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ABSTRACT 

Loss of Excitation (LOE) is the most considerable fault in Synchronous generators since it affects both the 
generators and power network. The traditional protection method for LOE is based on impedance trajectory of the 
machine with negative offset mho relay. Meanwhile the traditional method experiences malfunctions and speed dip 
in LOE detection. This paper presents machine learning approach to detect LOE fault as well as classification logic 
to discriminate LOE fault from power swing conditions due to Line fault. This paper utilizes Hotelling’s-T2 

statistical method to calculate Hotelling’s-T2 based Fault Indices (HT2 -FI) for fault detection and Support Vector 
Machine (SVM) for classification. The time series data of electrical quantities such as Terminal voltage and 
Reactive Power of the generator are extracted from simulated Single Machine Infinite Bus test system and used as 
input data. This data is involved in calculation of HT2 –FI and in development of classification logic. The proposed 
method is simulated and verified for complete, partial LOE conditions and power swing conditions. Simulation 
outcomes depict the remarkable signs of the proposed method in LOE identification from power swing. 
Comparative assessment also reports that the method is capable of saving time in detecting LOE. 

Keywords: Loss of Excitation, Power Swing, synchronous generator, Hotelling’s T2, Support Vector Machine. 

1. Introduction 

Synchronous Generators may undergo various abnormal conditions and faults. Amongst them Loss of Excitation 
(LOE) fault grabs foremost attention since it causes instability in synchronous machines. The excitation failure 
makes the synchronous machine incapable on controlling the terminal voltage. This leads the machine to act as an 
induction generator and starts to absorb reactive power from the power system. This leads to instability in power 
network [1], [2]. The causes of LOE occurrence are field breaker shutdown, failure of supply to excitation system, 
failure of automatic voltage regulator (AVR), field short circuit/open circuit and poor brush contact of exciter [1], 
[3].Since, LOE is the most significant fault, generator impedance is considered for LOE detection and a protection 
scheme with single mho negative offset is proposed in 1949 by Mason [4]. Because of the malfunctions of this 
scheme, Berdy proposed a LOE protection scheme of two negative mho zones along with time delay [5]. But 
providing time delay is susceptible to stable power swing (STPS) and other system disturbances since the relay may 
undergo on false operation [6].Moreover, in [6] a tripping criteria based on rate of change of impedance is addressed 
for LOE protection which excludes malfunction on STPS. But, the performance on types of LOE are unconfirmed 
and may require wide simulation process. An adaptive LOE relay scheme based on steady state stability limit along 
with mho element is suggested in [7].However, the behavior of this scheme under different generator loading 
conditions is unsupervised. In [8] a LOE index is derived from the generator terminal voltage and reactive power 
variations for LOE detection. But the index performs on limited scenarios in a predetermined manner and may 
involve more investigations on relay settings. The LOE protection method addressed in [9] is based on the 
measurement of flux linkage in the air-gap of the synchronous generator. In [10] air-gap flux linkage along with the 
negative sequence current of the generator is used for LOE protection. Though [9], [10] shows good outcomes on 
LOE protection, the sensor requirement for measuring air-gap flux is a complex process in practical. In [11] an 
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analytical approach based on internal voltage calculation is suggested for detection of LOE event. Apart from good 
results, more simulation process may involve on set point calculation. The sign of generator’s second order 
derivative of the armature current signal of synchronous generator is addressed for LOE protection in [12].The index 
performance needs to be enhanced for partial LOE condition. LOE protection based on measurement of rotor signals 
such as filed flux linkage and field current is proposed in [13], [14]. However, these approaches have a shortcoming 
on sense of type of Loss of Excitation. In [15] a new approach is proposed based on the calculation on DC power 
injection into the field circuit of the generator from the exciter. The DC power is obtained from exciter output 
voltage and current signal for power calculation to detect LOE. In [16], a protection method based on slip frequency 
is recommended to enhance the working of traditional LOE relays in order to prevent malfunctions on power swing 
conditions. A differential index calculation is recommended in [17], in order to observe the difference among the 
measured excitation current and calculated field current at the time of LOE for LOE protection. It also secures the 
system from other power system disturbances. 

The development of AI techniques makes their implementation in fault detection, since they proved their importance 
in each digital platforms. In [18], fuzzy inference mechanism based LOE protection and discrimination from other 
situations is depicted. This method uses terminal voltage and apparent impedance of the generator as inputs to the 
fuzzy system, so as to develop fuzzy rules to enhance the LOE protection of conventional method. ANN based LOE 
protection scheme is proposed in [19] by considering the FFT of the parameters such as current, voltage, 
speed/angle/power deviation of the machine and admittance. The classifier is able to produce good accuracy on LOE 
detection but still needs enhancement. In [20] an ANN based LOE protection approach is depicted based on 
excitation voltage and output active power. A decision tree algorithm is proposed in [21] for LOE protection as well 
classification from stable power swing conditions. Due to the immense growth of AI methods, it is expected to 
device such AI based protection methods in practical. The motive of this research is to provide a combined statistical 
and classification approach for LOE fault detection and classification from power swing condition. 

Though several researchers recommended numerous protection methods for LOE detection, AI based method grabs 
more attention in present days.  
• This paper introduces Hotelling’s T2 Statistics Approach for detection of Loss of excitation fault in synchronous 

generators and power swing conditions too.  
• Here the time series data of Terminal voltage (Vt) and Reactive Power (Q) for a specific simulation window is 

obtained for normal condition to calculate the threshold values.  
• Then new observed data for fault condition is considered to detect LOE fault. If any deviations found with the 

new observed data by falling out of the threshold value then LOE fault is confirmed. In the same way the 
proposed approach is able to detect partial loss of excitation condition and power swing condition also.  

• After fault detection, Support Vector Machine (SVM) classification is performed to classify the LOE fault from 
power swing and normal operating conditions. The obtained classification model is validated with k-fold cross 
validation and evaluated with performance indices in order to prove the performance.   

• A new classification logic is recommended in this work to classify the LOE from normal and power swing 
condition with the Terminal voltage (Vt) and Reactive Power (Q) of the machine. 

2. LOE-Background 

A System that supplying DC current to the filed winding of the synchronous machine is termed as Excitation 
System. This system keeps the generator in synchronous with the grid. The occurrence of outages in excitation 
systems may induce abnormal operating consequences [22], [23]. 

2.2 Impacts of Loss of Excitation 

LOE fault may throw severe damages on the Generator and Power Network. On Generator – LOE makes, the rotor 
current decreases slowly. As well the field voltage started to decay. Correspondingly, the electromagnetic coupling 
between the stator and rotor decreases. Finally the generator draws reactive power from the power network. The 
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whole LOE process leads to the development of loss of synchronism, the point at which the generator becomes 
incapable to supply electric power [16], [24]. In Grid connected mode, during LOE generator started to act as an 
induction machine which results in collapse of grid voltage in some weak system. This may also results in 
overloading of transmission lines/transformers and miss-operation of over current relay by considering overloading 
as fault [22], [24]. 

Hence, LOE should be treated as a critical condition that might have severe counter productivity on both 
synchronous generator and power grid. 

2.3 Detection Schemes of LOE 

Impedance (R-X) scheme plays a major role in detection of LOE. Here, the impedance calculation is done by 
measuring the voltage and current phasors. A typical single phase offset mho relay was introduced for LOE 
detection by Mason in 1949. This relay consists of single zone circle of diameter 𝑋𝑋𝑑𝑑with negative offset equal 
to𝑋𝑋𝑑𝑑′ /2 [25], [24]. 

Due to the arrival of larger reactance machines Berdy proposed Mho relay with two negative offset zones for LOE 
protection as shown in figure 1.a, along with d-axis transient reactance (𝑋𝑋𝑑𝑑′ ) and synchronous reactance (𝑋𝑋𝑑𝑑). The 
first zone with diameter equal to 1 p.u and offset of 𝑋𝑋𝑑𝑑′ /2 detects LOE in heavy loaded condition. The second zone 
with diameter equal to 𝑋𝑋𝑑𝑑 and offset of 𝑋𝑋𝑑𝑑′ /2 detects LOE in light loaded condition of synchronous machine. Later, 
mho relay with combination of directional unit and two offset mho zones introduced for LOE detection and the 
settings are shown in figure 1.b. The positive offset mho relay has time delay of 0.1 and 0.5s for zone1 and zone 2 
[25], [26]. A time delay setting is provided for both zones in both methods to avoid mal operations of the relay 
however this is not wise in ride through transient conditions which may cause undesirable operation [25], [26]. 

 

 

 

 

 

 

                      (a)           (b) 

Figure. 1. Mho Relay Characteristics: a) Negative offset Mho Relay b) Positive offset Mho Relay 

3. Proposed Scheme 

In this study, a power network simulation is performed with LOE fault and Power Swing Conditions. Data 
acquisition part is carried out in order to prepare the data. Hotelling’s T2 Statistical Approach is proposed for the 
detection of LOE in Synchronous Generator. This approach is also intended to detect complete LOE and Partial 
LOE faults as well as power swing conditions in synchronous machine. Then Support Vector Machine (SVM) is 
involved in LOE fault diagnosis. The proposed scheme comprises of three stages. They are 

• Data Acquisition and preprocessing 
• LOE detection 
• LOE classification from other operating conditions 

The entire structure of the proposed method is presented in figure.2 
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3.1 Modeling of LOE 

A power system network of Single Machine Infinite Bus (SMIB) system to evaluate the proposed method is 
simulated in MATLAB/Simulink-2018(a) as shown in figure. 3. The sample power network consists of a 
Synchronous Generator with step-up transformer connected to an infinite bus through a transmission line. The data 
for the simulation has been given in Table 1. 

Table 1. Test System Data  

Generator Transformer Transmission Line Loads 
S=187MVA VH = 13.8 kV Length = 100 km Load1 = 13.8 kV 
V= 13.8 kV VL = 230 kV  Load2 = 230 kV 

f = 50Hz f = 50Hz   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 2. Proposed Methodology  

 

 

 

Figure. 3. Simulated Sample Power System 

3.2 Data Acquisition 

The sample power system is simulated and the performance of the generator is analyzed under normal operating 
condition. Also the performance of the generator under LOE condition is observed. During LOE condition the 
generator starts to act as an induction machine and changes occur in electrical and mechanical parameters. The 
Terminal voltage (Vt), Reactive Power (Q), are the parameters measured at the Generator terminal in this study. In 
the same way the parameters are measured under power swing condition. 
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These generator parameters are measured and collected as raw data for specific time window in the proposed 
method. Then preprocessing of the acquired data is achieved through data normalization to obtain a narrow data. In 
this work, Min-Max Normalization method is considered and the equation for normalizing data D to an arbitrary 
interval [𝑥𝑥1𝑥𝑥2] is given below 

( )121 minmax
min xxDxD

DD

D
scale −









−
−

+=         (1) 

After normalization, the data is set for LOE fault detection through Hotelling’s T-square approach [27]. 

3.3 Hotelling’s T2Based Fault Detection 

In this work, Hotelling’s T2 Statistics Approach [27] is used to determine the fault detection indices to detect LOE 
fault. This approach used in power system applications in finding faults [29]. This approach uses estimated mean 
and variance, the 1st order statistical quantities along with the 2nd order statistical quantity such as sample covariance 
matrix from normalized data for calculation. Moreover, T2 calculation in this research is used to find the deviation of 
the LOE fault data from the normal data in order to determine the Hotelling’s T2 based fault indices (HT2 -FI). 

The data considered under normal operation is represented as D = {D1, D2, D3 …DN}. After data normalization the 
normal data is denoted as dnorm = {d1

norm ,d2
norm ,d3

norm ,……dN
norm }. The mean and standard deviation are calculated 

and the steps involved in calculating the T2 value [28] for normal data (𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 ) is given in the below algorithm.  

T2 calculation Algorithm for Normal Data 

Input: dnorm = {d1
norm ,d2

norm ,d3
norm ,……dN

norm} 

Step1: Calculate the sample mean �̅�𝑑𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1
𝑁𝑁
∑ 𝑑𝑑𝑖𝑖𝑁𝑁
𝑖𝑖=1       (2) 

Step2: Calculate the sample covariance matrix (Cij) between the data features 

            𝐶𝐶𝑖𝑖𝑖𝑖 = 1
𝑁𝑁−1

∑ (𝑑𝑑𝑁𝑁𝑖𝑖,𝑘𝑘
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − �̅�𝑑𝑁𝑁𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)(𝑑𝑑𝑁𝑁𝑗𝑗,𝑘𝑘
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − �̅�𝑑𝑁𝑁𝑗𝑗

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)𝑁𝑁
𝑘𝑘=1         (3) 

Step3: For i=1 to N; estimate𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖
2  

𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖
2 = 𝑁𝑁 ∗ ��̅�𝑑𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑑𝑑𝑁𝑁𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝑇𝑇 ∗ 𝐶𝐶𝑖𝑖𝑖𝑖−1 ∗ ��̅�𝑑𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑑𝑑𝑁𝑁𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�          (4) 

Step4: Compute mean of 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖
2  

                                            𝜇𝜇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 = 1
𝑁𝑁
∑ 𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖

2𝑁𝑁
𝑖𝑖=1                                (5) 

Step5: Calculate standard deviation 

               𝜎𝜎𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 = � 1
𝑁𝑁−1

∑ (𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖
2 − 𝜇𝜇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 )2𝑁𝑁

𝑖𝑖=1     (6) 

Output:�̅�𝑑𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝐶𝐶𝑖𝑖𝑖𝑖, 𝜇𝜇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2  , 𝜎𝜎𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2  

By following the above mentioned algorithm mean (�̅�𝑑𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛), sample covariance (𝐶𝐶𝑖𝑖𝑖𝑖), T2 value (𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖
2 ) and standard 

deviation (𝜎𝜎𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 ) for normal data can be obtained. 

3.3.1Fault Detection 

Using sample mean and covariance T2 value is calculated for new observed data. This value transformed into T2 
statistic related to F-distribution with the sample mean and covariance. The T2control limit is attained by F-
distribution for significance level of α is given by the following equation. 
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                  𝑇𝑇𝛼𝛼2 = 𝑞𝑞(𝑛𝑛−1)(𝑛𝑛+1)
𝑛𝑛(𝑛𝑛−𝑞𝑞)

𝐹𝐹𝛼𝛼(𝑞𝑞,𝑛𝑛−𝑞𝑞)                                        (7) 

Where n denotes the number of observations in new observed data, q represents the number of variables and α 
represents the false alarm rate. The new observation are said to be fault when the T2value is greater than the 
T2control limit and it is given by T2>𝑇𝑇𝛼𝛼2 [28], [29], [30]. 

But when the number of observations in the new data more than 30, the F-distribution based control limit cannot be 
used as threshold for fault detection. This control limit can be replaced with central limit theorem (CLT) for fault 
detection in new observed data. The mean and standard deviation calculated from the normal data is considered for 
the estimation of threshold value range for fault detection which has upper limit and lower limit. The upper limit is 
given by 𝜇𝜇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 + 𝜆𝜆 ∗ 𝜎𝜎𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 . The lower limit is given by 𝜇𝜇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 − 𝜆𝜆 ∗ 𝜎𝜎𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 . The threshold range is fixed with 
this two limits for fault detection. Here, λ represents the level of confidence ranging from 1-3. 

The new observed data is preprocessed and given as dobs= {d1
obs, d2

obs,d3
obs,……dN

obs}. Then 𝑇𝑇𝑛𝑛𝑜𝑜𝑜𝑜2  is calculated for 
the new observed data with the help of calculated mean and covariance for the data corresponding to normal 
operating condition. If the 𝑇𝑇𝑛𝑛𝑜𝑜𝑜𝑜2 value lies within the threshold range then there is no fault. But if it lies out of the 
threshold limits then it is confirmed for fault. The algorithm for fault detection is given in the following steps. 

Fault Detection Algorithm 

Input: observed new data-𝑑𝑑𝑛𝑛𝑜𝑜𝑜𝑜,𝐶𝐶𝑖𝑖𝑖𝑖,𝜇𝜇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2  , 𝜎𝜎𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 , �̅�𝑑𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, λ 

Step1: Obtain preprocessed new observed data 𝑑𝑑𝑁𝑁𝑛𝑛𝑜𝑜𝑜𝑜 

Step2: Calculate 𝑇𝑇𝑛𝑛𝑜𝑜𝑜𝑜2 = 𝑁𝑁 ∗ ��̅�𝑑𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑑𝑑𝑁𝑁𝑛𝑛𝑜𝑜𝑜𝑜�
𝑇𝑇 ∗ 𝐶𝐶𝑖𝑖𝑖𝑖−1 ∗ ��̅�𝑑𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑑𝑑𝑁𝑁𝑛𝑛𝑜𝑜𝑜𝑜�                     (8) 

Step3: Check for threshold limits (Fault indices-HT2 -FI).                    (9) 

If (𝜇𝜇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 − 𝜆𝜆 ∗ 𝜎𝜎𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 ) ≤𝑇𝑇𝑛𝑛𝑜𝑜𝑜𝑜2 ≤ (𝜇𝜇𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 + 𝜆𝜆 ∗ 𝜎𝜎𝑇𝑇𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 ) then 

Step4: Return Normal else 

Step5: Return fault 

Step6: End if 

Here, 𝑇𝑇𝑛𝑛𝑜𝑜𝑜𝑜2 indicates major deviations present in the new observed data to identify the LOE-fault with the help of 
threshold limits. 

3.4 Support Vector Machine Classification  

Support Vector Machine (SVM) - A supervised machine learning and pattern recognition technique suitable for 
classification problems [31]. The SVM used for classification is also termed as Support Vector Classification (SVC), 
which finds a decision criterion based on linear discriminant function that properly separates data with decent 
generalization ability with respect to the number of classes i.e., two or more. The classification (decision) criterion is 
a linear straight line with maximum distance from each class of data for a two class classification. This linear 
classifier is termed as optimal hyperplane in SVC related problems [32] and the verdict of separation is recognized 
by the support vectors. In this research, the input samples (d) used in training and testing stages as shown in fig.2 
and the output is target/label/status of class. Here two labels of LOE fault and other conditions (Normal and Power 
Swing) are considered for classification. In addition, the dimensions of hyperplane that separates LOE and Other 
conditions status, depends on the number of features in input data. In SVC, the decision hyperplane for training data 
is given by the following function 

                            𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 𝛽𝛽. 𝑥𝑥 + 𝑏𝑏 = 0                      (10) 
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Where, b is the bias term of real number, w is the n dimensional weight vector and x is the data points of training 
data set. SVM creates the hyperplane that should have a least possible error in separation of data and by calculating 
the bias and weight vector. Also the hyperplane should maximize the margin of data according to the class [32].The 
separation of input data (x) corresponding to the target class (yi) can be in left (yi=+1) or in right (yi=-1) sides of the 
decision plane (where +1 and -1 denotes data belongs to LOE fault and other conditions respectively) as given in 
figure.4. The margins that controls the separation of data is given by as follows: 

𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏 = 𝛽𝛽. 𝑥𝑥 + 𝑏𝑏    ≥ 1   for yi=+1 

       ≤ -1    for yi=-1                      (11) 

Still, there are many margins can be considered as decision boundary of each class because the hyperplane can be 
anywhere between +1 and -1 status. Hence, it is necessary to find out the best hyperplane that maximizes the 
distance between margins [32]. In order to get maximize the distance, minimizing the weight vector can be carried 
out which is given by 1

2
𝑤𝑤𝑇𝑇𝑤𝑤. 

The problem of determining the optimal hyperplane is represented as follows and it is subjected to the constraint of 
margin of two class [32]. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑤𝑤,𝑜𝑜 = 1
2
𝑤𝑤𝑇𝑇𝑤𝑤 s.t. 𝑦𝑦𝑖𝑖(𝛽𝛽. 𝑥𝑥 + 𝑏𝑏) ≥ 1       (12) 

However, to obtain a good hyperplane for separation, a penalty function is introduced to minimize the classification 
error, where the actual output (yi) differs from the predicted output (f(x)). In this regard the optimization problem 
including penalty function can be represented as follows [32]: 

                                       𝑀𝑀𝑀𝑀𝑀𝑀𝑤𝑤,𝑜𝑜,𝜉𝜉 = 1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐶𝐶 ∑ 𝜉𝜉𝑖𝑖𝑁𝑁

𝑖𝑖=1                       (13) 

       s.t.𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏) ≥ 1 − 𝜉𝜉𝑖𝑖        for 𝑦𝑦𝑖𝑖 = +1          (14) 

 𝑦𝑦𝑖𝑖(𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏) ≥ −1 + 𝜉𝜉𝑖𝑖     for 𝑦𝑦𝑖𝑖 = −1          (15) 

Where, C is the flexible parameter that controls the error and the value recommended for C is 1 for many 
applications. The value for 𝜉𝜉𝑖𝑖 lies between 0 and 1. 

 

 

 

 

 

 

 

 

Figure. 4. SVM in Two Class Classification with Hyperplane 

It is observed that the weight vector (w) and the bias value (b) are attained by resolving the optimization problems 
through the equations (9)-(11). Sequential Minimal Optimization (SMO) algorithm is used to resolve this 
optimization problem in MATLAB and this is commonly used for SVM classification training. 
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3.4.1 Validation 

The most usual technique to evaluate the model in learning practice is k-fold cross validation (k-fold CV). The term 
cross validation expedites the concept of testing of each and every sample in the dataset. In k-fold CV the data is 
randomly separated into k-folds of same size and also for an iteration of k times over the data set to validate the 
obtained model. In this k-folds one fold is used for testing (validation) and the remaining k-1 folds are used as 
training subset to examine the model performance [33], [34]. Normally the k value will be chosen as k=1 or k=5. 

In this research 10-fold cross validation is used for the evaluation of the developed algorithm. Here, the data is 
separated into 10 folds of same size randomly. In iteration 1, the first fold is validation fold and remaining folds are 
training. In iteration 2, the second fold is considered as test set and remaining are used as training sets. This process 
is extended till 10th iteration to evaluate the model. The process of k-fold cross validation for the value K=5 is 
shown in figure. 5 for understanding. 

 

 

 

 

 

 

 

Figure. 5. K-Fold Cross Validation 

3.4.2 Evaluation 

The following performance indices are involved in evaluation of the performance of the developed model in 
classification of LOE fault. 
Dependability = Predicted LOE cases/Actual LOE cases 
Security = Predicted Non-LOE cases/Actual Non-LOE cases 
Accuracy = correctly classified cases/All cases. 
4. Simulation Environment 

The modeling and simulation of the test power system under various operating conditions has carried out in 
MATLAB software, an important engineering tool to perform the simulation studies. The performance of the 
synchronous generator has monitored under the following operating conditions: 

• Normal operating condition- (Non-Fault condition) 
• LOE fault conditions 

1. Complete LOE (CLOE) 
2. Partial LOE (PLOE) 

• Power Swing Condition (PSC) 
The variation of the generator  parameters such as Terminal voltage (Vt), Real power (P), Reactive power(Q), 
Resistance (R) and Reactance (X) at the machine terminal has measured under normal, CLOE, PLOE and PSC 
conditions at full load condition. From the measured parameters, terminal voltage (Vt) and reactive power (Q) alone 
considered for the LOE fault detection and classification. The changes of these parameters for 30 seconds of 
simulation period under CLOE condition is shown in figure 6.a. also the changes due to power swing because of line 
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fault is shown in figure 6.b. The nature of change of the generator parameters Vt and Q in normal, CLOE, PLOE and 
PSC conditions are shown in Table 2. 

Table 2. Change of Parameters under Normal, CLOE, PLOE and Power Swing conditions 

Parameters Normal 
Condition 

CLOE PLOE PSC 

Vt Constant Decreases Decreases Oscillates 
Q Constant Negative Negative Oscillates 

 

 
Figure. 6. a – Variation of Terminal Voltage and Reactive Power in CLOE condition at 3 sec. 

 

 
 

Figure. 6. b – Variation of Terminal Voltage and Reactive Power in Power Swing condition due to 3-phase Line 
Fault for duration of 100ms 

From the simulated waveforms, the time series data has been collected for Vt and Q under normal, CLOE, PLOE 
and PSC conditions.  Then the collected data were normalized with min-max normalization method for further 
analysis such as fault detection and classification.  
 
4.1Fault Detection 
The Hotelling’s T2 based fault detection has performed on the normalized data for CLOE, PLOE and PSC 
conditions, to detect fault in synchronous generators and this has done with the help of MATLAB software package. 
The steps involved in fault detection as mentioned in section 3.3 are as follows: 
Step1: Acquisition of normal and observed data 
Step2: Collected data has normalized. 
Step3: Calculation of Mean T2 value, co-variance and standard deviation for Normal Data 
Step4: Estimation of T2 value for observed Data 
 Step4.1: Computation of HT2 –FI as given in equation number 10 
 Step4.2: Validation of step 4 with HT2 -FI 
Step5: Detection of LOE Fault 
After fault detection, fault classification has carried out with Support Vector Machine (SVM) to classify LOE fault 
data from the other data. 
4.2 Fault Classification 
SVM classifier is used for the classification of LOE fault from PSC and normal operating condition. Also, here the 
PLOE condition is considered as LOE condition for classification. After classification, validation and evaluation of 
the classifier is performed to elevate the performance of the SVM classifier. The steps involved in SVM 
classification are as follows: 
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Step1: Collection of Input data from fault detection step 
Step2: Training of Data with SVM classifier 
Step3: Test Data classification  
Step4: k-fold cross validation 
Step5: Classifier evaluation with performance indices 
 Step5.1: Dependability 
 Step5.2: Security 
 Step5.3: Accuracy 

5. Simulation Results and Discussions 

The procedural steps of generation of training datasets and testing datasets have been addressed in this section. The 
performance of the proposed method has been evaluated with the obtained features from simulated test power 
system. The efficiency of the proposed method has been confirmed by the simulation results. 

5.1 Generation of Data sets 

The data have been generated from the developed simulink model of the test power system. The simulation has been 
carried out for a specific time period and the time series data have been obtained for Terminal Voltage (Vt) and 
Reactive Power (Q) for full load condition of the power system. This dataset includes pre-fault (normal) and fault 
conditions. The datasets have been generated for the following conditions.  

CLOE fault condition: To obtain the CLOE condition, the filed voltage has reduced to 0 at t=3s. The simulation 
length has been varied from 5s to 30s for CLOE at 1s. This data have been collected with samples of 51044×2. This 
simulation has carried out for CLOE at full load condition for the above mentioned simulation lengths to obtain 
variety of datasets in order to test the proposed method. 

PLOE fault condition: The same process as that of CLOE condition has been followed to obtain the dataset for 
PLOE condition by reducing the field voltage to 0.5 p.u. The number of samples obtained are 20951×2 for PLOE at 
t=3s for simulation length of 5s to 30s. 

Power Swing Condition: The PSC samples obtained by creating a 3-phase fault in transmission line for a duration of 
50ms, 100ms and 200ms. This simulation has been carried out for different durations and the number of samples 
obtained are 16680×2. 

Normal Condition: The normal samples have been generated by considering the system running under no fault 
condition. The number of samples obtained are 10193×2 for the simulation length of 5s to 30s. 

5.2 Fault Detection Using Proposed HT2 –FI 

The fault detection has been performed for CLOE, PLOE and PSC data samples using the proposed method. The 
HT2 –FI (Lower and Upper threshold limits) has been calculated from the normal and CLOE data to detect the 
CLOE fault. The same process has followed for PLOE and PSC data to detect fault condition. When the T2 value for 
the observed data lies within the HT2 –Fault Indices it is normal state. Rather if it lies outside of the Indices then the 
fault is confirmed. Here the lower and upper threshold limit values for 30s of simulation period for level of 
confidence λ=1, are-1.32e-3 and 1.32e+3. With this boundary limits the CLOE fault has been detected and the same 
procedure has been executed for detection of PLOE and Power Swing condition and the results are confirmed.  

To assure the performance of the proposed method the simulation period has been broken into 6 stages and the data 
samples also obtained for the corresponding stages simulation periods. This has been carried out for the considered 
three conditions. For each stage of simulation the fault detection has been performed using the proposed method and 
the result are presented in Table3. 
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The CLOE fault has been applied at 3rdsec for each simulation stage and the data samples are collected for Vt and Q 
as mentioned in section 5.1. The HT2 –FI for each stage has been calculated to detect the CLOE fault. The Table 1 
shows that the proposed method has been detected the normal samples as No Fault condition. The CLOE condition 
is detected as Fault with the proposed scheme for the 6 stages of simulation period. The same procedure has been 
followed to detect PLOE condition for each stage and the results are shown in Table 3. Here the PLOE fault has 
applied at 3rd sec for each simulation stage and data samples are obtained. From the results in Table 3 it is proved 
that the PLOE condition is detected in a successful manner. 

 Table 3. LOE Fault Detection using HT2 –FI for 6 stages of simulation period 

Nos × 2*- Number of Samples for Vt and Q;NF*-Non Fault ;F*-Fault 

As well this procedure executed for PSC data and the response shows as fault on PS conditions. The results for PSC 
is given in Table 4. 
Table 4. Response of HT2 –FI under power swing condition for 6 stages of simulation period 

Simulation 
Stages (Sec) 

 Normal Samples 
(Nos × 2) 

Response Fault Duration 
(ms) 

PSC Samples 
(Nos × 2) 

Response 

30 2530 NF 50 3692 F 
15 1602         NF 100 1998 F 
20 1913 NF 100 2355 F 
25 2231 NF 100 2691 F 
30 2530 NF 100 3034 F 
30 2530 NF 200 2910 F 

Nos × 2*- Number of Samples for Vt and Q; NF*-Non Fault;   F*-Fault 

From the Table 3 and Table 4 it is confirmed that the proposed HT2 –FI method is able to detect CLOE, PLOE 
faults. It also detects the normal samples as Non fault condition. Meanwhile it detects power swing conditions too. 

The plot indicates the HT2value for the observed data of stage 6 (simulation period of 30sec) lies outside of the 
lower limit (LL) and upper limit (UL) which are the CLOE indices. Hence, the CLOE fault is confirmed and this 
shown in figure 7. Ytsdm in figure 8 represent the HT2value of CLOE data. 

 

 

 

Figure. 7. HT2 Results to detect CLOE fault 

Simulation 
Stages (Sec) 

 Normal 
Samples 
(Nos × 2) 

Fault 
Detection 

CLOE 
Samples 

(Nos × 2 ) 

Fault 
Detection 

PLOE 
Samples 
(Nos × 2) 

Fault 
Detection 

5 697 NF 699 F 706 F 
10 1220         NF 1204 F 1152 F 
15 1602 NF      4452 F 1432 F 
20 1913 NF 9683 F 1835 F 
25 2231 NF 14951 F       5307 F 
30 2530 NF 20055 F 105179 F 
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The aforementioned fault detection method has been carried out for level confidence value λ=1. This has 
implemented for CLOE, PLOE and power swing conditions. The results show the efficiency of the proposed fault 
detection method. To showcase the efficacy of the proposed method even more, the confidence region has varied 
and the same fault detection procedure has performed. The level of confidence (λ) value has increased from 1 to 3. 
However, this increment in threshold limits has no impacts on the LOE fault detection because the CLOE and PLOE 
faults are successfully detected using proposed scheme and the result shown in Table 5.   

Table 5. Fault Detection on Various Level of Confidence Values 
λ 

(Level of 
Confidence) 

Normal 
Condition 

CLOE Fault 
Detection 

PLOE Fault 
Detection 

PSC 
Detection 

1 NF F F F 
1.5 NF F F F 
2 NF F F F 

2.5 NF F F F 
3 NF F F F 

NF*-Non Fault  F*-Fault 
From Table 5 it is proven that the LOE fault detection using proposed HT2-FI method is effective even in increased 
threshold limits. The same method responds for power swing condition too. Hence, a classification method is 
proposed to classify LOE from power swing condition. 
5.3 Fault Classification Using SVM 

After successful detection of CLOE, PLOE fault and PSC it is required to classify the LOE fault from PSC and 
SVM is used for classification purpose. To provide an illustration on SVM approach the simulation stages of 15sec, 
25sec and 30 sec are considered. After LOE detection the samples in each simulation stage undergone for SVM 
classification to portrait how many of LOE samples are classified properly from PSC and normal samples to confirm 
LOE fault.  Through the classification model LOE is classified from PSC and normal samples successfully. The 
model parameter used here is Linear Kernel Function. To validate this model 10-fold cross validation is performed 
with k=10. In this validation the data samples in each stage is divided into 10 folds where the first fold is for testing 
and remaining folds are for training purpose. This process is repeated for 10 times to validate the performance of the 
model. This entire process is carried out for the simulation stages of 15sec, 25sec and 30 sec. Later on the 
performance indices such as dependability, security and accuracy are illustrated to evaluate the model for 15sec, 
25sec and 30 sec of simulation stages and are shown in Table 6. 

Table 6. Performance of SVM Classification Model  
Performance Indices 15sec Simulation 25sec Simulation 30sec Simulation 
Dependability (%) 80.3 94.27 96.20 
Security (%) 98 98.5 98.70 
Accuracy (%) 87.01 95.1 96.59 

From Table 6, it is confirmed that the LOE samples are classified from PSC and normal samples in a consistent 
manner. For instance, the performance indices for 30sec simulation shows that the proposed model is more perfect 
for LOE classification since the accuracy is 96.56% and the confusion matrix for the same is given in Table 7. 

Table 7: Confusion Matrix for 30sec simulation of SVM Classification 

Samples of 30sec 
Simulation 

Predicted Class 
-1 1 

True Class -1 5492 72 
1 1161 29413 

This SVM Classification seems to be efficient based on the Receiver Operating Characteristic (ROC) curve which 
shows the balance between true positive rate and false positive rate. From the figure 8, it has been incurred that the 
upper left triangle of the ROC plot is engaged with the results. Also the area under the curve (AUC) measure is 
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0.985. This depicts that the efficiency is good for the proposed classification model with ROC curve for 
classification of LOE from other conditions. 

 

 

 

 

 

 

 Figure. 8. ROC Plot for SVM Classification 

The decision on classification is done by considering equation (8), where x in equation (8) represents the data 
vectors of two parameters Vt and Q. The weight vector (𝑤𝑤𝑇𝑇) for classification is obtained during simulation with 
SVM algorithm as 𝑤𝑤𝑇𝑇 = [-4.7542, -23.3743] and the Bias value b = -6.0207. The logic for LOE classification is 
shown in figure 9. 

 

 

 

 

 

 

                                                    

Figure .9. LOE Classification Logic 

6. Performance Comparison  

The performance of the proposed method is compared with other published Literatures. In this regard, performance 
comparison is done among the proposed method and other methods depicted in literature [16] and [18]. The time 
taken for LOE detection is given in Table 8. The parameters considered for LOE detection in other schemes and the 
LOE types taken are also mentioned in Table 8. The outcomes of Table 8 depict that the proposed method is capable 
of showing significant improvement in time taken to detect and classify LOE fault from other operating conditions. 
In addition to that, the PLOE also considered in proposed method.  

Table 8. Performance Comparison of Proposed Method with other methods published in Literature 

LOE Protection  
Scheme 

Parameters 
Considered 

Scenarios LOE Type Detection 
Time(sec) 

Method [18] V,Z LOE/PSC CLOE 3.4-13 
Method [16] Slip Frequency LOE/PSC CLOE 14.94 
Proposed Method Vt,Q LOE/PSC CLOE/PLOE 5.31 

From the tabulated results, it is clear that the proposed method is able to detect the fault conditions and classify the 
LOE from Power Swing and Normal Conditions in a quick manner.  
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7. Conclusion 

A new setting free method to detect LOE in Synchronous Generators and classify LOE from other operating 
conditions was given in this paper. The LOE fault detection was based on Hotelling’s T2 method. The terminal 
voltage and reactive power measured from generator terminal were used to calculate HT2 –FI. During normal 
operating condition of the generator, the observed data lies within the index. On the other hand during fault the 
observed data falls out of HT2 –FI. With this criteria LOE phenomenon is confirmed. As well, the partial LOE and 
PSC due to 3-phase line fault were also detected in the same manner and the simulation results showcased the same. 
Afterwards, SVM classification is performed to classify LOE from normal and Power swing condition. Then a 
classification logic is developed in this study. The test results showcase the efficiency of the classification model in 
maintaining the dependability, security and accuracy. According to the comparative study performed, the proposed 
scheme consumes reduced time duration in LOE detection and classification. The proposed method is more reliable 
and unchallenging in LOE detection and classification of LOE from other operating conditions in a power system 
network. 
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