The Matter-wave laser Interferometric Gravitation Antenna (MIGA) is an underground instrument using cold-atom interferometry to perform precision measurements of gravity gradients and strains. Following its installation at the low noise underground laboratory LSBB in the South-East of France, it will serve as a prototype for gravitational wave detectors with a horizontal baseline of 150 meters. Three spatially separated cold-atom interferometers will be driven by two common counter-propagating lasers to perform a measurement of the gravity gradient along this baseline. This article presents the cold-atom sources of MIGA, focusing on the design choices, the realization of the systems, the performances and the integration within the MIGA instrument.