In the present study, we found that the associations of LH and FSH with reproductive hormones differ according to stages of the menopausal transition.
Women in Group A had a normal range of FSH levels. However, the ages of women in Group A ranged from 41.6 to 46.5 years and gradually approached the age for menopause. The fact that the delta-4 pathway for synthesis of androstenedione and estrone acts well along with actions of 17β-HSD and 3β-HSD in women in that age range is thought to be the reason for the significant correlations of LH level with estrone and androstenedione levels in Group A. In women in Group A, the delta-4 pathway in the ovary may have been maintained due to a balance between LH and FSH.
In Group B, in which ovarian function had begun to decrease, there was no significant association of LH level with androstenedione or estrone level. Through an increase in FSH level, a relationship in which the balance between LH and FSH was maintained in Group A was attenuated, and the shift was beginning toward the delta-5 pathway. In addition, stimulation of DHEAS production by augmentation of CYP17A1 activity due to an increase in LH may be the reason for the disappearance of correlations of LH with androstenedione and estrone. A correlation between LH and FSH was found with increasing FSH level.
In several studies, fibrosis in the stroma was observed in the ovary and associations between LH and androgens were found in women approaching menopause. Reproductive age-associated fibrosis was found in the stroma of ovaries in mice and humans [22, 23]. Matt et al. reported that alterations in hypothalamic-pituitary function such as a prolonged interpulse interval of LH and increased LH pulse width were found in middle-aged women with a mean age of 42.6 years [24]. Thompson et al. found in a study using ovarian tumor cells that androgens are synthesized and secreted by the human ovary and that the primary source of androgens is the stromal cell compartment in the menopausal ovary [25]. A tripartile relationship among increase in LH, increase in androgens and fibrosis in the stroma in the ovary was also found in women with polycystic ovary syndrome (PCOS) [26]. Wickenheisser et al. reported that CYP17 gene expression increased for biosynthesis of androgens in theca interna cells in women with PCOS [17]. Moran et al. reported that women with PCOS who had an excess of adrenal androgen had significantly higher activity of CYP17 than that in women with PCOS who did not have an excess of adrenal androgen [16]. Thus, stimulation of DHEAS production by activation of CYP17A1 induces a hyperandrogenic state in women with PCOS [16, 17]. The results of those previous studies suggest that there are changes such as fibrosis in the ovarian stroma and transient increases in LH and androgens with aging. In Group C, production of androgen was started by the effect of increased LH level and a transition from the delta-4 pathway to the delta-5 pathway was proceeding. Negative correlations between FSH and estradiol were found to be significant in Group C and remarkable in Group D. When women enter into the periods of Group C and Group D, which indicate menopausal transition, the negative correlation between estradiol and FSH might become stronger due to the remarkable decline in estradiol level.
Murayama et al. reported that theca cells pretreated with a high concentration of LH showed increased CYP17 gene expression [18]. Oktem et al. reported that FSH up-regulated the mRNA expression of 17β-HSD and 3β-HSD in granulosa cells [19]. Due to an increase in LH in the late menopausal transition, CYP17A1 activity increases via LH receptors in the adrenal gland and the conversion from pregnenolone to DHEAS is stimulated. DHEAS level tended to increase, but the difference was not statistically significant (p = 0.062), in the present study. However, in a previous study, a transient increase in DHEAS was found in the late menopausal transition [27]. In the present study, LH was significantly associated with total T and free T in Group D (late menopausal transition). As well as DHEAS production in response to LH stimulation, conversion to T by stimulation of 17β-HSD activity via FSH increase is considered to be involved in this significant correlation. The positive relationships between level of LH and levels of androgens such as T, free T and DHEAS may indicate that the delta-5 pathway is the main pathway in Group D. In the late menopausal transition, LH and FSH may act cooperatively on enzyme activities and stimulate reproductive hormone production.
In Groups B, C, D and F, there were positive and significant associations between LH and FSH, but there was only a tendency for a correlation between LH and FSH in Group E. In the present study, in Group F, FSH level continued to increase, although LH level showed a plateau (Fig. 1). The time difference in hormonal changes in which FSH reached a plateau later than LH might be involved in the weak correlation between LH and FSH in Group E. In addition, in Group E, the correlations of LH with T and free T shown in Group D disappeared. The reason is conversion from T to estradiol by an increase in aromatase through continuation of the increase in FSH, and this phenomenon was maintained in Group F. During the menopausal transition, FSH may regulate androgen levels for prevention of an excessive increase in androgen levels.
In postmenopausal women, associations of FSH levels with the development of various diseases and with metabolism have been reported [28, 29, 30]. A high FSH level was shown to be associated with prevalence of vasomotor symptoms [31] and an increase in low-density lipoprotein cholesterol [5], and a low FSH level was shown to be associated with non-alcoholic fatty liver disease [32] and diabetes mellitus [30]. Serum FSH levels have been shown to be correlated with the rate of bone loss in perimenopausal women [33] and in older women [34]. However, the associations that were investigated in those studies were for FSH levels, not LH levels, in postmenopausal women. The associations of FSH levels with lipid metabolism, carbohydrate metabolism and vascular function in postmenopause may be affected by the increase in androgen levels due to an increase in LH during the menopausal transition. Combined studies on LH levels and FSH levels from menopausal transition to postmenopause may be valuable.
Fibrosis in the stroma in the ovary and increases in LH and androstenedione occur in women with aging. Stimulation of 17β-HSD activity due to an increase in FSH might be regulated so as to prevent an excessive increase in androgen levels, particularly in postmenopausal women with high FSH levels. We did not examine the associations of LH and FSH with lipid metabolism and insulin resistance in each stage of the menopausal transition. Studies on associations of LH with the development of various diseases and with metabolism should be carried out not only for women in postmenopause but also for women during the menopausal transition.
There are some limitations in this study. The sample size in the present study might be insufficient for a generalization for all Japanese women. Further study with a large sample size is needed. This study was a cross-sectional study. Thus, a causal relationship needs to be clarified in a longitudinal study. In addition, measurements of various enzymes related to the production of hormones may be important to clarify individual differences in enzyme activities. In the present study, total circulating reproductive hormones were measured, and we could not separate ovary-derived reproductive hormones and adrenal gland-derived reproductive hormones.