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ABSTRACT: Thin cylindrical shells are susceptible to cracking under long-term load and external 

impact, and it is of considerable scientific and technical value to investigate the nonlinear vibration 

response characteristics and monitor the health condition of the shell structure. Based on the Flügge 

shell theory, the nonlinear dynamic model for the thin cylindrical shell is established. By the partial 

Fourier transform combined with the residue theorem, the forced vibration generation and 

propagation mechanism of the thin cylindrical shell are investigated, and the analytical solution of 

forced vibration displacement in the space domain is obtained. Then, the local flexibility matrix is 

derived from the perspective of fracture mechanics, and the continuous coordination condition on 

both sides of the straight crack is constructed using the Linear Spring Model (LSM). Combined with 

the wave superposition principle, the analytical approach for nonlinear vibration response is 

proposed to reveal the evolution law of vibration characteristics of the thin cylindrical shell with a 

straight crack, and then a straight crack identification method based on natural frequency isolines 

and amplitude maximization methods is presented. Finally, the effect of various morphological 

information of the straight crack on the nonlinear vibration response characteristics of the thin 

cylindrical shell is studied in detail, and a numerical case is conducted to verify the effectiveness of 

the proposed straight crack identification method. 

Keywords: Thin cylindrical shells; straight crack; nonlinear vibration response; 

local flexibility; crack identification 

1 Introduction 

With the continuous development of modern industrial technology, thin 

cylindrical shells have been widely applied in petrochemical engineering, pipeline 

transportation, aerospace, civil engineering, and other engineering fields due to 
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their excellent mechanical properties and structural characteristics [1-3]. However, 

in countless application scenarios, the thin cylindrical shell is subjected to 

sustainable external excitation and violent impact, forcing the thin cylindrical shell 

to produce nonlinear vibration and noise, which can easily cause damage to the shell 

structure and even fatigue fracture, posing a threat to life and property safety [4,5], 

as shown in Fig.1. Moreover, the nonlinear vibration characteristics of the thin 

cylindrical shell are complicated, and the coupling between circumferential and 

axial modes needs to be considered, which increases the difficulty of modeling and 

solving. And because the nonlinear component and discontinuous propagation of 

force and displacement caused by straight crack are challenging to be described by 

an accurate mathematical model, the nonlinear vibration characteristics and crack 

identification techniques of the thin cylindrical shell have not been extensively 

studied. Therefore, it is necessary to propose the analytical approach for nonlinear 

vibration response of the thin cylindrical shell with a straight crack, reveal the 

generation and propagation mechanism of forced vibration and the evolution law 

of nonlinear vibration response, and then develop a shell structure health 

monitoring technology that can detect, evaluate and locate crack damage in time. 

 

Fig. 1. Typical engineering applications and crack damage of thin cylindrical shells. 

The thickness of the thin cylindrical shell is small compared with other geometric 

dimensions (radius, length, etc.). When the shell vibrations are generated by 

external excitations, their circumferential modes significantly impact the nonlinear 

vibration response. Therefore, the nonlinear coupling effect of circumferential and 

axial modes should be considered in studying the vibration response of the thin 

cylindrical shell. Flügge established the free vibration displacement equations with 

the mid-surface element as the research object, proposed the wave propagation 

method to solve these equations, obtained the relationship between the 

dimensionless frequency and energy distribution, and analyzed the propagation 

properties of complex waves in low-order circumferential modes [6,7]. Sorokin 

adapted the wave propagation method to analyze the dispersion characteristics of 
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the helically orthotropic cylindrical shells and revealed the energy distribution 

under rotational excitation [8]. Wang simplified the boundary conditions of 

orthotropic cylindrical shells by using the wave propagation method, explored the 

natural vibration frequency characteristics under different boundary conditions, and 

analyzed the influence of geometric and physical parameters on the frequency 

characteristics of cylindrical shells under axial pressure [9]. Arbind studied the 

nonlinear kinematic characteristics of isotropic hyperelastic shells based on the 

general higher-order shell theory under quasi-static conditions [10]. In addition, 

Zhang[11], Guo[12], Liu[13], Amabili[14], and others studied the nonlinear vibration 

response and sound radiation characteristics of underwater cylindrical shells, 

partially submerged cylindrical shells, functionally graded material sandwich 

cylindrical shells, and truncated conical shells, and made a series of achievements, 

providing the theoretical basis for vibration and noise reduction of relevant 

equipment. However, the relevant research focuses on the inherent characteristics 

of the thin cylindrical shell from the perspectives of wave propagation and energy 
[15-17], and little literature gives specific analytical solutions for the forced nonlinear 

vibration displacement response of the thin cylindrical shell. 

The straight crack is one of the most common defects in any type of shells and 

plates. Rapid external impact and excessive bending of the thin cylindrical shell are 

more likely to produce the straight crack, resulting in changes in structural 

parameters and mechanical vibration characteristics [18]. The straight crack is more 

likely to form stress concentration under the action of bending moment, leading to 

crack propagation and even fracture. Therefore, it is necessary to explore the 

nonlinear vibration response characteristics of the thin cylindrical shell with a 

straight crack and complete the straight crack identification in the thin cylindrical 

shell. At present, the crack damage detection methods based on vibration response 

characteristics mainly focus on circumferential crack of the thin cylindrical shell or 

part-through crack of plate and beam [19,20]. There is no report on the damage 

detection of the straight crack, which is related to the complexity of the stress 

intensity factor (SIFs) of straight crack sections, the solution of local flexibility 

coefficients and the nonlinear vibration response. Using a rotating spring to 

simulate cracks, Naniwadekar proposed a pipeline crack identification method 

based on natural frequency to predict the circumferential position and the crack 

depth based on the change rate of natural frequency, but the axial position cannot 

be obtained [21]. Moradi divided the circumferential cracked shells into four parts, 

and the crack was simulated by line spring. The natural frequency of cracked shells 

was obtained using the differential quadrature method for the characteristic value 

analysis. According to the corresponding relationship between crack parameters 

and natural frequency, the location, length, and depth of the crack could be better 

predicted [22]. Zhang proposed a crack identification method for cylindrical shells 

based on the frequency shift curve. The trough with the minimum value represents 
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the circumferential position of the damage, and the difference between the lowest 

trough value and the three trough values can be conducted to describe the damage 

degree [23]. Assuming that the crack length was much smaller than the curvature 

radius of the shells, Moazzez adapted the two-dimensional linear spring theory to 

simplify the crack area into a flat plate and directly established the nonlinear 

relationship between the near-field and far-field forces. Meanwhile, the nonlinear 

coupling effect between far-field forces and moments is ignored by adding a local 

flexibility coefficient to obtain the relationship between the crack parameters and 

the natural frequency [24,25]. For the non-whole circumferential crack, the existing 

literature has not identified all the crack morphological information (length, depth, 

location and circumferential position). 

Given the above matters, this paper aims to solve the local flexibility coefficients 

of the straight crack, explore the generation and propagation mechanism of forced 

nonlinear vibration response, and put forward an analytical approach for the 

nonlinear vibration response of the thin cylindrical shell with a straight crack. 

According to the nonlinear vibration response characteristics of the thin cylindrical 

shell with a straight crack, a nonlinear vibration signal identification method for 

straight crack damage is proposed. The rest of this paper is organized as follows. In 

Section 2, the solution equations of the local flexibility matrix of the straight crack 

are derived, and the Linear Spring Model (LSM) is conducted to construct the 

continuous coordination conditions on both sides of a straight crack. Combined 

with residual theorem and wave superposition principle, an analytical method for 

nonlinear vibration response of the thin cylindrical shell with a straight crack and a 

straight crack identification method based on natural frequency isolines and 

amplitude maximization methods are presented. In Section 3, the accuracy of the 

critical factors in the solution process and the correctness of the proposed analytical 

approach for nonlinear vibration response are verified by comparing the analytical 

results with experimental, literature, and finite element model (FEM) results. In 

Section 4, the nonlinear vibration response characteristics of the thin cylindrical 

shell without or with a straight crack are discussed and analyzed to reveal the 

evolution law of the natural frequency and forced vibration displacement response 

under different straight crack morphology and the correctness of the proposed 

straight crack identification method is verified by an engineering case. In Section 5, 

the conclusions are obtained. 

2 Theoretical formulation 

2.1 Nonlinear dynamic model of the thin cylindrical shell 

The nonlinear vibration response of the thin cylindrical shell is the basis of this 

study. According to Flügge shell theory, the nonlinear dynamic model of the thin 
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cylindrical shell is established, as shown in Fig.1. Assuming that u, v, and w 

represent the axial, circumferential, and radial displacement, R is the radius of the 

midplane, and h is the shell thickness, the free vibration displacement equations of 

the thin cylindrical shell based on the theory of elastomer stress and strain are 

described as [26]: 
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where   is the material density, the thickness of the factor 2  is expressed as 

2
2

212

h

R
  ,   is Poisson's ratio, E is the Young modulus, and 
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is the Laplace operator in cylindrical coordinates. 

Considering the nonlinear coupling effect between circumferential and axial 

modes, the wave propagation method is adopted to solve the migration solution of 

the free vibration equation, which can be described as [27,28]: 
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  (4) 

where nsk  is the axial wave number,   is the circular frequency of the axial wave, 

n is the circumferential mode number, s is the half-wave number in the axial 

direction,  exp i t  is the time factor, nsU , nsV , and nsW  are the axial, 

circumferential, and radial displacement amplitude. For the clamped-clamped 

boundary condition, the axial wave number is 
 2 1

2
ns

m
k

L


 . For the simple 

supported-simple supported boundary condition, the axial wave number is 

ns

m
k

L


 . 
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In solving the displacement response of the forced nonlinear vibration of the thin 

cylindrical shell under external excitation, it is necessary to add the external load 

term to the free vibration displacement equation. The external excitation p is the 

circumferential cosine distribution simple harmonic load. 

 ( , , ) cos( ) ( )expxp x t F n x i x t
R

   
     
  

 (5) 

where xF  represents the circumferential cosine distribution harmonic load 

amplitude, ( )x  represents the Dirac function. The positive and negative 

relationship between the axial wavenumber and the time factor is changed to 

perform Fourier transformation on the radial, circumferential, axial displacement w, 

v, u, and excitation p. Convert it to matrix form [17]: 

   2 2
3 3 0 0 /

TT

ns ns ns xN U V W F h         
    (6) 

The coefficient matrix  3 3N   is expressed in Appendix A, where the coefficient 

matrix does not have symmetry. 
2(1 )

R
E

  
   is the dimensionless 

frequency. The spatial displacement characteristics of thin cylindrical shell are 

obtained by inverse Fourier transform [29]. 
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where nsk R   is the dimensionless axial eigenvalues, 3 3M   is the inverse matrix 

of 3 3N  . By calculating the singular point of the integral function, the integral 

problem in the infinite domain is transformed into the problem of finding 

characteristic roots by using the residue theorem. When the dimensionless 

frequency   is known, the dispersion characteristics of the thin cylindrical shell 

can be obtained from the 8th-degree algebraic equation of dimensionless axial 

eigenvalue λ under the corresponding boundary conditions.  

 
8 6 4 2

8 6 4 2 0 0a a a a a         (8) 

where  0,2,4,6,8ia i    is the coefficient of the algebraic equation, which is 

described in Appendix B. The four pairs of roots of these equations are singular 

points in the residue theorem, in which real roots, pure imaginary roots, and 

complex roots correspond to three kinds of vibrating waves with different properties: 

propagating waves, near-field waves, and attenuating standing waves. According to 

the basic properties of three kinds of vibration wave propagation, the generation 

and propagation mechanism of vibration response of the thin cylindrical shell are 

given, and the analytical solution of the nonlinear displacement response of forced 
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vibration is obtained. 
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where m is the number of the conjugate complex roots and pure imaginary roots, 8-

2m is the number of real roots and [ ( )]ij kRes M   represents the residue of the 

integrand. The specific expression of the analytical solution of the nonlinear 

displacement response of forced vibration is expressed in Appendix C.  

2.2 Accurate characterization of the straight crack model 

Rapid external impact and excessive bending of the thin cylindrical shell are 

more likely to produce the straight crack. Therefore, it is necessary to derive the 

local flexibility matrix of the straight crack from the perspective of fracture 

mechanics, construct the continuous coordination conditions on both sides of the 

straight crack by LSM, and propose the analytical approach for the nonlinear 

vibration response of the thin cylindrical shell with a straight crack. Assuming that 

the shell contains a straight crack with a depth 0l , as shown in Fig. 2. The vertical 

direction is defined as o0  , the circumferential position of the crack is c , and 

the relative crack depth is 0 /l h  . The relative position of a straight crack on the 

shell is defined as /a L  . 

 

Fig. 2. Thin cylindrical shell with a straight crack. (a) cracked shell, (b) cracked section. 

As the research object is a thin cylindrical shell with a straight crack that is not 

penetrated, the depth and length of a straight crack are minimal. Therefore, the wave 

superposition principle can be used to solve the displacement response of the thin 

cylindrical shell with a straight crack, that is, the superposition of the vibration 

waves caused by the circular crack and the vibration waves of the ideal thin 

cylindrical shell.  
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The external excitation can make the thin cylindrical shell generate four vibration 

waves. Each wave can transmit and reflect when these vibration waves are 

transmitted to the crack region, resulting in the generation of four transmission 

waves and reflected waves. Assuming that the external excitation position is 

 0x b b a   , four incident waves (similar to the ideal thin cylindrical shell) exist 

in the axial range of 0 x b  , four incident waves and reflected waves caused by 

the straight crack exist in the axial range of b x a  , and four transmission waves 

caused by the straight crack exist in the axial range of a x L  . Their interaction 

affects the nonlinear displacement response, and the radial displacement of a 

particular circumferential mode n can be expressed as. 
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where  aW x ,  bW x  and  cW x  are the radial displacement amplitude of each 

region, and  1~16nsW s   is the wave amplitude. As long as these unknown 

parameters are known, the radial displacements of each point can be obtained. The 

existence of cracks does not cause the phase change of reflected wave, transmitted 

wave and vibration wave of the ideal thin cylindrical shell [29]. Therefore, combined 

with the radial displacement amplitude  w x  of the ideal shell, the displacement 

amplitude rw  on the thin cylindrical shell with a straight crack can be obtained 

through the wave superposition principle, which is expressed as 

          cos +r i cw W x w x n w x     (11) 

where   , ,iW x i a b c  represents the radial displacement amplitude. Using the 

same method, the axial and circumferential displacements can also be expressed as 

          cos +r cu U x u x n u x      (12) 

          sin +r c cv V x v x n v x      (13) 

When the circumferential position of the straight crack is c  , according to 

the LSM [30], it can be known that the straight crack can produce additional local 

flexibility, causing discontinuities in the stress and displacement on both sides of 

the straight crack. The LSM can describe discontinuity. 

 i i ij iC P      (14) 
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where i
  and i

  represent the generalized displacement on both sides of the 

straight crack, ijC represents local flexibility, and iP  represents generalized 

internal force.  

The SIFs cannot be obtained directly for straight crack. Due to the cross-section 

of the straight crack being arc-shaped, the arc-shaped area needs to be discretized 

into countless rectangular areas. The additional strain energy of the rectangular area 

is calculated to obtain the local flexibility coefficient of the straight crack. 

According to the basic theory of local flexibility, the additional strain energy caused 

by the straight crack can be expressed [31]. 
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where cA  is the effective area of crack area, J is the additional strain energy release 

rate caused by the straight crack, tb  is the half of straight crack width, is the 

local depth variable, and   is the offset variable in the tangential direction of the 

crack top. When the boundary condition of the thin cylindrical shell is clamped-

clamped, the local flexibility of the straight crack is mainly affected by the mode I 

(opening mode) crack and mode II (sliding mode) crack, thus the mode III (tearing 

mode) crack is no longer considered. The additional strain energy release rate 

caused by the straight crack can be described. 

  2 2
1 2 3 2'

1
I I I IIJ K K K K

E
       (16) 

where 1IK , 2IK and 3IK  represent the SIFs of the mode I (opening mode) crack 

caused by the axial force, shear force, and bending moment, and 2IIK  represents 

the SIFs of the mode II (sliding mode) crack caused by the shear force. When it is 

in a plane strain state, '

21

E
E


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
, and when it is in a plane stress state, 

'E E . 

According to the Castigliano theorem, the additional nonlinear displacement 

induced by the straight crack can be expressed by the derivative of the strain energy 

with respect to the force. 
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Therefore, the additional local flexibility matrix can be expressed as [30]: 
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Based on the local flexibility matrix, the displacement coordination condition on 

both sides of the straight crack can be obtained: 
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x x
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  (19) 

where the superscript symbols + and - of the displacements in each direction 

represent the right and left sides of the crack section, respectively, and xQ  is the 
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radial shear force. Therefore, the four displacement coordination equations on both 

sides of the crack can be acquired. Then, eight displacement and stress conditions 

at the external excitation and four stress conditions at the crack are listed, as shown 

in Eqs. (20-22). Therefore, each unknown wave amplitude of Eq. (10) can be 

acquired. 

  , , ,          R L R L R L R L
x x x x x x x xN N M M Q Q N N x a       (20) 

  , / / , ,    R L R L R L R Lu u w x w x w w v v x b          (21) 

  , , , +         R L R L R L R L
x x x x x x x xN N M M T T S S F x b        (22) 

The solution of local flexibility has become the most key factor. To simplify the 

calculational difficulty, for the depth 0l  of the straight crack, the     

coordinate system is transformed into the y-z coordinate system, as shown in Fig. 

2(b). Assuming / ez D  and / ey D , the '
ed D dz  , ed D dy   are obtained. 

The thin cylindrical shell with a straight crack is subjected to the combined action 

of axial force 1P , bending moment 2P , and shear force 3P . The local flexibility 

matrix of the straight crack area is  
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 21 12 31 13 32 23 41 42 43 44= = = = = = =0C C C C C C C C C C  (29) 

where 21 4y   , 21/4z y    , the correction factor of stress intensity 1F , 2F

and IIF are described by [32]: 

  3
1 4( ) ( ) 0.751 2.02 0.37(1 sin ) / cosF s F s s       (30) 

  4
2 4( ) ( ) 0.923 0.199(1 sin ) / cosF s F s      (31) 

  2 3( ) 1.122 0.561 0.085 +0.18 / 1IIF s s s s s     (32) 

 4 ( ) tan /F s    (33) 

where the coefficients can be solved by
2
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Substitute the result of these Eqs. (23-29) into Eq. (14), and combine it with Eqs. 

(20-22) to obtain the displacement response amplitude of the thin cylindrical shell 

with a straight crack, which can directly reflect the circumferential position of the 

straight crack.  

The additional local flexibility matrix calculation reflects the local mechanical 

behavior at the straight crack. And the key factor in obtaining the free vibration 

characteristics of the thin cylindrical shell with a straight crack is to solve the 

stiffness matrix of the cracked shell element. The totality flexibility of a straight 

cracked shell can be equivalent to the algebraic sum of the flexibility of the thin 

cylindrical shell and the additional flexibility caused by a straight crack [33], which 

can be solved by 
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 (34) 

where I is the second moment of area, and A is the sectional area. The stiffness 

matrix of the thin cylindrical shell with a straight crack can be described as  

 
1 T

e tot
K TC T  (35) 

where the transformation matrix T  is shown in 

 

1 0 0 1 0 0

0 1 0 1 0

0 0 1 0 0 1

T

eL

 
    
  

T  (36) 

The thin cylindrical shell can be regarded as a dynamic system composed of mass, 

damping, and stiffness matrix. When crack damage occurs in the thin cylindrical 

shell, the basic parameters of the thin cylindrical shell change accordingly, resulting 

in the change of modal vibration parameters (such as natural frequency, damping, 

and mode). 

Assuming that the straight crack does not change the mass matrix of the structure 

and ignoring the damping effect of the thin cylindrical shell, the characteristic 

equation of free vibration of the thin cylindrical shell with a straight crack can be 

expressed as [34] 

  2 0e  K M Φ  (37) 

where M represents the mass matrix of the thin cylindrical shell,   and Φ  

represent the natural circular frequencies and vibration modes of the thin cylindrical 

shell with a straight crack, respectively. The natural frequency and vibration mode 

of the thin cylindrical shell with a straight crack can be obtained by eigenvalue 

analysis. 
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2.3 Straight crack identification method 

There is a direct correlation between the nonlinear vibration response of the thin 

cylindrical shell and the straight crack morphology. For the clamped-clamped 

boundary condition, the natural frequency only depends on the relative depth and 

position of the straight crack. And the straight crack changes the local flexibility 

coefficient of the thin cylindrical shell and the nonlinear displacement response 

characteristics of each point in the circumferential direction. According to the 

nonlinear vibration response characteristics of the thin cylindrical shell with a 

straight crack, the straight crack identification method based on the natural 

frequency isolines [35] and amplitude maximization methods is proposed. The flow 

chart of quantitative diagnosis of the straight crack in the thin cylindrical shell is as 

follows. 

 

Fig. 3. The flow diagram of the straight crack fault diagnosis  

According to the analytical approach for nonlinear vibration response of the thin 

cylindrical shell with a straight crack, the natural frequency database under different 

straight crack morphology is established. The natural frequency variations of 

different orders can be obtained by FEM or experimental test, and then the natural 

frequency isolines map at different relative depths and locations can be drawn. 

Since the straight crack point appears on different natural frequency isolines, there 
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must be an intersection point between the two isolines. If the intersection point is 

not unique, another isoline of a different order can be added. The intersection point 

represents the relative depth and position information of the straight crack. The 

straight crack changes the displacement response characteristics of each point in the 

circumferential direction. The circumferential information of a straight crack is 

obtained by analyzing the radial displacements at different circumferential positions. 

3 Numerical verification 

Based on the local flexibility theory and wave superposition principle, the new 

analytical approach for nonlinear vibration response of the thin cylindrical shell 

with a straight crack is proposed to reveal the evolution law of nonlinear vibration 

response. And combined with natural frequency isolines and amplitude 

maximization methods, the nonlinear vibration signal identification method for 

straight crack damage is developed. Due to the lack of previous studies in the field 

discussed in this study, no similar literature could provide data to verify the 

effectiveness and accuracy of the proposed analytical method. Therefore, it is 

necessary to ensure the correctness of the most critical factors (local flexibility 

coefficient and shell theory) in the solution process and establish the FEM to verify 

the accuracy of the final analytical results. Firstly, the local flexibility coefficient 

solution of the straight crack under pure bending moment is compared with the 

experimental results [21]. Then, the FEM of the thin cylindrical shell is established 

according to the material properties and dimensions of the literature, and its modal 

analysis should be carried out. The analytical, literature [36] and FEM results are 

compared and verify the reliability of the shell model adopted. Finally, the FEM of 

the thin cylindrical shell with a straight crack is established, and the analytical 

results of displacement response amplitude of circumferential monitoring points 

and natural frequency with different crack depths are compared with the FEM 

results for evaluation, which verifies the accuracy of the analytical method for 

nonlinear vibration response of the thin cylindrical shell with a straight crack. The 

straight crack identification method can be validated using a numerical case in 

section 4.4. 

3.1 Verification of local flexibility coefficient 

From Eq. (14), it can be found that the local flexibility coefficient is the key factor 

in solving nonlinear vibration responses and natural modes. According to the theory 

of linear fracture mechanics, the dimensionless flexibility of the thin cylindrical 

shell with a straight crack under axial force, shear force, and bending moment can 

be obtained. Naniwadekar experimentally measured the local flexibility of the thin 

cylindrical shell under the action of the pure bending moment [21], and obtained the 

torsional spring stiffness of the thin cylindrical shell with different crack depths 
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under the action of the pure bending moment, which can be converted into local 

flexibility coefficient. Based on the properties (L=0.95m, R=0.0328m, h=0.01m, 

E=173.81GPa,  =7860kg/m3,  =0.3) of the thin cylindrical shell described in 

the literature [21], the analytical solution of the local flexibility coefficient of the 

benchmark model is obtained by using the solution method of the local flexibility 

coefficient. The diagram between the analytical and reference results of the local 

flexibility coefficient of the straight crack is shown in Fig. 4. 

 

Fig. 4. The analytical and reference results of the local flexibility coefficient of the straight crack. 

It can be found that the analytical solution of the local flexibility coefficient is 

basically consistent with the reference results, and the local flexibility coefficient 

can grow exponentially with the increase of the straight crack depth. However, the 

analytical results are still slightly lower than the reference results, and the reason 

for this phenomenon is related to the form of straight crack generation in the 

experiment. The prespecified crack in the experiment is a straight crack with a 

thickness of 0.2mm generated by the line cutting, which could not imitate the 

breathing crack entirely, increasing the local flexibility coefficient of the straight 

crack [21]. Therefore, the theoretical derivation and analytical method for the local 

flexibility coefficient of the thin cylindrical shell with a straight crack can 

effectively reflect the variation of the local flexibility coefficient caused by the 

straight crack, which has strong credibility and can accurately obtain the natural 

frequency and nonlinear displacement response. 

3.2 Validation of nonlinear vibration response 

The natural frequency and nonlinear displacement responses of the thin 

cylindrical shell with a straight crack are hardly reported in the existing literature. 

In this case, the three-dimensional FEM of the thin cylindrical shell with a straight 

crack is one of the most appropriate procedures for investigating the accuracy of 

the proposed analytical method of the nonlinear vibration response. Based on the 

properties and dimensions (L/R=20, h/R=0.01, R=1m,  =0.3,  =7850kg/m3, 

E=210GPa) in the literature [36], the FEM is simplified into an ideal thin cylindrical 

shell, and the boundary conditions are set as clamped-clamped, the modal analysis 
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of the thin cylindrical shell is carried out, and the corresponding analytical values 

are calculated. The first eighth natural frequency, corresponding analytical results, 

and reference results are extracted, as shown in Table 1. The maximum error 

between the natural frequency of the analytical and the FEM results is less than 

1.3%, which verifies the correctness of the adopted shell model and the proposed 

natural frequency solution method. 

Table. 1. Comparison of the natural frequency of the thin cylindrical shell with a clamped-

clamped boundary condition. 

Order Analytical Reference [36] FEM Error (%) Mode (s,n) 

1 12.13 12.17 12.25 -0.97 (1,2) 

2 19.61 19.61 19.64 -0.15 (1,3) 

3 23.28 23.28 23.18 +0.43 (2,3) 

4 28.06 28.06 27.69 +1.29 (2,2) 

5 31.97 31.98 31.60 +1.17 (3,3) 

6 36.48 36.47 36.70 -0.60 (1,4) 

7 37.38 37.37 37.55 -0.45 (2,4) 

8 39.77 39.78 39.87 -0.25 (3,4) 

The critical factors in the solution process have been verified above, but the final 

analytical results of the nonlinear vibration response of the thin cylindrical shell 

with a straight crack have not been verified. To improve the applicability of the thin 

cylindrical shell, the parameters of the analytical model and FEM are set as follows: 

L/R=40, h/R=0.1, R=0.1m,  =0.3,  =7850kg/m3, E=210GPa. The axial position 

of the straight crack is set as x=2.0m, the circumferential position is set as 0c  , 

and the boundary conditions are set as clamped-clamped. In the process of 

establishing the FEM of the thin cylindrical shell with a straight crack, it is very 

challenging to formulate an appropriate meshing strategy. Considering the 

influence of the crack tip mesh on the FEM results, the crack tip is locally encrypted. 

A gradient layer is added around the crack tip to transfer data into a structured grid 

of other domains efficiently. To select the most appropriate mesh configuration, it 

is necessary to compare the FEM results of the first-order natural frequencies under 

different mesh numbers to verify mesh independence, as shown in Fig. 5(a). As the 

number of meshes increases, the first-order natural frequency can converge 

gradually. For the mesh configuration with more than 77201 meshes, the natural 

frequencies are basically unchanged and agree with the analytical solution. 

Therefore, the meshes number 77201 is applied to solve the forced nonlinear 

vibration response of the thin cylindrical shell with a straight crack. The external 

excitation position is x=1.0m, the external excitation is circumferential cosine 

distribution simple harmonic load with the frequency of 100Hz and amplitude of 

100N, and the monitoring position is x=3.0m (same as in Section 4.2). A 

comparison of radial displacement amplitudes of circumferential monitoring points 
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with different crack depths is shown in Fig. 5(b). The green shaded area represents 

a 3% error band based on the FEM results. The analytical solution is entirely within 

the range of the error band, which can fully prove the correctness and accuracy of 

the analytical approach for the nonlinear vibration response of the thin cylindrical 

shell with a straight crack.  

 

Fig. 5. Nonlinear vibration response verification of the thin cylindrical shell with different crack 

depths. (a) Natural frequencies under different mesh numbers, (b) Radial displacement amplitudes 

of circumferential monitoring points. 

4 Results and discussions 

Utilizing the analytical approach for the nonlinear vibration response of the thin 

cylindrical shell with a straight crack, we need to complete the following four 

objectives to analyze the nonlinear vibration response characteristics: i) determine 

the corresponding relationship and transformation law between the straight crack 

morphology and the natural frequency; ii) explore the generation and propagation 

mechanism of forced nonlinear vibration response; iii) obtain the nonlinear 

displacement response characteristics of the thin cylindrical shell with a straight 

crack and reveal the displacement evolution law of different directions; iv) find a 

nonlinear vibration signal identification method for straight cracks and verify the 

proposed identification method by a numerical example. 

4.1 Natural frequency transformation characteristics 

Due to the first few natural frequencies of the thin cylindrical shell being 

convenient and accurate, the first three-modes should be used as the input 

parameters for straight crack identification. Since the relative length of the research 

object is L/R=40, the shell belongs to the medium-long shell. Thus, the axial mode 

dominates the low-order modes, and the first three-modes are (0,1), (0,2), and (0,3). 

The other parameters are set as h/R=0.1, R=0.1m,  =0.3,  =7850kg/m3, 

E=210GPa. Due to the thickness being relatively thin, the lower natural frequency 
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does not change much. To better explore the transformation relationship between 

the straight crack morphology and the natural frequency, the difference in the low-

order natural frequency between the cracked thin cylindrical shell and the ideal shell 

is defined as '
cf f f  . 

 

Fig. 6. Natural frequency transformation characteristics of the different relative crack depths.  

(a) first-order, (b) second-order, (c) third-order. 

Due to the marvelous symmetry of the thin cylindrical shell with clamped-

clamped boundary conditions, the straight crack positions are set in the right half of 

the shell:  =0.5, 0.6, 0.7. Keeping the straight crack position unchanged, the 

relationship curves between the first three natural frequencies and the relative depth 

of the straight crack are shown in Fig. 6. It can be seen that the natural frequency 

variation curves are all below the zero-axes, indicating that the existence of straight 

crack reduces the shell stiffness and decreases the natural frequency. When the 

crack location is determined, the natural frequencies of each order decrease with 

the increase of crack depth. From the difference in natural frequencies of different 

orders, it can be seen that the changing trend of the three curves is gradually 

reversed, which is mainly determined by the position of the straight crack in the 

mode shape of the thin cylindrical shell. At the same time, the effect of straight 

crack on higher order natural frequency is greater. 

 

Fig. 7. Natural frequency transformation characteristics of the different crack position. (a) first-

order, (b) second-order, (c) third-order. 

The relative depths of the straight crack are kept unchanged as  =0.4, 0.6, and 

0.8, respectively, and the variation curves of the natural frequency with the relative 

position are shown in Fig. 7. When the straight crack is located in the middle section, 
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as shown in Fig. 7(a), the first-order natural frequency decreases most rapidly. As 

the straight crack moves to both ends, the influence of the relative crack position 

on the first-order natural frequency becomes less and less, showing a quadratic 

function curve. In Fig. 7(b), the middle position is a node of the second-order, and 

the variation of the second-order natural frequency with different crack depths is 

zero. The minimum values are on both sides of the middle section, where the 

second-order natural frequency is the most sensitive to the straight crack. As shown 

in Fig. 7(c), there are two nodes in the third-order natural frequency variation curve. 

Similarly, there is a minimum in the middle of two adjacent nodes. Therefore, it can 

be seen that when the straight crack is located near odd times of L/2n, the nth order 

natural frequency difference of the thin cylindrical shell has a minimum, and when 

the crack is located near even times of L/2n, the nth order natural frequency 

difference has a maximum, which is very close to zero. This phenomenon indicates 

that the natural frequency is very insensitive to the straight crack when the crack is 

located at the node of a certain mode. 

4.2 Generation and propagation mechanism of nonlinear vibration 

The thin cylindrical shell in engineering production and daily application is often 

subject to various external nonlinear excitations, and the corresponding nonlinear 

vibration responses are determined by their structure, component parameters, and 

boundary conditions. The vibration generation and propagation mechanism of the 

forced thin cylindrical shell are studied to obtain the displacement response 

characteristics of the forced vibration, which can provide an intuitive and accurate 

data basis for the state detection of the thin cylindrical shell. 

The essential parameters are shown in Section 4.1. To simulate the vibration 

caused by external factors, the circumferential cosine distribution simple harmonic 

load with amplitude of 100 /xF N m  is applied at x=1.0m. When the 

circumferential mode number is n=0, the characteristic roots are shown in Table 2. 

According to the characteristic root, the basic type of wave can be determined. To 

analyze the displacement amplitude response, only the range of 1.0≤x≤3.0m in the 

right half is discussed here. 

It can be found from Table 2 that the characteristic equation contains the real root 

and complex roots (or pure imaginary root), so the displacement response is the 

result of the joint action of the propagation wave and the attenuated standing wave 

(or near field wave). From Fig. 8(b), it can be seen that the circumferential 

displacement response under the circumferential cosine distribution simple 

harmonic load is not generated; that is, the axial and radial displacement responses 

are decoupled from each other. Due to the shell vibrating only in the axial and radial 

directions, the vibration behavior of the shell is similar to the breathing action. 

Therefore, the vibration mode when the circumferential mode number is zero is also 

called breathing mode, and the decoupling feature of the breathing mode can 
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provide ideas for later straight crack identification. When the dimensionless 

frequency is 0.012998  , it can be seen from Table 2 that the characteristic 

equation of the shell system contains two pairs of real roots and two pairs of 

complex roots. In this case, the displacement response is the interaction result 

between the propagating wave and the attenuated standing wave. In Fig. 8(a), the 

axial displacement amplitude increases quickly with the axial coordinate first, 

indicating that the attenuated standing wave is the main component affecting the 

axial displacement at the initial stage. In the vicinity of x=1.07m, the axial 

displacement amplitude reaches the maximum value. Then the attenuated standing 

wave component with high-order exponential term rapidly decays to zero with the 

increase of axial coordinates. Hence, the change of the displacement amplitude 

curve tends to be gentle. Meanwhile, the axial displacement is mainly affected by 

the action of the propagating wave. In Fig. 8(c), the radial displacement amplitude 

reaches its maximum value at x=1.0m, then rapidly declines, and an inflection point 

appears near x=1.09m. The curve fluctuates in the form of a string function with an 

order of 10-12 when x>1.23m. At the time, the shell is mainly affected by the 

propagation wave, and due to the real roots being small, the effect is not apparent. 

When the dimensionless frequency is 0.5  , the form of the eigenvalues of the 

shell system characteristic equation is similar to that of the previous case, 

containing two pairs of real roots and two pairs of complex roots. The thin 

cylindrical shell is acted by both the propagating wave and the attenuated standing 

wave, but the value of the real root of the former is larger. When the axial 

displacement amplitude reaches the maximum value near x=1.06m, it shows an 

obvious chord function change. And the amplitude fluctuation range is larger than 

that in the previous case, which indicates that the real roots can significantly 

increase the acting proportion and acting effect of the propagating wave, thus 

increasing the vibration displacement response of the shell. Similarly, the variation 

effect of the radial displacement amplitude is the same as that of the axial 

displacement amplitude, indicating that with the increase of the dimensionless 

natural frequency, the action proportion and effect of the propagating wave become 

larger, and the displacement response amplitude of the thin cylindrical shell 

increases. When the dimensionless frequency is 1.2  , the eigenvalues of the 

shell system characteristic equations are transformed into three pairs of real roots 

and one pair of purely imaginary roots; that is, there are three propagating waves 

and one near-field wave. Each propagating wave contains elements of stretching, 

twisting, and bending. It can be seen from Fig. 8 that the axial and radial 

displacement amplitudes show a sharp increase near the zero axes, mainly because 

the near-field wave plays a huge role here. Then, the amplitude curves prove the 

obvious wave superposition effect, which is mainly the result of the joint action of 

three propagation waves in two directions. 
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Table. 2. Roots of the characteristic equation. (n=0) 

Ω=0.012998 Ω=0.5 Ω=1.2 

0.0136 0.5330 1.0923 

-0.0136 -0.5330 -1.0923 

0.0219 0.8441 2.0258 

-0.0219 -0.8441 -2.0258 

-4.0848+4.0479i -3.7718+3.7340i 5.0653 

4.0848+4.0479i 3.7718+3.7340i -5.0653 

-4.0848-4.0479i -3.7718-3.7340i 4.9809i 

4.0848-4.0479i 3.7718-3.7340i -4.9809i 

 

Fig. 8. The displacement amplitude response of the ideal thin cylindrical shell. (n=0) (a) axial 

direction, (b) circumferential direction, (c) radial direction. 

According to the above analysis, the axial and radial displacements in the 

breathing mode have decoupling characteristics, which can be inferred: the thin 

cylindrical shell has no circumferential torsion, and the axial and radial 

displacements at the same axial position are the same everywhere; when the 

characteristic equation of the shell system contains real roots, as the value of the 

real roots increases, the acting proportion and effect of corresponding propagating 

waves also increase significantly, and the oscillation frequency of the displacement 

amplitude curve increases; when the characteristic equation contains the pure 

virtual root, and the value is small, the effect of the near-field wave on the 

displacement response is great, but only in the initial stage. When the number of 

propagation waves in the thin cylindrical shell is more than one and more waves 

have similar effects in a certain direction, the displacement amplitude curve appears 

to be an obvious wave superposition effect. 

4.3 Forced nonlinear vibration response 

Through the above analysis shows that under the breath mode(n=0), the axial and 

radial displacement of the thin cylindrical shells mutual decouple. Therefore, the 

displacement amplitude of the circumferential points in the arbitrary axial direction 

should be equal when a cosine distribution simple harmonic load is applied to the 
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circumferential direction. When there is a straight crack in the thin cylindrical shell, 

the additional local flexibility in the straight crack region makes the propagation of 

vibration waves in the shell bound to change. So the displacement response of 

circumferential points does not have equality, which provides a new idea for 

straight crack identification. 

To simplify the analysis, the axial position of the straight crack is set as x=2.0m, 

and the circumferential position is set as 0c  . According to Eqs. (11-13), it can 

be found that the displacement amplitude of the thin cylindrical shell with a straight 

crack is highly symmetric, so only the half-cycle shell is analyzed. Seven 

circumferential monitoring points are set at x=2.2m, 2.4m, 2.6m, 2.8m, 3.0m, and 

3.2m in the right half of the shell, respectively. The circumferential positions are o0 ,

o30 , o60 , o90 , o120 , o150 and o180 . The monitoring points are numbered 

alphabetically along the axis and are denoted as A, B, C, D, E, and F from near to 

far. Similarly, the circumferential positions of the monitoring points are numbered, 

and the phases from small to large are 0, 1, 2, 3, 4, 5, and 6. Therefore, the 

circumferential monitoring points at x=3.0m can be expressed as: 0E , 1E , 2E , 3E ,

4E , 5E and 6E . The angle difference between the monitoring point and the 

circumferential position of the straight crack is defined as | |d c    . 

The circumferential cosine distribution simple harmonic load is the same as in 

Section 4.2. The axial, circumferential, and radial displacement responses of each 

monitoring point of the ideal thin cylindrical shells in the axial position E are shown 

in Fig. 9. The whole system tends to be stable, the axial and radial displacement 

responses all show the normal chord function fluctuation, and the curves of each 

monitoring point completely coincide. The circumferential displacement response 

is almost zero, indicating that the ideal thin cylindrical shell is decoupled from the 

axial and radial displacement under the circumferential cosine distribution simple 

harmonic load, which is consistent with the previous analysis. 

 

Fig. 9. Displacement response of the circumferential monitoring points at E ( =0 ). (a) axial 

direction, (b) circumferential direction, (c) radial direction. 



22 

 

Fig. 10. Comparison of radial displacement responses of cracked shells and ideal shells at 0E . 

Setting the relative crack depth =0.5 , the nonlinear vibration response of the 

thin cylindrical shell with a straight crack is analyzed. The radial displacement 

response of the monitors at 0E  is extracted and compared with that of the ideal 

shells, as shown in Fig. 10. The displacement response amplitude of the monitoring 

point 0E  at the thin cylindrical shell with a straight crack is significantly larger than 

that of the ideal shell, and the phase of the two peaks is consistent. The reason for 

this phenomenon is that the existence of straight cracks affects the path of vibration 

wave propagation and local flexibility inside the shell. When the vibration wave 

propagates to the straight crack, the reflected wave and transmitted wave can be 

generated. Although the energy of the transmitted wave is weakened relative to the 

vibration wave, the reduction of local flexibility leads to a small increase in the 

displacement response. The axial, circumferential, and radial displacement 

responses of circumferential monitoring points at E are extracted as shown in Fig. 

11. In Fig. 11(a), the axial displacement response curves of circumferential 

monitoring points are almost identical to those without straight crack. However, 

there is an apparent circumferential displacement response at E in Fig. 11(b). With 

the increase of the phase angle, the circumferential displacement amplitude first 

increases and then decreases, indicating that the existence of the straight crack 

destroys the decoupling characteristics of circumferential and radial direction. As 

shown in Fig 11(c), the radial displacement response of each monitoring point 

showed a significant decreasing trend with the increase of the phase angle. The 

circumferential angle of the point 0E  is consistent with that of the straight crack, 

and the displacement amplitude is the largest. On the contrary, The circumferential 

angle difference between the point 6E  and the straight crack is the largest, and the 

radial displacement amplitude was the smallest, indicating a certain correspondence 

between the radial displacement amplitude of the circumferential points the 

circumferential position of the straight crack. 
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Fig. 11. Displacement response of the circumferential monitoring points at E ( =0.5 ). (a) axial 

direction, (b) circumferential direction, (c) radial direction. 

 

Fig. 12. Radial displacement amplitude of the circumferential monitoring points at each axial 

position. (a) =0.3 , (b) =0.5 . 

 

Fig. 13. Radial displacement amplitude of monitoring points at each axial position (
o=0d ) 

To deeply understand the radial displacement response characteristics of the thin 

cylindrical shell with a straight crack, the radial displacement amplitude of 

circumferential monitoring points is extracted. According to the symmetry, the 

radial displacement amplitude corresponding to the other half of the circumference 

is complemented, which is defined as the negative phase angle. Then the radial 

displacement amplitude variation curves of circumferential monitoring points at 

axial positions B, C, D, E, and F are shown in Fig. 12. The radial displacement of 

each circumferential monitoring point along the axial direction of the straight crack 

shows the cosine transformation law, and the constant term of this cosine function 

is the radial displacement amplitude of the ideal thin cylindrical shell. By changing 
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the straight crack depth, it can be seen that the deeper the straight crack is, the larger 

the variation range of the radial displacement amplitude of the circumferential point 

is, and the maximum radial displacement amplitude point still well points to the 

circumferential position of the straight crack. But the relationship between the 

amplitude of different axial points is very confusing. The radial displacement 

amplitudes at 0B , 0C , 0D , 0E , and 0F  are extracted as shown in Fig. 13. The 

deeper the straight crack, the smaller the radial displacement response around the 

crack, which is caused by the low transmission coefficient of the vibration wave. 

The radial displacement amplitude increases first and then decreases with the 

increase of the distance from the monitoring point, and reaches the maximum near 

the x=2.4m. The reason for this phenomenon is that the interaction of the four 

waveforms of the transmitted wave reaches its maximum right here. 

4.4 The straight crack identification case 

The natural frequency evolution law and nonlinear vibration displacement 

response of the thin cylindrical shell with different crack morphology are analyzed 

in the above sections. With the help of the above nonlinear vibration characteristics, 

a straight crack identification method based on natural frequency isolines and the 

amplitude maximization methods is proposed. The natural frequency database of 

different straight crack morphology is obtained by solving the free vibration 

response of the thin cylindrical shell with a straight crack. The first three-order 

natural frequency differences corresponding to different axial positions and relative 

depths of the straight crack are acquired. The 3D surface diagrams of natural 

frequency difference are established, as shown in Fig. 14. According to the axial 

position and relative depth of the straight crack, corresponding points can be found 

on the surface diagrams of natural frequency difference of each order. Conversely, 

the natural frequency difference of each order can be obtained, and then 

corresponding isolines can be found on the surface. The axial position and relative 

depth of the straight crack can be obtained according to the intersection point of 

isolines of any two orders. 

 

Fig. 14. The 3D surface diagrams of the first three-order natural frequency differences. (a) first-

order, (b) two-order, (c) three-order. 
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In the identification process, the thin cylindrical shell has a high degree of 

symmetry. When the isolines method is used for the straight crack identification, 

the two isolines have completely symmetric intersection points, so the straight crack 

can be identified according to the side where the straight crack is located. Based on 

the above ideas, the straight crack is preset on the right side of the thin cylindrical 

shell, whose axial position is x=2.2m, relative depth is =0.5 , and circumferential 

position is 
o=60c , as shown in Fig. 15. The natural frequency differences between 

the first-order and the third-order of the thin cylindrical shell with a straight crack 

are calculated to be 
0

I 0.026f   and 
0

III 0.136f   by FEM. Then, the corresponding 

isolines are obtained using these differences by intercepting the surface diagrams. 

These isolines can generate one intersection point, and the axial position and 

relative depth of the straight crack are shown in Fig 16(a). The intersection (0.502, 

2.195) of the two isolines represents the axial position x=2.195m and the relative 

depth =0.502  of the straight crack. By comparing the actual values of straight 

crack with the identification results, it is found that the relative error of the straight 

crack position is 0.125%, and the relative error of the relative depth is 0.2%. At the 

same time, the circumferential cosine distribution simple harmonic load is applied 

at x=1.0m, and the radial displacement amplitudes of the circumferential monitoring 

points at E are extracted. To display more intuitively, the displacement response 

amplitudes of each monitoring point at E are drawn into polar coordinates, as shown 

in Fig. 16(b). Therefore, the radial displacement amplitude of the monitoring point 

at o=60  pointed by the arrow is the largest; that is, the circumferential position of 

the straight crack is 
o=60c . In summary, the straight crack information obtained 

from the above analytical data is basically consistent with that of the preset crack, 

which fully proves the effectiveness of the proposed straight crack identification 

method. The straight crack identification method based on nonlinear displacement 

response characteristics and natural frequency evolution law only needs to carry out 

modal and displacement tests on the whole structure or local structure, which can 

obtain the morphology information of the straight crack and complete the straight 

crack identification, and effectively reducing the workload of straight crack 

morphology identification. 

 

Fig. 15. Schematic diagram of preset crack 
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Fig. 16. Straight crack identification method. (a) natural frequency isolines intersection, (b) radial 

displacement amplitude. 

5 Conclusion 

Based on Flügge shell theory and residual theorem, this paper studies the 

generation and propagation mechanism of forced vibration of the thin cylindrical 

shell and obtains the analytical solution of forced vibration displacement in the 

space domain. Then, the local flexibility matrix is established using fracture 

mechanics theory, and the continuous coordination condition on both sides of the 

straight crack is constructed using the LSM. Combined with the wave superposition 

principle, the analytical approach for nonlinear vibration response is proposed to 

reveal the evolution law of nonlinear vibration response of the thin cylindrical shell 

with different crack morphology. The straight crack identification method based on 

natural frequency isolines and amplitude maximization methods is presented 

according to the nonlinear vibration response characteristics. The main conclusions 

are summarized below. 

(1) The nonlinear vibration response of the thin cylindrical shell in breathing mode 

is affected by the propagation wave, attenuated standing wave, and near-field 

wave. When the characteristic equation contains real roots, as the value of the 

real roots increases, the acting proportion and effect of corresponding 

propagating waves also increase significantly, and the oscillation frequency of 

the displacement amplitude curve increases. When the characteristic equation 

contains the pure virtual roots and the value is small, the effect of the near-

field wave on the displacement response is excellent, but only in the initial 

stage. When the number of propagation waves is more than one and more 

waves have similar effects in a specific direction, the displacement amplitude 

curve appears to be a noticeable wave superposition effect. 

(2) The straight crack leads to local flexibility of the thin cylindrical shell and 

reduces the natural frequency of the thin cylindrical shell. The deeper the 

straight crack, the more strongly the natural frequency decreases. At the same 

time, with the increase of the order, the influence of the axial position of the 
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straight crack on the natural frequency becomes greater. When the straight 

crack is located at a certain modal node, the straight crack has almost no effect 

on the natural frequency. 

(3) The axial and radial displacements of the thin cylindrical shell in the breathing 

mode can be decoupled from each other, and their radial displacement 

amplitudes at all points in the circumferential direction are equal. The 

existence of the straight crack destroys the decoupling characteristics of the 

axial and radial directions, resulting in obvious circumferential displacement 

response, but has little effect on the axial displacement. Under the excitation 

of circumferential cosine distribution simple harmonic load, the amplitude of 

radial displacement on the other side of the straight crack increases first and 

then decreases as the monitoring point moves away from the straight crack. 

The deeper the crack is, the greater the range of circumferential displacement 

amplitude is. The maximum radial displacement amplitude point still well 

points to the circumferential position of the straight crack. 

(4) The unique intersection point of the natural frequency isolines of different 

orders can represent the axial position and relative depth of the straight crack. 

The radial displacement amplitude characteristics of the circumferential point 

under the excitation of circumferential cosine distribution simple harmonic 

load represent the circumferential position of the straight crack. The straight 

crack identification method based on natural frequency isolines and amplitude 

maximization methods can effectively obtain three dimensional morphology 

information of circumferential position, axial position and relative depth of the 

straight crack. 

Different working conditions of the shell components can lead to complex and 

changeable crack morphology. This paper only makes a valuable attempt to identify 

the damage to the highly symmetrical straight cracked shells. It can also be applied 

to crack damage identification of the thin cylindrical shell under different boundary 

conditions. The research results provide theoretical references for straight crack 

identification under complex word conditions and provide a new idea for structural 

damage localization in machinery, chemical industry, energy, and other fields. The 

following research could focus on the mesoscopic crack stress release model and 

its solution method. 
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Appendix A  

The detailed expressions of coefficient matrix  3 3N   are described in the 

following forms. 
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Appendix B 

The coefficient  0,2,4,6,8ia i   of the algebraic equation in Section 2.1 are 

expressed as 
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Appendix C 

The analytical solutions of axial ( )u x , circumferential ( )v x , and radial ( )w x  

displacement responses are obtained using the residue theorem. 
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2 2 2 2 2
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n n n n

                       
    

 

2 2

2

2 1
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2
n n

        
 
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3

1
(1 3 )

2

      

2 2 2 2 2

3

21 1 1
(1 ) (1 3 )

2 2 2
n n in

      
        

 
 

 2 2 2 2 2

3

1
(1 )

2
f n n

         
 
 

   

8 8a a   , 6 6a a  , 4 4a a   , 2 2a a    
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