1. Krammer, F., The human antibody response to influenza A virus infection and vaccination. Nat Rev Immunol, 2019. 19(6): p. 383-397.
2. Kirkpatrick, E., et al., The influenza virus hemagglutinin head evolves faster than the stalk domain. Sci Rep, 2018. 8(1): p. 10432.
3. Esposito, S., et al., Efficacy and safety of a quadrivalent influenza vaccine in children aged 6-35 months: A global, multiseasonal, controlled, randomized Phase III study. Vaccine, 2022. 40(18): p. 2626-2634.
4. Gustafson, C.E., et al., Influence of immune aging on vaccine responses. J Allergy Clin Immunol, 2020. 145(5): p. 1309-1321.
5. Kelly, H., et al., Quantifying benefits and risks of vaccinating Australian children aged six months to four years with trivalent inactivated seasonal influenza vaccine in 2010. Euro Surveill, 2010. 15(37).
6. Mimura, W., C. Ishiguro, and H. Fukuda, Influenza vaccine effectiveness against hospitalization during the 2018/2019 season among older persons aged>/=75years in Japan: The LIFE-VENUS Study. Vaccine, 2022. 40(34): p. 5023-5029.
7. Mira-Iglesias, A., et al., Influenza vaccine effectiveness against laboratory-confirmed influenza in hospitalised adults aged 60 years or older, Valencia Region, Spain, 2017/18 influenza season. Euro Surveill, 2019. 24(31).
8. Pebody, R.G., et al., Uptake and effectiveness of influenza vaccine in those aged 65 years and older in the United Kingdom, influenza seasons 2010/11 to 2016/17. Euro Surveill, 2018. 23(39).
9. Cruz-Valdez, A., et al., MF59-adjuvanted influenza vaccine (FLUAD(R)) elicits higher immune responses than a non-adjuvanted influenza vaccine (Fluzone(R)): A randomized, multicenter, Phase III pediatric trial in Mexico. Hum Vaccin Immunother, 2018. 14(2): p. 386-395.
10. Haber, P., et al., Post-licensure surveillance of trivalent adjuvanted influenza vaccine (aIIV3; Fluad), Vaccine Adverse Event Reporting System (VAERS), United States, July 2016-June 2018. Vaccine, 2019. 37(11): p. 1516-1520.
11. Vesikari, T., et al., MF59-adjuvanted influenza vaccine (FLUAD) in children: safety and immunogenicity following a second year seasonal vaccination. Vaccine, 2009. 27(45): p. 6291-5.
12. Pulendran, B., S.A. P, and D.T. O'Hagan, Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov, 2021. 20(6): p. 454-475.
13. Coffman, R.L., A. Sher, and R.A. Seder, Vaccine adjuvants: putting innate immunity to work. Immunity, 2010. 33(4): p. 492-503.
14. Gregg, K.A., et al., Rationally Designed TLR4 Ligands for Vaccine Adjuvant Discovery. MBio, 2017. 8(3).
15. Gregg, K.A., et al., A lipid A-based TLR4 mimetic effectively adjuvants a Yersinia pestis rF-V1 subunit vaccine in a murine challenge model. Vaccine, 2018. 36(28): p. 4023-4031.
16. Haupt, R.E., et al., Novel TLR4 adjuvant elicits protection against homologous and heterologous Influenza A infection. Vaccine, 2021. 39(36): p. 5205-5213.
17. Coughlan, L. and P. Palese, Overcoming Barriers in the Path to a Universal Influenza Virus Vaccine. Cell Host Microbe, 2018. 24(1): p. 18-24.
18. Paules, C.I., et al., The Pathway to a Universal Influenza Vaccine. Immunity, 2017. 47(4): p. 599-603.
19. Bliss, C.M., et al., A single-shot adenoviral vaccine provides hemagglutinin stalk-mediated protection against heterosubtypic influenza challenge in mice. Mol Ther, 2022. 30(5): p. 2024-2047.
20. Laidlaw, B.J., et al., Cooperativity between CD8+ T cells, non-neutralizing antibodies, and alveolar macrophages is important for heterosubtypic influenza virus immunity. PLoS Pathog, 2013. 9(3): p. e1003207.
21. Impagliazzo, A., et al., A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science, 2015. 349(6254): p. 1301-6.
22. He, W., et al., Alveolar macrophages are critical for broadly-reactive antibody-mediated protection against influenza A virus in mice. Nat Commun, 2017. 8(1): p. 846.
23. Goodwin, K., C. Viboud, and L. Simonsen, Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine, 2006. 24(8): p. 1159-69.
24. DiLillo, D.J., et al., Broadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protection. J Clin Invest, 2016. 126(2): p. 605-10.
25. DiLillo, D.J., et al., Broadly neutralizing hemagglutinin stalk-specific antibodies require FcgammaR interactions for protection against influenza virus in vivo. Nat Med, 2014. 20(2): p. 143-51.
26. Tan, G.S., et al., Broadly-Reactive Neutralizing and Non-neutralizing Antibodies Directed against the H7 Influenza Virus Hemagglutinin Reveal Divergent Mechanisms of Protection. PLoS Pathog, 2016. 12(4): p. e1005578.
27. Wohlbold, T.J., et al., Hemagglutinin Stalk- and Neuraminidase-Specific Monoclonal Antibodies Protect against Lethal H10N8 Influenza Virus Infection in Mice. J Virol, 2016. 90(2): p. 851-61.
28. Raymond, D.D., et al., Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody. Proc Natl Acad Sci U S A, 2018. 115(1): p. 168-173.
29. Margine, I., P. Palese, and F. Krammer, Expression of functional recombinant hemagglutinin and neuraminidase proteins from the novel H7N9 influenza virus using the baculovirus expression system. J Vis Exp, 2013(81): p. e51112.
30. Krammer, F., et al., A carboxy-terminal trimerization domain stabilizes conformational epitopes on the stalk domain of soluble recombinant hemagglutinin substrates. PLoS One, 2012. 7(8): p. e43603.