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Abstract

Background Physical exercise favors weight loss and ameliorates both articular pain and function in
patients suffering from osteoarthritis (OA). Irisin, a myokine released by skeletal muscles upon muscle
contraction, has demonstrated to yield anabolic effects on different cell types. The study aimed to
investigate the effect of irisin on human osteoarthritic chondrocytes (hOAC) in vitro . The hypothesis of
this study was that irisin would improve hOAC metabolism and proliferation.

Methods hOAC were isolated from osteochondral tissues of 5 patients undergoing total knee joint
replacement. Cells were cultured in growing media and then exposed to either phosphate-buffered saline
(control group) or human recombinant irisin (experimental group). Cell proliferation (Picogreen assay),
glycosaminoglycan content (dimethylmethylene blue), type IlI/X collagen gene expression (Real-Time
polymerase chain reaction) and quantification (Western blot and densitometric analysis), p38/ERK MAPK
and Akt involvement (Western blot and densitometric analysis) were evaluated in both groups.

Results Irisin increased hOAC proliferation (p < 0.001) and both type Il collagen gene expression ( p <
0.001) and protein levels (p < 0.01), while decreased type X collagen gene expression (p < 0.05) and
protein levels (p < 0.001). These effects seemed to be mediated by the inactivation of the p38 MAPK and
PI3K-Akt intracellular pathways, as irisin reduced phosphorylated p38 (p-p38), (p < 0.01) and
phosphorylated Akt (p-Akt) (p < 0.001) protein levels.

Conclusion Irisin stimulated cell proliferation and anabolism in hOAC through p38 MAPK and PI3K-Akt
inactivation in vitro , demonstrating for the first time the existence of a cross-talk between muscle and
cartilage.

Background

Osteoarthritis (OA) is a degenerative joint disorder affecting more than 10% of adults older than 60 years
of age. It is characterized by increasing joint pain and stiffness often leading to disability, with a
tremendous negative impact on patients’ overall functionality and quality of life, as well as on healthcare
expenditure’. Predominant features are articular cartilage damage and thinning, which are associated
with chondrocyte hypertrophy, tissue inflammation and extracellular matrix (ECM) degradation?~4. Major
risk factors for OA include genetic predisposition, female gender, joint injury and obesity®. Apart from
mechanical overloading, obesity appears to further impact on OA pathogenesis through the secretion of
proinflammatory adipokines involved in cartilage degradation, synovial inflammation and osteophytes
development®. Weight loss and an active lifestyle are essential to reduce the risk of developing OA’ and
improve joint pain and stiffness in patients already affected with knee®® and hip OA™°.

Irisin is a myokine that is secreted into the serum by skeletal muscle after physical exercise'". It was early
recognized for its effects on glucose and fat metabolism, favoring thermogenesis and raising energy
expenditure’2. These pleiotropic effects could explain the benefits of muscle training in numerous
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metabolic disorders including obesity, metabolic syndrome and diabetes'3. Palermo et al. recently
showed that osteoporotic fractures were associated with lower irisin serum levels, independently of other
factors'*. These data were supported by in vitro studies demonstrating that irisin can directly target
osteoblasts and promote cell proliferation, differentiation and matrix mineralization via the p38 mitogen-
activated protein kinase (p38 MAPK) and extracellular signal-regulated kinase (ERK) signaling
pathways'®. Therefore, increasing evidence supports the role of skeletal muscle as an endocrine organ

capable of secreting a wide range of myokines which communicate with other tissues and organs'®. In

this regard, irisin may act as a messenger between muscle and bone during physical exercise'”.

We hypothesized that irisin might maintain cartilage homeostasis through physical exercise acting as a
cross-talk mechanism between muscle and cartilage. This novel idea is supported by a recent study
reporting that serum and synovial fluid levels of irisin are negatively correlated with the severity of knee
OA'8. In this study, we isolated human osteoarthritic chondrocytes (hOAC) from specimens obtained
during total knee replacement procedures. hOAC were then cultured in presence of either recombinant
irisin (r-irisin) or Dulbecco's phosphate-buffered saline (DPBS) and evaluated for cell proliferation,
glycosaminoglycan (GAG) production, type Il and X collagen gene expression and protein synthesis.
Additional analyses were performed to assess p38 MAPK, ERK and PI-3 kinase-Akt pathways
involvement.

Methods
Cell isolation

All experiments were carried out in accordance with relevant guidelines and regulations approved by the
Ethics Committee of Campus Bio-Medico University of Rome. hOAC were isolated from osteochondral
tissues of five patients (n = 5) undergoing elective total knee joint replacement (Table 1). Informed
consent was obtained from each subject. The age of the patients ranged from 58 to 85 years and knee
OA severity was assessed using the Kellgren-Lawrence classification (grades 3 and 4). hOAC were
isolated according to a standardized procedure'®. Specimens were minced and digested for 90’ at 37 °C
with gentle agitation in sterile Dulbecco’s Modification of Eagle’'s Medium (DMEM; Corning) containing 1%
penicillin/streptomycin (P/S; Sigma), 5% fetal bovine serum (FBS; Corning) and 0.2% pronase
(Calbiochem). The remaining tissue was washed and digested overnight in DMEM with 1% P/S, 5% FBS,
and 0.02% collagenase type Il (Worthington). The digest was filtered through a 70-um pore size nylon
mesh, the cells washed, resuspended in DMEM with 10% FBS and 1% P/S, and incubated at 37 °Cin a
humidified atmosphere of 5% CO,. The culture media were changed twice weekly and cultures were

allowed to grow until reaching 80—90% confluence. Passage 1-hOAC were used for the experiments.

Dose-Response Relationships

After tripsinization (Corning) and washing, 2,5 x 10° hOAC were resuspended in culture media and
centrifuged at low speeds (2000 g) for 5' to form aggregates?®. Micromasses were treated either with
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DPBS (Euroclone) (Ctrl) or r-irisin (Sigma) for 7 days at a concentration of 25, 50, 75, and 100 ng/mL,
which is the range between intraarticular'® and blood concentrations in humans'>2'. Media were
changed three times during the week of culture. At the end of the experiment, micromasses were directly
used to assess GAG content normalized to DNA as following. Micromasses were washed with PBS and
digested with 100 pl of papain (Sigma) solution (0.25 mg/ml in 50 mM phosphate buffer, pH 6.5
containing 5 mM cysteine—hydrochloride and 5 mM ethylenediaminetetraacetic acid) overnight with
gentle shaking at 65 °C. GAGs were measured by reaction with 1,9-dimethylmethylene blue (DMMB;
Polysciences) using chondroitin sulfate (Sigma) as a standard. Measurements of absorption were
performed at a wavelength of 530 nm (Tecan Infinite M200 PRO).

DNA content was assessed using PicoGreen Assay (Invitrogen) as described by the manufacturer’s
guidelines on cells extracts. A standard curve based on known concentration of DNA was used to
determine the DNA content. The sample fluorescence was measured using a microplate reader (Tecan
Infinite M200 PRO) at 460 nm and 540 nm wavelengths respectively. Data were expressed as quantity of
GAG normalized to DNA content of chondrocytes cultured in growing media for 7 days, comparing the
percent variation between the control group and the experimental group.

Cell proliferation

Micromasses were treated either with DPBS (Ctrl) or r-irisin (Sigma) at a concentration of 25 ng/mL
(concentration chosen after dose-response assay) for 14 days. At at 4, 10 and 14 days of culture DNA
content was assessed using PicoGreen assay as described above. The assay was performed in triplicate
for each donor. The total number of cells in the sample was determined by converting the total DNA to
cell number using the conversion factor of 7.7 pg DNA/cell = 6 ng DNA = 1 x 102 cells as previously
reported?2. Results were expressed as viable cells/mL.

RNA extraction and gene expression analysis

Micromasses were treated either with DPBS (Ctrl) or r-irisin (Sigma) at a concentration of 25 ng/mL. Total
RNA was extracted from pellets after 7 days of culture using the TRIzol reagent (Invitrogen) according to
the manufacturer's instructions. cDNA was produced using the High Capacity cDNA Reverse Transcription
kit (Applied Biosystems) according to the manufacturer's instructions. mRNA levels were measured
through gRT-PCR using TagMan Gene Expression Assays and Tagman Universal Master Mix Il with UNG-
Real Time PCR System Instrument 7900HT FAST according to manufacturer’s instructions. Gene
expression assays collagen X (Hs00166657), collagen 2A1 (Hs00264051) and GAPDH (Hs03929097)
were used. The expression level of each gene has been normalized to the expression of GAPDH and
calculated as 222Ct, Values in the experimental group were normalized to expression levels encountered
in the control group, which was considered as a baseline. Reagents were purchased from Applied
Biosystems.

Protein extraction and Western Blot analysis
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Micromasses were treated with r-irisin (25 ng/ml) or PBS (Ctrl) either for 7 days or at 10’, 20, and 1 h time
points. Subsequently, protein extraction and Western Blot analyses were performed. Cell lysates were
obtained using radioimmunoprecipitation assay buffer (RIPA buffer; Sigma) for 30’ on ice, cleared by
centrifugation for 30" at 12000 g at 4 °C for 30’ and quantified using detergent compatible (DC) protein
assay kit (Bio-Rad). Total protein extracts (20 pg) from each sample were loaded on 4-12% SDS-PAGE
gels, transferred onto nitrocellulose membranes through the Trans-Blot Turbo Transfer System (Bio-Rad)
and incubated in a blocking buffer (TBST 1X with 5% non-fat dry milk) for one hour. Membranes were
incubated with primary antibody overnight shaking at 4 °Cin TBST 1X with 1% non-fat dry milk. Anti-p38
(rabbit, 1:1000, Cell Signaling), anti-phospho p38 Thr180/Tyr182 (rabbit, 1:1000, Cell Signaling), anti-
p44/42 ERK1/2 (rabbit, 1:1000, Cell Signaling), anti-phospho p44/42 ERK1/2 Thr202/Tyr204 (rabbit,
1:2000, Cell Signaling), anti-AKT (rabbit, 1:1000, Cell Signaling, anti-phospho AKT (rabbit, 1:1000, Cell
Signalig), anti-Coll 2A1 (mouse, 1:500, Novus Biologicals, anti-Coll X (rabbit, 1:300, Abcam), anti-GAPDH
(rabbit, 1:1000, Cell Signaling) were used. Anti-rabbit/mouse HRP-conjugated antibody (1:10000, Abcam)
was used and the chemiluminescence signal detected using ChemiDoc (Bio-Rad) and Quantity One
software (Bio-Rad) to quantify the signal intensity of different bands. Relative p-p38, p-ERK and p-AKT
expression was estimated upon normalization to their respective unphosphorylated protein (p38, ERK and
AKT).

Statistical analysis

All quantitative data are expressed as means + SD. The statistical analysis of the results was performed
using one-way analysis of variance (ANOVA) with Dunnett’s post-test and two-tailed t test where
applicable. Statistical significance was set as p<0.05 (*), p<0.01 (**) and p < 0.001 (***). Statistical
analysis was done using Prism 7 (GraphPad, San Diego, CA, USA). Each experiment was repeated at least
three times and representative experiments are shown.

Results
Irisin promotes GAG production by OA chondrocytes

Three-dimensional cell cultures (n = 4) treated with different concentrations of r-irisin (25, 50, 75 and
100 ng/mL) showed a significant increase in GAG synthesis normalized to DNA compared to the control
cell cultures (Fig. 1) at the lowest concentration (25 ng/mL). Considering the GAG/DNA ratio in the
control group as a baseline of 100%, hOAC exposed to 25 ng/mL irisin showed approximately a 3-fold
increase of GAG/DNA ratio (278.38 + 80.33%; p < 0.001). Although showing an increase in GAG content,
treatment with higher doses of r-irisin did not reach statistical significance (125.15+ 18.34,159.26 +
43.02, 144.51 + 55.37 corresponding to 50, 75 and 100 ng/mL r-irisin, respectively).

Irisin enhances hOAC proliferation

Treating hOAC with 25 ng/mL r-irisin resulted in a significant increase in cell proliferation at 4, 10 and 14
days after starting three-dimensional cell culture (n = 4; Fig. 2). At day 4, exposure to r-irisin led to a 12%
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(62.59 +0.76 - 10° cells/mL) increase in cell proliferation compared to the control group (50.53 + 0.98 -
103 cells/mL; p<0.001). After 10 days of r-irisin treatment, the experimental group contained 105.5 + 8.48
- 108 cells/ml while control hOAC cultured with DPBS had 75.02 + 1.64 - 102 cells/ml (p < 0.001). At day
14, the mean hOAC number after r-irisin exposure still remained significantly higher (137.2+1.24 - 103
cells/ml) in comparison to the control group (101.8 +3.21 - 102 cells/ml; p < 0.001).

Irisin restored the normal ECM gene expression profile of
hOAC

Irisin treatment resulted in the increase of MRNA expression of type Il collagen (Fig. 3A): the relative
mMRNA expression level of this gene was 12.94 + 2.283 in the experimental group compared to controls (n
=5;p<0.001). We also found a significant decreased mRNA expression of the hypertrophic chondrocyte-
related gene encoding type X collagen (Fig. 3A): the mRNA expression level was 0.474+0.315in the r-
irisin group compared to the control group (p <0.001).

We confirmed these data by quantifying the gene product synthesis using Western Blot (Fig. 3B). Irisin
increased the protein levels of type Il collagen and decreased the levels of type X collagen after 7 days of
exposure (n = 3). These results were confirmed by densitometric analysis of protein bands (Fig. 3C).
Indeed, relative type Il collagen expression normalized to GAPDH expression was 7.750 + 1.422 in the
control group, while r-irisin exposure increased this ratio to 54.11 + 9.924 after 7 days (p = 0.009).
Conversely, relative type X collagen expression normalized to GAPDH expression was 1.290 + 0.149 in the
control group, whereas r-irisin treatment diminished the ratio to 0.722 + 0.091 after 7 days (p = 0.031).

Irisin mitigates OA-related changes via the p38 MAPK and
Akt signaling pathways

A decreased amount of phosphorylated p38 (p-p38) and phosphorylated Akt (p-Akt) in hOAC was
detected by Western Blot from 10, 20, and 60 minutes after treatment with r-irisin (n = 3; Fig. 4A). The
decreased phosphorylation of p38 and Akt was statistically significant, as confirmed by densitometry
(Fig. 4B). p-p38 relative protein expression was 1.072 + 0.1084 in the control group, 1.082 + 0.085 at 10
minutes, 0.918 + 0027 at 20 minutes, and 0.634 + 0.054 after 60 minutes of r-irisin exposure (p <0.001).
Regarding p-Akt, relative protein expression was 8.501 + 0.4955 in the control group, 6.309 + 0.0258 at 10
minutes (p < 0.001), 2.451 + 0.4163 after 20 minutes (p<0.001) and 1.466 + 0.220 at 60 minutes (p <
0.001). Conversely, p-ERK protein levels did not show significant changes.

Discussion

In this study we report for the first time that irisin can directly target hOAC and promote cell proliferation
and GAG and type Il collagen synthesis, while reducing type X collagen expression through inactivation of
p38 MAPK and Akt signaling pathways. This is the first study showing that irisin can directly act on
chondrocytes and attenuate OA-related cartilage degeneration in vitro, suggesting the existence of a
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cross-talk mechanism between muscle and cartilage. Irisin is secreted by skeletal muscle in response to
physical exercise and may theoretically promote chondrocyte anabolism so that cartilage can better
adapt to increased load and friction during prolonged exercise.

While irisin first reported effect was to promote adipocyte transdifferentiation and energy metabolism?3,
irisin-induced proliferation, differentiation and anabolic effects were also observed with other cell types,
including osteoblasts?*, bone marrow stromal cells?°, and human umbilical vein endothelial cells?®.
Recent research efforts have described the wide biological activity of such myokine, whose effects are
pleiotropically exerted on several organs, namely the brain?’, the pancreas??, the liver'?, the bone?® and
the skeletal muscle?®. Our data expands the knowledge base for irisin, reporting its role in promoting
chondrocyte anabolism. We tested the anabolic effects of irisin by treating primary hOAC in a three-
dimensional culture system with r-irisin for 7 days. As irisin effect on articular chondrocytes has not been
reported before, we performed a dose-response experiment to assess the most effective concentration on
GAG synthesis by using increasing doses within a range including intraarticular'® and serum irisin

concentration?°2

as reported by previous studies. Our results showed that irisin increased the expression
of type Il collagen while reducing the expression of type X collagen, a marker of chondrocyte hypertrophy
in osteoarthritic cartilage. In addition, we demonstrated that irisin was able to increase hOAC proliferation
at all considered timepoints by disabling the PI3K-Akt pathways which plays a role in cartilage anabolic
as well as catabolic processes in response to the activation of inflammatory processes of various origins.
The reduced number of chondrocytes within osteoarthritic cartilage reduces the capacity of the tissue to
counteract exogenous stresses and to maintain the original ECM composition. In this regard, increasing

chondrocyte proliferation would enhance cartilage metabolism and capacity to react to stressful stimuli.

Our findings have demonstrated that irisin promotes chondrocyte anabolism by inhibiting the
phosphorylation of p38 and Akt. Thus, we suggest that p38 and Akt signaling pathways may play a
critical role in the chondrogenic effect of irisin.

p38 and ERK signaling pathways are crucial to cell proliferation and differentiation3? and may be the
main pathways mediating irisin effects. Indeed, irisin can stimulate browning of white adipocytes through
p38 and ERK MAPK3, promotes human umbilical vein endothelial cell proliferation through the ERK
signaling pathway3? and osteoblast proliferation and differentiation via activating the phosphorylation of
p38 and ERK'°. Moreover, these pathways have been directly implied in OA pathogenesis. In osteoarthritic
cartilage, excessive amounts of basic fibroblast growth factor are released upon mechanical loading and
activate several transduction pathways involving different MAPK, including ERK and p38. This ultimately
leads to upregulation of metalloproteinases, namely ADAMTS-5 and MMP-13, resulting in type Il collagen

degradation and aggrecan fragmentation33. Furthermore, p38 seems to be involved in promoting
chondrocyte hypertrophy and apoptosis, inhibiting cartilage synthesis and downregulating chondrocyte

autophagy3“.
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Extensive studies have revealed the function of Akt pathway in chondrocytes during endochondral
ossification. Deletion of Akt1 results in delayed calcification®®, while Akt activation in embryonic
chondrocytes promotes chondrocyte proliferation and inhibits hypertrophic differentiation3®. However, the
in vivo function of Akt signaling in the maintenance of articular cartilage homeostasis and in OA
development is largely undefined, with different in vitro studies reporting contradictory results. PI3K/Akt
signaling has been shown to play a chondroprotective role by regulating chondrocyte survival,
proliferation and extracellular matrix synthesis3’38. In contrast, some studies have reported a detrimental
effect of PI3K/Akt pathway on OA, which might be achieved through transduction of procatabolic stimuli

or inhibition of articular chondrocyte autophagy®°4%. Our findings demonstrated that increased cell
proliferation and ECM anabolism in chondrocytes treated with irisin were associated with a reduction of
p-Akt and thus with a downregulation of the PI3K/Akt pathway. This is consistent with previous data

regarding PI3K/Akt pathway involvement in irisin signaling on distinct cell types?*!, although other studies

reported increased levels of p-Akt*2. Contrariwise, no significant change in ERK activity was recorded in
this study. This suggest that ERK and PI3K/Akt role in irisin signaling is probably cell-specific and
conditioned by local stimuli.

Physical training yields recognized benefits in preserving joints health and is one of the main
conservative approaches for preventing and treating OA*3. Exercise, by strengthening periarticular
muscles along with general aerobic conditioning can improve joint stability, reduce pain and ameliorate

quality of life®10. Moreover, the administration of physiological dynamic loads, as during physical
exercise, enhances the production of ECM components, including collagens, proteoglycans and oligomers

by articular chondrocytes**. Conversely, disuse and limited movement due to severe illness, cachexia and
muscular diseases can favor joint degeneration and rigidity*°.

However, the effect of physical training on both joint health and irisin serum concentration strictly
depends on the type of exercise*®. Several past studies have reported that resistance, anaerobic and high
intensity exercise can increase irisin levels in the bloodstream?’, while aerobic exercise and reduced load
training do not significantly influence irisin concentration*8. Duration of exercise training and
environmental factors both influence the levels of circulating irisin. A large meta-analysis reported a
decrease of circulating irisin in healthy individuals undergoing either endurance or resistance chronic
exercise (> 8 weeks)*?, whilst another study showed a reduction in irisin levels after two weeks of
climbing at high altitude-hypoxia®®. To date, no evidence concerning the ideal type of exercise or training
protocol for osteoarthritic joints is available. A large meta-analysis comparing high-intensity versus low-
intensity exercise for knee and hip OA was inconclusive®’, although it is widely accepted that improving
muscle strength, aerobic capacity and lowering body weight benefits joint maintenance and
cardiovascular health®.

The major limitation of this study is that results have been obtained using an in vitro experimental design,
even though human primary cells have been used. Currently, no reports are available correlating irisin
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synovial fluid concentration with the type of physical activity performed in either healthy subjects or
patients with OA. Therefore, these data need to be further confirmed in an experimental animal model of
OA exposed to physical exercise. In addition, as the effect of irisin on articular chondrocytes under
physiological conditions has not been described yet, our understanding of its biological role on hOAC
might not encompass all the effects that the myokine would have on the healthy tissue. A further
consideration limiting this study is related to the posttranslational glycosylation of irisin after secretion
that enhances its biological function®'. Indeed, most of commercial r-irisin derived from Escherichia Coli,
including the one used in this study, is non-glycosylated. Therefore, the biological activity may not exactly
reflect the myokine action on chondrocytes in vivo, which may be even stronger.

Conclusion

Our results indicate that irisin may be one of the mediators by which physical exercise and muscle
tissues modulate cartilage metabolism, demonstrating the existence of a biological cross-talk
mechanism between muscle and cartilage. Taken together, our data demonstrate the role of irisin in
chondrocyte metabolism and suggest that irisin can be used as a cartilage-regulating factor, which
directly targets chondrocytes and enhances cell anabolism, suggesting a potential therapeutic role in
treating OA.
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Figure 1

Irisin increases GAG content in treated hOAC. GAG/DNA content in hOAC after irisin treatment
demonstrated a significative increase in the experimental group treated with 25 ng/mL. n = 4, ***p <
0.001 compared to the control group.
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Figure 2

Irisin increases hOAC proliferation. Cell proliferation after treatment with 25 ng/mL irisin atday 0, 4, 10
and 14, as compared with the control group. N = 4, ***p < 0.007 compared to the control group at each
timepoint. Ctrl, control group.
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Figure 3

Irisin restores ECM composition. (A) Type Il collagen relative mRNA expression was significantly higher
after 7 days of irisin exposure, as compared with the control group. Conversely, type X collagen relative
mMRNA expression was diminished upon irisin treatment compared to the control group. N = 5. (B) Western
blot analysis confirmed the same trends, as type Il collagen levels resulted higher whereas type X
collagen levels were lower after irisin exposure at 7 days. N = 3. (C) Densitometric analysis of protein
bands attested that these findings were statistically significant: type Il collagen relative protein expression
was increased (left chart), while type X collagen relative protein expression resulted to be lower at both
intervals. Results were normalized based on GAPDH expression. *p = 0.031; **p = 0.009; ***p < 0.001. Ctrl,
control group. Coll II, collagen type II. Coll X, collagen type X. GAPDH, glyceraldehyde 3-phosphate
dehydrogenase.
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Irisin inactivates p38 MAPK and Akt pathways within hOAC. (A) Western blot analysis showed a reduction
in p-p38, p-ERK and p-Akt levels after irisin exposure at 10, 20 and 60 minutes. N = 3. (B) Densitometric
analysis of protein bands demonstrated a significant decrease of p-p38 levels at 60’ minutes. Similarly, p-
Akt levels were significantly decreased at each time point. p-ERK levels were not significantly

decremented at each time point. N = 3. **p = 0.007; ***p < 0.001.
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