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Abstract
Surgical resection is one of the most relevant practices in neurosurgery. Finding the correct surgical extent of the
tumor is a key question and so far several techniques have been employed to assist the neurosurgeon in preserving
the maximum amount of healthy tissue. Some of these methods are invasive for patients, not always allowing high
precision in the detection of the tumor area. The aim of this study is to overcome these limitations, developing
machine learning based models, relying on features obtained from a contactless and non-invasive technique, the
thermal infrared (IR) imaging. The thermal IR videos of thirteen patients with heterogeneous tumors were recorded
in the intraoperative context. After a baseline period, cold saline was injected, and the thermal pattern of the
exposed cortex was recorded for two minutes. Time (TD)- and frequency (FD)-domain features were extracted and
fed different machine learning models. Models relying on FD features have proven to be the best solutions for the
optimal detection of the tumor area (Average Accuracy = 90.45%; Average Sensitivity = 84.64%; Average Speci�city 
= 93,74%). The obtained results highlight the possibility to accurately detect the tumor lesion boundary with a
completely non-invasive, contactless, and portable technology, revealing thermal IR imaging as a very promising
tool for the neurosurgeon.

Introduction
Surgical resection plays a central role in the management of brain tumors. The extent of resection is one of the
most important predictors of patient outcome, together with the patient's age and performance status, tumor
histology, and molecular markers [1].

The extent of tumor resection affects the patient's survival, quality of life, and the possible evolution time towards
higher-grade neoplastic forms. However, especially in cases of tumors with in�ltrative features like gliomas, the
actual border of resection between tumor and healthy tissue can be sometimes hard to detect with standard
microneurosurgical techniques. Therefore, some residual tumor tissue may be involuntary left in place, thus
negatively in�uencing oncological results. Moreover, brain does not allow an indiscriminate supramarginal
resection of the tumor since patients may develop major neurological de�cits.

To ensure an adequate extent of resection, several intraoperative techniques have been introduced.

The more commonly used are neuronavigation, intraoperative ultrasound (iUS), 5-aminolevulinic acid (5-ALA)
�uorescence, and intraoperative magnetic resonance (iMR). All these methods have some strengths and
limitations. Neuronavigation is widely available and easy to be interpreted, but relies on preoperative MR (which
cannot be updated during the resection) and is limited by brain shift [2]. iUS is a cheap and effective on-line
technique that can be boosted by some technological advances as neuronavigation and contrast-enhancement
(CEUS), but is severely operator-dependent and limited by residual tissue volume, surgery induced artifacts and
previous treatments in cases of recurrent tumors [3]. 5-ALA �uorescence is also widely used and very effective to
improve extent of resection in high grade gliomas (HGGs) [4], with lower accuracy in other tumor types [5] and
some limitations in recurrent HGGs cases [6]. iMR is the less diffused technology and is limited by high costs, need
for dedicated operative room spaces and equipment, and long interruptions of surgical work �ow [7].

The di�culty given by the in�ltrative nature of some types of tumors and the increasing need to use non-invasive
imaging techniques in intraoperative contexts made thermography an ideal candidate for the development of a
new approach.
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In the present study, intraoperative thermal infrared imaging (iIRI) has been used to assess tumor boundaries by
means of a machine learning-based approach. IRI is based on a passive, non-contact assessment of the
temperature pattern of the object of measurement relying on a thermal camera device. There is a consistent
literature on the use of thermal IRI in the biomedical �eld, especially for diagnostic purposes. Several studies have
been performed to detect breast cancer [8–10] and skin tumors, i.e. melanoma [11–13], whereas other studies
investigated the capacity of the technique to classify different kind of diseases related to macro- or micro-
circulatory impairment, i.e. Varicocele [14, 15] or Raynaud Phenomenon [16, 17].

Although the literature about the application of thermal IRI in neurosurgery is sparse, it is known that the presence
of brain neoplasms alters the thermal homeostasis of the surrounding tissue. Indeed, studies on animal and
human models reported a lower temperature pro�le of primary tumors of glial origin than the surrounding
parenchyma [18–20]. Gorbach et al. showed that glial tumors have a temperature 0.5-2.0°C lower than the
surrounding healthy brain parenchyma [19]. Numerous factors can determine the decrease in cerebral �ow and / or
metabolic activity and induce a decrease in the temperature of the lesion. Factors responsible for decreased local
brain �ow in primary brain neoplasms include low density of neoplastic microcirculation, peritumor edema, poor
metabolism of the cortex overlying the neoplastic lesion, and tumor necrosis. Reduced cerebral blood �ow is
characteristic of both primary and metastatic brain tumors, although the latter have, in most cases, a hyperthermic
pro�le. Brain neoplasm has also been shown to induce a "disconnection effect" such that cortical gray matter
metabolism is reduced in the area overlying the tumor [21].

Differently from tumors of glial origin, brain metastases are hyperthermic, as reported by Gorbach et al. [19] and
Kateb et al. [22]. The latter, in a clinical case of intracortical metastases from melanoma in a 76-year-old woman,
documented a clear thermal demarcation between metastases (36.4 ° C) and healthy brain parenchyma (33.1 ° C)
as revealed by intraoperative measurements from a thermal imaging camera [22]. The biological heterogeneity of
the neoplasms, however, in�uences the temperature pattern among the different lesions [19].

More recently Kastek et al. con�rmed the possibility to use iIRI and observed an altered temperature pattern of the
cancer area with respect to the healthy parenchyma. For instance, in a patient with a cyst due to a metastatic
tumor, they reported a decrease of 2.6°C in the surface of the cyst compared to the surrounding tissue [23].

Sadeghi-Goughari et al. performed intraoperative thermal imaging coupled with arti�cial tactile sensing and
arti�cial neural network to develop a method for the diagnosis and localization of brain tumors and to estimate
geometrical and thermal properties of the detected tumor. The procedure was validated on a patient with a
parafalcine meningioma and thermal parameters extracted from thermal IRI process were utilized to train the
proposed neural network to estimate tumor temperature and depth. The method reached an error equal to 0.0627°C
and 0.7015 mm, for thermal property and depth respectively [24].

In the present work, different machine-learning based models have been compared relying on time and frequency
domain input features, relative to thermal IRI of brains. The originality of the work consists mainly in relying on
thermal spectral features, which have proven to be more sensitive to detecting tumors from healthy tissue. The
developed approach reveals the capability of intraoperative thermal IRI to accurately detect the cancer lesion
boundary with the aim to develop an integrative tool for conservative purposes in neurosurgery.

Materials And Methods
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Participants
Thirteen patients (8 males; age range (61.46 ± 8.28) years old), diagnosed with a neoplastic brain lesion and
eligible for surgical resection, were recruited in the Neurosurgery Unit of the Santo Spirito Hospital in Pescara, Italy.

The need for surgical intervention was established independently by using conventional clinical indications and
surgery was performed blindly from iIRI recordings. Informed consent was obtained from all the patients, who were
selected from a cohort of cases enrolled according to the protocol approved by the Local Ethic Committee (protocol
number 08/21.05.2020).

Table 1 resumes the information about location, volume and speci�c category of the tumors. Average thermal
values and standard deviation of tumor and healthy tissues are reported in the Table 1 relatively to the baseline
phase.
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Table 1
Demographic and tumor information of the patients. Basal temperature of tumor and healthy area.

Case Age Gender Tumor
Location

Tumor
Side

Pathology Tumor
Volume
(cm3)

Tumor
distance
from
cortical
surface

(cm)

Basal
temperature

(Mean ± standard
deviation)

(°C)

Tumor
area

Healthy
area

1 73 M T-O R Glioblastoma 56.20 0 34.09 
± 1.12

33.62 
± 1.95

2 51 F T L Meningioma 2.00 0.6 33.32 
± 0.50

34.16 
± 0.78

3 68 M F L Glioblastoma 54.75 0 34.62 
± 0.86

33.73 
± 0.74

4 63 M F post-
Cing-CC

R Oligodendroglioma
Grade III

32.80 0.6 29.06 
± 1.36

29.76 
± 1.37

5 67 F F-P L Metastasis

(Kidney
carcinoma)

6.30 1.5 35.03 
± 0.47

35.09 
± 0.66

6 52 M F L Glioblastoma 1.25 0.6 36.72 
± 0.66

35.30 
± 1.22

7 56 M F R Astrocitoma

Grade II-III

34.50 0.3 32.39 
± 1.26

31.38 
± 2.07

8 62 M F L Glioblastoma 64.50 1.5 32.46 
± 0.83

32.70 
± 1.06

9 66 F P L Glioblastoma 21.60 0.3 32.87 
± 0.80

32.92 
± 0.93

10 52 F F-T R Glioblastoma 41.00 1.5 34.16 
± 0.64

33.95 
± 1.37

11 49 M F L Glioblastoma 60.00 0 34.17 
± 0.57

33.15 
± 1.09

12 75 M T R Metastasis (SCLC) 100.00 0 34.61 
± 0.68

34.52 
± 0.68

13 65 F P L Glioblastoma 32.60 0 31.07 
± 0.58

31.89 
± 1.05

Legend: M: male; F: female; T: temporal lobe; O: occipital lobe; F: frontal lobe; Cing: cingulate gyrus; CC: corpus
callosum; P: parietal lobe; R: right hemisphere; L: left hemisphere; SCLC: small cell lung cancer

Procedure and Data Acquisition
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During neurosurgery, a thermal infrared camera was used to assess the super�cial temperature of the cortex.
Speci�cally, a FLIR SC660 (FLIR, Wilsonville, OR, USA) (640 × 480 bolometer FPA, sensitivity/noise equivalent
temperature difference: <30 mK @ 30°C, �eld of view: 24° × 18°) was employed. The camera focused the exposed
brain region at a distance of about 60 cm. Concurrently to the thermal imaging acquisition, the visible imaging of
the exposed region was acquired by Logitech C920 HD PRO camera, to segment the tumor region relying on the co-
registration between visible and thermal imaging.

The experimental procedure is described in Fig. 1. Firstly, one minute of baseline (BL) was considered to measure
the baseline temperature of the cortex (Fig. 1a). Subsequently, a cold physiological solution (at a temperature of
10°C) was injected to provide a cold stress to the cortex (Fig. 1b), and �nally, two minutes of recovery (REC) were
contemplated to investigate the different thermal behavior of the healthy and tumor tissue (Fig. 1c). Thermal
imaging was acquired at a frame rate of 5 Hz (i.e. 5 frames per second). Figure 1d shows the thermal signal of one
random pixel of the exposed cortex.

During the whole experimental procedure, the environmental conditions were kept stable (i.e. temperature: 22°C,
humidity: 50–60%).

Tumor Segmentation and Optical Co-Registration
Tumor boundary were de�ned by the neurosurgeon on the visible image of the exposed cortex on the basis of the
projection of the tumor area on the brain surface, relying on the MRI of the patient.

To project the tumor area on the thermal imagery, a co-registration approach between the visible and thermal
imagery was performed using the Control Point Selection Tool of Matlab 2021b. Corresponding couples of points
between the two images of the exposed cortex were selected and then used to �nd the optimal a�ne geometrical
transformation between the two images, thus allowing to transfer the boundary of the tumor region from visible
imaging to IR imaging (Fig. 2a and 2b).

Thermal Features Extraction
Thermal signals from each pixel were analyzed through both time domain (TD) and frequency domain (FD)
approaches.

Concerning the TD analysis, the following features were computed:

Coe�cients of the exponential �t (a, b, c): the thermal signal associated to the recovery phase was modelled
through an exponential �t, and the coe�cients of the model were considered as indicative of the thermal
behavior. Figure 1d shows a typical thermal signal behavior during the recovery after cold stress (highlighted in
orange in the graphic). Speci�cally, the equation of the exponential �tting function is reported in Eq. 1:

1

where, a represents the difference between the temperature at the end and at the beginning of the recovery phase
(i.e. the ideal asymptotic value after the thermal recovery), b is the inverse of the time constant (τ), and c is the
initial value of the temperature, after the cold saline injection. For each pixel, the �t has been considered only if the
goodness of �t (R) is higher than 0.8, otherwise the exponential �t has been discarded for the speci�c pixel.

y = a ∙ (1 − ebx) + c
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Temperature Variation (Δ): difference between the average value of the signal in the �rst 10 seconds and in the
last 10 seconds of the whole experimental procedure.

Initial Temperature (TINI): average value of the signal 30 seconds before the cold stress.

Standard Deviation (STDBL, STDBLREC): standard deviation of the raw thermal signals evaluated in the
baseline and recovery phases, respectively.

Kurtosis (KBL, KREC): kurtosis of the raw thermal signals evaluated in the baseline and recovery phases,
respectively.

Skewness (SKBL, SKREC): skewness of the raw thermal signals evaluated in the baseline and recovery phases,
respectively.

90th percentile (90th PercBL, 90th PercREC): 90th percentile of the raw thermal signals evaluated in the baseline
and recovery phases, respectively.

Sample Entropy in the baseline and recovery phases (SampEnBL, SampEnREC): it is de�ned as the negative
natural logarithm of the conditional probability U that signal subseries of length m (pattern length) that match
pointwise within a tolerance r (similarity factor) also match at the m + 1 point (Eq. 2) [25] .

2

In this study, m = 2 and r = 0.2·SD (SD is the Standard Deviation of the signal) where chosen [26].

Concerning the frequency-domain (FD) analysis, the wavelet coherence (WCOH) between the average temperature
time course of a randomized portion of pixels extracted from the tumor area and the temperature signals of each
pixel of the thermal video was computed. WCOH is a measure of the correlation between two signals in the time-
frequency plane. In this particular case, WCOH was considered for 60 frequency bands, in the range [0.015,2] Hz.

In detail, for each pixel a set of 60 values of WCOH were available, indicated as WCOHf
BL and WCOHf

REC, evaluated
in the baseline and recovery phases, respectively.

The average over-time of the amplitude of the WCOH for each frequency band was considered as indicative of the
thermal functioning of each pixel.

De�nitively, both the TD and FD analysis were performed considering only the baseline and the whole time course
(BL + REC) (Fig. 2).

TD and FD features analysis
Preliminarily to the application of machine learning approaches, input features, being them TD- or FD- based
features, were inspected and statistical t-test were applied to understand the underlying phenomena. T-test were
performed for each features to test the signi�cance of the comparison between class 0 (associated to healthy
tissue) and class 1 (associated to the tumor pixels) relatively to each patient. The output was Bonferroni-corrected
for multiple comparisons. Figure 3 shows the results for the t-test relative to each TD features.

SampEn (m, r, N) = −ln [ ]
Um+1 (r)

Um (r)
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The t-test comparisons were statistically signi�cant for each feature except for some isolated cases. In particular,
feature a was not signi�cant for 2 subjects out of 13, feature b was not signi�cant for 6 subjects out of 13, feature
Δ was always signi�cant except for 1 patient, STDREC was not signi�cant for 2 subjects out of 13 and SKREC was
not signi�cant for 1 subjects out of 13.

Relatively to the FD features, t-test were performed to understand whether the 60 features could be representative
of a discriminant behavior between healthy pixels (class 0) and tumor pixels (class 1). The output was Bonferroni-
corrected for multiple comparisons. The t-test comparisons were statistically signi�cant for each feature. Figure 4
reports the results of the t-test in two separated plots (Fig. 4a and 4b). In Fig. 4a, a whisker plot of the t values
relative to the frequency bands for the comparison class 0 vs. class 1 is shown. Figure 4b is, instead, relative to the
contrast class 1 vs. class 0, to facilitate the interpretation of results, being represented by a positive amount of t-
values. In this �gure, the average of t-values among subjects are reported and maximum values of t are highlighted
with red asterisks. Particularly the maximum value of t is obtained for f=[0.69–0.73] Hz in the Cardiac band ([0.4-2]
Hz).

Application of Supervised Machine Learning
A Support Vector Machine (SVM) with radial basis function (RBF) kernel was employed to classify tumor pixels
from healthy pixels [27]. Given the heterogeneity of the study sample, different models were developed for each
participant. Particularly, for each patient, four different models were developed considering only the baseline or the
entire time course relying on both time and frequency domain features (Fig. 2).

A subset of pixels randomly selected was used as a training set (20% of the pixels), another was used as a test set
(20%) and the remaining pixels were used as a validation test. The tumor pixels were labeled as 1, whereas the
healthy pixels were labeled as 0. For the training and test set, the classes were balanced, to avoid over�tting effect.
To this aim, the larger class of the two was randomly down-sampled, to ensure the same class dimensionality. To
test the generalization performances of the model, a k-fold cross-validation, with k = 10, was employed [28]. The
cross-validation process ensures the generalizability of the models, allowing to estimate the performances of the
classi�ers.

Results
Figure 5 reports the results obtained for an indicative patient in segmenting the tumor area from thermal imaging. 

Speci�cally, Fig. 5a shows the classi�cation performance obtained with time domain features when considering
only the baseline (TDBL), whereas Fig. 5b reports the classi�cation obtained employing the time domain analysis
for the entire time course (TDBL+REC). Figure 5c describes the segmentation reached using the frequency-domain
features computed for the only baseline phase (TDBL+REC), whereas Fig. 5d shows the results obtained with the
same approach computed during the whole experiment (TDBL).

The performances obtained by the different models developed across all the participants are reported in Fig. 6.
Particularly, the accuracy (Fig. 6a), the sensitivity (Fig. 6b) and the speci�city (Fig. 6c) were considered to describe
the performances of the model. For the sake of clarity, the mean values and standard deviation of these descriptors
relative to the four categories of models are reported in Table 2. 
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Table 2
– Mean values and standard deviations of the four categories of models relying on TDBL, TDBL+REC, FDBL, FDBL+REC

features.

  Accuracy [%]

(mean ± standard deviation)

Sensitivity [%]

(mean ± standard deviation)

Speci�city [%]

(mean ± standard deviation)

TDBL models 78.56 ± 12.82 30.87 ± 13.02 95.27 ± 2.97

TDBL+REC models 79.86 ± 11.81 63.49 ± 20.96 97.45 ± 2.60

FDBL models 72.30 ± 12.67 36.65 ± 14.42 75.45 ± 14.27

FDBL+REC models 90.45 ± 3.32 84.64 ± 7.15 93.74 ± 5.00

A statistical comparison between these parameters was performed through a repeated measure ANOVA.
Concerning the accuracy F(3,12) = 6.21, p < < 0.01; multiple comparison revealed a statistical difference of FDBL+REC

with respect to all the other groups (Fig. 6a) with the exception of the comparison with TD BL+REC for which there is
a tendency towards signi�cance (p = 0.076). With regard to sensitivity F(3,12) = 37.23, p < < 0.01; multiple
comparison analysis showed signi�cant differences between all the groups except TDBL vs FDBL (Fig. 6b).
Concerning the speci�city F(3,12) = 21.87, p < < 0.01; multiple comparison showed signi�cant differences of
FDBL+REC with respect to all the other groups (Fig. 6c).

Furthermore, an analysis of the dependence of the performances of the FDBL+REC models from the tumor category
was performed to deep understand the relationship of the developed models to classify the different typologies of
tumors.

The present analysis was limited to the FDBL+REC models which revealed to perform better with respect to the other
models. Figure 7 represents the values of average accuracy, sensitivity, and speci�city for the �ve categories of
tumor of the sample dataset. Among all the tumor categories, FDBL+REC models seemed to perform better for
metastatic tumors, with the highest values of accuracy and sensitivity.

Discussion
In this study, a non-invasive and contactless methodology, thermal infrared imaging (IRI), has been used to
accurately detect the boundaries of the tumor tissue on the exposed cortex during neurosurgery. Thirteen subjects
with heterogeneous tumors (Table 1) were enrolled. The experimental protocol consisted in a baseline (BL) phase, a
cold stress phase, with cold physiological solution injection, and a recovery (REC) phase. Thermal imaging was
acquired during the whole experiment.

After reporting the boundary location of the tumor lesion on thermal IR imaging by means of a co-registration with
visible imaging, salient features were extracted in both time (TD) and frequency domain (FD) in the context of the
only BL phase or relatively to the whole experiment (BL + REC). Different supervised machine learning based
models were developed for each patient, given the heterogeneity of the tumors. The labels of the two classes (i.e., 0
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for the healthy tissue pixels and 1 for the tumor tissue pixels) were given on the basis of the boundary de�ned by
the neurosurgeon relying on pre-operative MRI.

A preliminary inspection of the features revealed statistical signi�cance when comparing class 0 vs. class 1 pixels
relatively to the values of both TD and FD features. In particular, referring to Fig. 3 the most in�uencing features in
TD were the c parameter and the STDREC. The c parameter is related to the initial value of the temperature of the
pixels after the cold saline injection and on average the t value is positive, meaning that, in general, the starting
temperature after cold stress of the healthy pixels is higher than the tumor area pixels. This �nding could be
interpreted as the tendency of the tumor pixels not to react quickly to cold stress and to remain in the perturbed
condition longer than the healthy pixels. The other most in�uencing parameter in TD features inspection was the
standard deviation of the thermal signals of the pixels during REC phase, i.e. after the cold saline injection. The t-
value, in this case, is negative meaning that the STD of class 1 pixels is higher than the STD of class 0 pixels
during the thermal recovery. This result shows the difference of thermal characteristics of the two areas of the brain
and re�ects the scattered behavior of the tumor area with respect to the healthy regions, which behaves more
uniformly.

Referring to the FD features (Fig. 4), instead, t-tests results showed statistical signi�cance for all the analyzed
frequency bands, and the maximum of the average t-value was at f=[0.69–0.73] Hz, which is in the Cardiac band
(Fig. 4b). This �nding means that the wavelet coherence is able to discriminate tumor from healthy pixels more
e�ciently in the above mentioned frequency band with respect to all the other bands under consideration. Referring
to Fig. 4b, the results are represented for the contrast class 1 vs. class 0, therefore a high value of t means that the
wavelet coherence in the tumor area pixels is higher compared to the healthy pixels. This means that the healthy
pixels behave differently from the tumor area pixels for all the analyzed frequency bands, especially with a high
impact on the cardiac band.

Concerning the developed supervised machine learning approach, the results showed the possibility to segment the
tumor lesion with respect to the healthy brain regions with high performances with every one of the developed
models, reporting an accuracy that on average is always more than 70% (Fig. 6a). Among the four models, the best
in terms of accuracy was the FD based classi�ers relaying on the whole experimental session features (BL + REC).
In this case, the accuracy was on average 90.45%, whereas for FD based classi�ers relaying on the only BL features
it was 72.30%. With regard to TD based models the accuracies were 78.56% and 79.86% on average, for BL and BL 
+ REC features respectively.

Also, the sensitivity was higher for the FD classi�ers relaying on the whole experimental session features (BL + 
REC), with 84.64% that was notably higher than the other models (30.87% for TDBL, 63.49% for TDBL+REC and
36.65% for FDBL). The models with the highest speci�city, instead, were the TD classi�ers relaying on the whole
experimental session features (BL + REC), with 97.45% on average that was similar to the levels of speci�city of
TDBL and FDBL+REC models, with 95.27% and 93.74%. The lowest speci�city was reported for the FDBL classi�ers
with a level of 75.45%.

The reported results demonstrated that FD classi�ers relaying on the whole experimental session features (BL + 
REC) performed better with respect to the other three developed models, with high accuracy and sensitivity. This
result can certainly be traced back to the fact that the input features are multiple and offer greater detail on the
observed phenomenon. To note, referring to Fig. 6, it is possible to observe that also the FD classi�ers relying on the
only BL features had good performances and it is an important �nding, because the classi�er model would rely on
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a thermal imaging video of only one minute and without any additional measurement phase (i.e. cold stress), thus
resulting more convenient during neurosurgical interventions.

In addition, an exploratory analysis was executed to relate the performances of the best models (FDBL+REC ) to the
tumor categories in the sample dataset. Among all the tumor categories, FDBL+REC models seemed to perform better
for metastatic tumors, with the highest values of accuracy and sensitivity. To note, the performances relative to the
other classes of tumors were also very promising, being the values of accuracy, sensitivity and speci�city always
higher than 80%.

It is worth to note that the present work demonstrated that machine learning models based on FD features are more
effective and performing that the TD features. This particular result can be traced back to the fact that the
decomposition into frequency bands makes it possible to evaluate the characteristics of the signal, and in
particular the speci�c correlation of the thermal signals in detailed frequency bands, with greater speci�city and
re�nement with respect to the temporal signal analysis. This �nding is of paramount importance also to
understand the application of thermal IR imaging in the biomedical �eld. In fact, the IR imaging allows to assess
the integration of several physiological mechanisms, which all together, affect the thermal pattern of a tissue (e.g.,
micro- and macro-circulation, metabolic activity of the tissue, exchange of heat with the environment) [29].
Frequency analysis of thermal signal permits of course to �nd the single most informative components of the
underlying phenomena, allowing to obtain a more detailed insight on the dataset. Indeed, it has been largely
employed in the �eld of thermal IR imaging applied on human studies [30–32]

It is of fundamental importance to observe that the present work is highly innovative given that it is the �rst time
that a machine learning classi�er relying on features extracted from a completely non-invasive and contactless
technique has been used to segment the tumor area from the health tissue with outstanding performances.

However, several limits affected the present study. The �rst is related to the limited sample size. Machine learning
models are based on supervised learning and the performances are highly affected by the numerosity of the study
sample. Increasing the numerosity of the patients could reduce the over�tting risk. Of note, the results are cross-
validated, hence the generalization performances of the model are indeed investigated, but enlarging the sample
size could improve the classi�cation outcomes. Moreover, the effect of the limited sample size can be also
observed in Table 1, which shows that for some patients the thermal behaviour is not always in line with that
reported in the literature, especially for patients affected by glioblastoma. In this case, many patients showed
higher average basal temperature of the tumor area compared to the healthy tissue. This result could be due to the
inclusion of blood vessels in the region of interest of the tumor, thus increasing the average temperature of the
area. However, this is beyond the scope of this work which focuses on identifying the boundaries of the tumor area
to support the neurosurgeon in brain resection. Indeed, this allows to highlight the good qualities of the developed
models to classify the nature of the pixels, focusing on the single frequency components, thus allowing to consider
various physiological aspects of the underlying process.

Second, the best classi�ers are obtained for features relying on a time period of acquisition of nearly three minutes
and on an experimental session consisting on injection of cold physiological solution. This time slot could be
reduced to one minute at the price of decreasing performances. However, spraying with saline is a common
practice during neurosurgery, thus constituting a mild limitation.

Conclusions
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The present work describes a novel method for the tumor segmentation of the exposed cortex during neurosurgery.
Comparing different typologies of supervised machine learning methods based on time domain or frequency
domain features, it has been possible to de�ne the best category of classi�ers relying on a non-invasive and
contactless technique, the thermal infrared imaging. Model based on frequency domain features has revealed to be
the best solution in terms of classi�cation performance. An innovative tool is in this way now available for
neurosurgeons, paving the way to new approaches for intra-operative assessment of tumor areas.
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Figure 1

Experimental procedure consisting in a baseline (BL) phase (highlighed in green), cold physiological solution
injection (highligheted in light blue) and recovery (REC) phase (highligheted in orange); a),b),c) Thermal IR images
of the exposed brain tissue relative to BL, injection and REC phases respectively; d) thermal signal of one
representive pixel over time.
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Figure 2

Pipeline of the processing approach developed in the present study. The optical co-registration between visible and
thermal imaging is necessary to have an indication of the boundary of the cancer area on IRI. Then, TD and FD
fetaures are extracted for the only BL and BL+REC phases. Last, supervised machine learning approaches are
developed to classify healthy tissue from cancer areas, for each patient.
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Figure 3

Whisker plot of t-values resulted from statistical t-tests for each TD feature. The comparison is between the
features values relatively to class 0 vs. class 1 pixels.
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Figure 4

Representation of  t-values resulted from statistical t-tests for each FD feature. (a) Whisker plot of t-values resulted
from statistical t-tests for each FD feature. The comparison is between the features values relatively to class 0 vs.
class 1 pixels. (b) Average of t-values among subjects. The comparison is between the features values relatively to
class 1 vs. class 0 pixels, in order to have positive values. Maximum values are represented with red asterisks.
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Figure 5

Outcome of classi�cation models for an exempli�cative subject relaying on: a) TD features of the only BL; b) TD
features of the whole experiment (BL+REC); c) FD features of the only BL; d) FD features of the whole experiment
(BL+REC). Black boundary is indicative of the tumor area whereas light grey pixels are the ones that the models
classify as class 1 (i.e. tumor).
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Figure 6

Average performances of the developed classifers: a) average accuracy, b) average sensitivity, c) average
speci�city for the four categories of classi�ers. Signi�cant comparison are reported on the graphics (**= p<<0.01).

Figure 7

Bar plot of the performances indices of the FDBL+REC models relatively to the tumor category.


