Abrahamson, N. A., Silva, W. J., and Kamai, R. (2014). Summary of the ASK14 ground motion relation for active crustal regions, Earthquake Spectra 30, 1025–1055.
Abrahamson, N. A., Kuehn, N. M., Walling, M., and Landwehr, N. (2019). Probabilistic seismic hazard analysis in California using nonergodic ground‐motion models. Bulletin of the Seismological Society of America, 109(4), 1235-1249.
Atkinson, G. M., and Boore, D. M. (2003). Empirical ground-motion relations for subduction zone earthquakes and their application to Cascadia and other regions, Bulletin of the Seismological Society of America 93, 1703–1729.
Baker, J.B., Bradley, B., and Stafford, P. (2021). Seismic Hazard and Risk Analysis. Cambridge University Press.
Boore, D. M., Stewart, J. P., Seyhan, E., and Atkinson, G. M. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes, Earthquake Spectra 30, 1057–1085.
Bozorgnia, Y., Abrahamson, N. A., Atik, L. A., Ancheta, T. D., Atkinson, G. M., Baker, J. W., ... and Youngs, R. (2014). NGA-West2 research project. Earthquake Spectra, 30(3), 973-987.
Calais, E., Perrot, J., and De Lepinay, B. M. (1998). Strike-slip tectonics and seismicity along the northern Caribbean plate boundary from Cuba to Hispaniola. SPECIAL PAPERS-GEOLOGICAL SOCIETY OF AMERICA, 125-142.
Calais, E., Mazabraud, B., Mercier de Le´pinay, Mann, P., Mattioli, G., and Jansma, P. (2002). Strain partitioning and fault slip rates in the northeastern Caribbean from GPS measurements. Geophysical Research Letters, 29(18), 1856, doi: 10.1029/2002GL015397
Campbell (1997). Empirical Near-Source Attenuation Relationships for Horizontal and Vertical Components of Peak Ground Acceleration, Peak Ground Velocity, and Pseudo-Absolute Acceleration Response Spectra. Seismiological Research Letters, 68(1), 154-179.
Campbell, K. W., and Bozorgnia, Y. (2014). NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra, 30(3), 1087-1115.
Chang, Y. W., Loh, C. H., and Jean, W. Y. (2017). Time-predictable model application in probabilistic seismic hazard analysis of faults in Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 28(6).
Chiou, B. S.-J., and Youngs, R. R. (2014). Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra, Earthquake Spectra 30, 1117–1153.
Cornell, C.A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58, 1583-1606.
Cramer, C. H., Petersen, M. D., Cao, T., Toppozada, T. R., and Reichle, M. (2000). A time-dependent probabilistic seismic-hazard model for California. Bulletin of the Seismological Society of America, 90(1), 1-21.
DeMets, C., Jansma, P. E., Mattioli, G. S., Dixon, T. H., Farina, F., Bilham, R., ... and Mann, P. (2000). GPS geodetic constraints on Caribbean‐North America plate motion. Geophysical Research Letters, 27(3), 437-440.
DesRoches, R., Comerio, M., Eberhard, M., Mooney, W., and Rix, G. (2011), “Overview of the 2010 Haiti earthquake”, Earthquake Spectra, 27(S1), 1–21. https://doi.org/10.1193/1.3630129.
Dolan, J. F. and Bowman, D. D. (2004). Tectonic and seismologic setting of the 22 September 2003, Puerto Plata, Dominican Republic earthquake: implications for earthquake hazard in northern Hispaniola. Seismological Research Letters, 75(5), 587-597.
Erazo, K. (2019). Probabilistic seismic hazard analysis and design earthquake for Santiago, Dominican Republic. Ciencia, Ingenierías y Aplicaciones, 2(1), 67-84.
Erazo, K. (2020). Análisis probabilístico de peligro sísmico y terremoto de diseño para Santiago-República Dominicana. Ciencia, Ingenierías y Aplicaciones, 3(1), 7-30.
Erazo, K. and Taveras, A. (2021). Demandas estructurales inducidas por vientos huracanados y terremotos en un edificio flexible en la República Dominicana. Ciencia, Ingenierías y Aplicaciones, 4(1), 57-78.
File:Gonâve microplate.png. (2020, November 5). Wikimedia Commons, the free media repository. Retrieved 18:12, December 28, 2021 from https://commons.wikimedia.org/w/index.php?title=File:Gon%C3%A2ve_microplate.png&oldid=510319836.
Frankel, A., Harmsen, S., Mueller, C., Calais, E., and Haase, J. (2011). Seismic hazard maps for Haiti. Earthquake Spectra, 27(1_suppl1), 23-41.
Gavin, H. P., and Dickinson, B. W. (2011). Generation of uniform-hazard earthquake ground motions. Journal of Structural Engineering, 137(3), 423-432.
Gerstenberger, M. C., Marzocchi, W., Allen, T., Pagani, M., Adams, J., Danciu, L., ... and Petersen, M. D. (2020). Probabilistic seismic hazard analysis at regional and national scales: State of the art and future challenges. Reviews of Geophysics, 58(2), e2019RG000653.
Gregor, N., Abrahamson, N. A., Atkinson, G. M., Boore, D. M., Bozorgnia, Y., Campbell, K. W., ... & Youngs, R. (2014). Comparison of NGA-West2 GMPEs. Earthquake Spectra, 30(3), 1179-1197.
Gupta, I. D. (2007). Probabilistic seismic hazard analysis method for mapping of spectral amplitudes and other design-specific quantities to estimate the earthquake effects on man-made structures. ISET Journal of Earthquake Technology, 44(1), 127-167.
Headquarters for Earthquake Research Promotion HERP (2010). National seismic hazard maps for Japan 2010, Earthquake Research Committee (K. Abe, chair), Headquarters for Earthquake Research Promotion, available from www.jishin.go.jp/main/chousa/10yosokuchizu/index.htm (in Japanese).
Kaklamanos, J., Baise, L. G., and Boore, D. M. (2011). Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice. Earthquake Spectra, 27(4), 1219-1235.
Kammerer, A. and Ake, J. (2012). Practical Implementation Guidelines for SSHAC Level 3 and 4 Hazard Studies, NUREG-2117, U.S. Nuclear Regulatory Commission, Washington, D.C.
Lee, V., Herak, M., Herak, D., and Trifunac, M. (2013). Uniform hazard spectra in western Balkan Peninsula. Soil Dynamics and Earthquake Engineering, 55, 120.
Li, Y., Yin, Y., Ellingwood, B. R., and Bulleit, W. M. (2010). Uniform hazard versus uniform risk bases for performance‐based earthquake engineering of light‐frame wood construction. Earthquake Engineering and Structural Dynamics, 39(11), 1199-1217.
Loh, C. H., Jean, W. Y., and Penzien, J. (1994). Uniform‐hazard response spectra—An alternative approach. Earthquake engineering and structural dynamics, 23(4), 433-445.
Luco, N., Ellingwood, B. R., Hamburger, R. O., Hooper, J. D., Kimball, J. K., and Kircher, C. A. (2007). Risk-targeted versus current seismic design maps for the conterminous United States. SEAOC 2007 Convention Proceedings.
Mann, P., Prentice, C., Burr, G., Peña, L., and Taylor, F.W. (1998). Tectonic geomorphology and paleoseismology of the Septentrional fault system, Dominican Republic. The Geological Society of America. doi: 10.1130/0-8137-2326-4.63
Mann, P., Calais, E., Ruegg, J. C., DeMets, C., Jansma, P. E., and Mattioli, G. S. (2002). Oblique collision in the northeastern Caribbean from GPS measurements and geological observations. Tectonics, 21(6), 7-1.
McGuire, R. K., 1995: Probabilistic seismic hazard analysis and design earthquakes: Closing the loop. Bull. Seismol. Soc. Am., 85, 1275-1284.
Ogata, Y., 1999: Estimating the hazard of rupture using uncertain occurrence times of paleoearthquakes. J. Geophys. Res., 104, 17995-18014, doi: 10.1029/1999JB900115
Prentice, C.S., Mann, P., Peña, L.R. and Burr, G. (2003). Slip rate and earthquake recurrence along the central Septentrional fault, North American–Caribbean plate boundary, Dominican Republic. Journal of Geophysical Research 108: doi: 10.1029/2001JB000442.
Prentice, C. S., Mann, P., Crone, A. J., Gold, R. D., Hudnut, K. W., Briggs, R. W., ... & Jean, P. (2010). Seismic hazard of the Enriquillo–Plantain Garden fault in Haiti inferred from palaeoseismology. Nature Geoscience, 3(11), 789-793.
Rathje, E. M., and Saygili, G. (2008). Probabilistic seismic hazard analysis for the sliding displacement of slopes: scalar and vector approaches. Journal of Geotechnical and Geoenvironmental Engineering, 134(6), 804-814.
Reglamento para el análisis y diseño sísmico de estructuras R-001. (2011). Ministerio de Obras Públicas y Comunicaciones (MOPC). Santo Domingo, República Dominicana.
Rodriguez‐Marek, A., Rathje, E. M., Bommer, J. J., Scherbaum, F., and Stafford, P. J. (2014). Application of single‐station sigma and site‐response characterization in a probabilistic seismic‐hazard analysis for a new nuclear site. Bulletin of the Seismological Society of America, 104(4), 1601-1619.
Rojas-Mercedes, N. J., Di Sarno, L., Simonelli, A. L., and Penna, A. (2020). Seismic risk of critical facilities in the Dominican Republic: case study of school buildings. Soft Computing, 24(18), 13579-13595.
SODOSISMICA (2009). Estudio de amenaza sísmica de la República para las normas sísmica.
Sykes, L. R., and Menke, W. (2006). Repeat times of large earthquakes: Implications for earthquake mechanics and long-term prediction. Bulletin of the Seismological Society of America, 96(5), 1569-1596.
Villaverde. (2009). Fundamental Concepts of Earthquake Engineering. Boca Raton, FL. USA. CRC Press, Taylor and Francis Group.
Wen, Y. K., and Wu, C. L. (2001). Uniform hazard ground motions for mid-America cities. Earthquake spectra, 17(2), 359-384.
Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974-1002.
Youngs, R. R., Chiou, S. -J., Silva, W. J., and Humphrey, J. R. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes, Seismological Research Letters 68, 58–73
Youngs, R.R. and Coppersmith, K.J. (1985). Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bulletin of the Seismological Society of America, 75, 939-964.
Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., Irikura, K., Thio, H. K., Somerville, P. G., Fukushima, Y., and Fukushima, Y. (2006). Attenuation relations of strong ground motion in Japan using site classification based on predominant period, Bull. Seism. Soc. of Am. 96, 898–913