https://doi.org/10.1016/j.foreco.2016.09.020
Tabarelli M, Peres CA (2002) Abiotic and vertebrate seed dispersal in the Brazilian Atlantic forest: Implications for forest regeneration. Biol Conserv 106:165–176. https://doi.org/10.1016/S0006-3207(01)00243-9
Tabarelli M, Aguiar AV, Girão LC, Peres CA, Lopes AV (2010) Effects of pioneer tree species hyperabundance on forest fragments in Northeastern Brazil. Conserv Biol 24:1654–1663. https://doi.org/10.1111/j.1523-1739.2010.01529.x
Tabarelli M, Peres CA, Melo FPL (2012) The “few winners and many losers” paradigm revisited : Emerging prospects for tropical forest biodiversity. Biol Conserv 155:136–140. https://doi.org/10.1016/j.biocon.2012.06.020
ter Steege H, Pitman NCA, Sabatier D, Baraloto C, Salomão RP, Guevara JE et al (2013) Hyperdominance in the Amazonian tree flora. Science 342: 1243092. https://doi.org/10.1126/science.1243092
Torres CMME, Jacovine LAG, Soares CPB, Oliveira Neto SN, Santos RD, Castro FN (2013) Quantificação de biomassa e estocagem de carbono em uma floresta estacional semidecidual, no Parque Tecnológico de Viçosa, MG. Rev Árvore. 37:647–55.
Villa PM, Martins SV, Rodrigues AC, Vieira N, Bonilla MA, Ali A (2019) Testing species abundance distribution models in tropical forest successions: implications for fine-scale passive restoration. Ecol Eng 135: 687–694. https://doi.org/10.1016/j.ecoleng.2019.05.015
Villa PM, Martins SV, Oliveira Neto SN, Rodrigues AC, Vieira N, Delgado L, Mota CN, Ali A (2018a) Woody species diversity as an indicator of the forest recovery after shifting cultivation disturbance in the northern Amazon. Ecol Indic 95: 687–694. https://doi.org/10.1016/j.ecolind.2018.08.005
Villa PM, Martins SV, Oliveira Neto SN, Rodrigues AC, Martorano L, Delgado L, Cancio NM, Gastauer M (2018b) Intensification of shifting cultivation reduces forest resilience in the northern Amazon. For Ecol Manage 430:312–320. https://doi.org/10.1016/j.foreco.2018.08.014
Villa PM, Martins SV, Oliveira Neto SN, Rodrigues AC (2017) Anthropogenic and biophysical predictors of deforestation in the Amazon: towards integrating REDD+ activities. Bosque 38: 433–446. http://dx.doi.org/10.4067/S0717-92002017000300001
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K et al (2005) Assessing the generality of global leaf trait relationships. New Phyt 166:485–496. https://doi.org/10.1111/j.1469-8137.2005.01349.x