Baloch S, Kazi TG, Baig JA, Afridi HI, Arain MB (2020) Occupational exposure of lead and cadmium on adolescent and adult workers of battery recycling and welding workshops: Adverse impact on health. Sci Total Environ 720:137549. https://doi.org/10.1016/j.scitotenv.2020.137549
Chang Q, Diao FW, Wang QF, Pan L, Dang ZH, Guo W (2018) Effects of arbuscular mycorrhizal symbiosis on growth, nutrient and metal uptake by maize seedlings (Zea mays L.) grown in soils spiked with Lanthanum and Cadmium. Environ Pollut 241:607-615. https://doi.org/10.1016/j.envpol.2018.06.003
Chen WL, Koide RT, Adams TS, DeForest JL, Cheng L, Eissenstat DM (2016) Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. P Natl Acad Sci USA 113:8741-8746. https://doi.org/10.1073/pnas.1601006113
Chen X, Wu CH, Tang JJ, Hu SJ (2005) Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment. Chemosphere 60:665-671. https://doi.org/10.1016/j.chemosphere.2005.01.029
Chong J, Soufan O, Li C, Caraus I, Li SZ, Bourque G, Wishart DS, Xia JG (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46:486-494. https://doi.org/10.1093/nar/gky310
Cooper KM, Tinker PB (1981) Translocation and transfer of nutrients in vesicular‐arbuscular mycorrhizas: IV. Effect of environmental variables on movement of phosphorus. New Phytol 88:327-339. https://doi.org/10.1111/j.1469-8137.1981.tb01728. x
Davison J, Moora M, Opik M, Adholeya A, Ainsaar L, Ba A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T, Johnson NC, Kane A, Koorem K, Kochar M, Ndiaye C, Partel M, Reier U, Saks U, Singh R, Vasar M, Zobel M (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349:970-973. https://doi.org/10.1126/science.aab1161
Dhawi F, Datta R, Ramakrishna W (2016) Mycorrhiza and heavy metal resistant bacteria enhance growth, nutrient uptake and alter metabolic profile of sorghum grown in marginal soil. Chemosphere 157:33-41. https://doi.org/10.1016/j.chemosphere.2016.04.112
dos Anjos VE, Rohwedder JR, Cadore S, Abate G, Grassi MT (2014) Montmorillonite and vermiculite as solid phases for the preconcentration of trace elements in natural waters: Adsorption and desorption studies of As, Ba, Cu, Cd, Co, Cr, Mn, Ni, Pb, Sr, V, and Zn. Appl Clay Sci 99:289-296. https://doi.org/10.1016/j.clay.2014.07.013
Faggioli V, Menoyo E, Geml J, Kemppainen M, Pardo A, Salazar MJ, Becerra AG (2019) Soil lead pollution modifies the structure of arbuscular mycorrhizal fungal communities. Mycorrhiza 29:363-373. https://doi.org/10.1007/s00572-019-00895-1
Fan YZ, Xu ZH, Huang YK, Wang TB, Zheng SK, DePasquale A, Brueckner C, Lei Y, Li BK (2020) Long-term continuous and real-time in situ monitoring of Pb(II) toxic contaminants in wastewater using solid-state ion selective membrane (S-ISM) Pb and pH auto-correction assembly. J Hazard Mater 400:123299. https://doi.org/10.1016/j.jhazmat.2020.123299
Ferrol N, Tamayo E, Vargas P (2016) The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. J Exp Bot 67:6253-6265. https://doi.org/10.1093/jxb/erw403
Gavito ME, Jakobsen I, Mikkelsen TN, Mora F (2019) Direct evidence for modulation of photosynthesis by an arbuscular mycorrhiza-induced carbon sink strength. New Phytol 223:896-907. https://doi.org/10.1111/nph.15806
Gonzalez-Alcaraz MN, Loureiro S, van Gestel CAM (2018) Toxicokinetics of Zn and Cd in the earthworm Eisenia andrei exposed to metal-contaminated soils under different combinations of air temperature and soil moisture content. Chemosphere 197:26-32. https://doi.org/10.1016/j.chemosphere.2018.01.019
Gonzalez-Chavez MC, Carrillo-Gonzalez R, Gutierrez-Castorena MC (2009) Natural attenuation in a slag heap contaminated with cadmium: The role of plants and arbuscular mycorrhizal fungi. J Hazard Mater 161:1288-1298. https://doi.org/10.1016/j.jhazmat.2008.04.110
Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317-323. https://doi.org/10.1016/j.envpol.2004.01.004
Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil, 2nd ed. Circular. vol 347. California Agricultural Experiment Station. https://doi.org/10.1016/S0140-6736(00)73482-9.
Huang L, Zhang HQ, Song YY, Yang YR, Chen H, Tang M (2017) Subcellular compartmentalization and chemical forms of lead participate in lead tolerance of Robinia pseudoacacia L. with Funneliformis mosseae. Front Plant Sci 8:517. https://doi.org/10.3389/fpls.2017.00517
Jan S, Parray JA (2016) Use of mycorrhiza as metal tolerance strategy in plants. In: Approaches to heavy metal tolerance in plants. Springer Singapore, Singapore, pp 57-68. https://doi.org/10.1007/978-981-10-1693-6_4
Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. P Natl Acad Sci USA 104:1720-1725. https://doi.org/10.1073/pnas.0608136104
Jia X, Zhao YH, Liu T, Huang SP, Chang YF (2016) Elevated CO2 increases glomalin-related soil protein (GRSP) in the rhizosphere of Robinia pseudoacacia L. seedlings in Pb- and Cd-contaminated soils. Environ Pollut 218:349-357. https://doi.org/10.1016/j.envpol.2016.07.010
Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227-234. https://doi.org/Doi 10.1023/A:1026565701391
Jozefkowicz C, Sigaut L, Scochera F, Soto G, Ayub N, Pietrasanta LI, Amodeo G, Flecha FLG, Alleva K (2016) PIP water transport and its pH dependence are regulated by tetramer stoichiometry. Biophys J 110:1312-1321. https://doi.org/10.1016/j.bpj.2016.01.026
Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233-1244. https://doi.org/10.1016/j.soilbio.2009.03.005
Kikuchi Y, Hijikata N, Ohtomo R, Handa Y, Kawaguchi M, Saito K, Masuta C, Ezawa T (2016) Aquaporin-mediated long-distance polyphosphate translocation directed towards the host in arbuscular mycorrhizal symbiosis: application of virus-induced gene silencing. New Phytol 211:1202-1208. https://doi.org/10.1111/nph.14016
Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486-488. https://doi.org/10.1016/S0953-7562(89)80195-9
Li G, Santoni V, Maurel C (2014a) Plant aquaporins: roles in plant physiology. BBA-Gen Subjects 1840:1574-1582. https://doi.org/10.1016/j.bbagen.2013.11.004
Li ZY, Ma ZW, van der Kuijp TJ, Yuan ZW, Huang L (2014b) A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci Total Environ 468:843-853. https://doi.org/10.1016/j.scitotenv.2013.08.090
Liu JY, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529-544. https://doi.org/10.1111/j.1365-313X.2007.03069.x
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
Ma Y, Rajkumar M, Oliveira RS, Zhang C, Freitas H (2019) Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. J Hazard Mater 379:120813. https://doi.org/10.1016/j.jhazmat.2019.120813
Ma YL, He JL, Ma CF, Luo J, Li H, Liu TX, Polle A, Peng CH, Luo ZB (2014) Ectomycorrhizas with Paxillus involutus enhance cadmium uptake and tolerance in Populus x canescens. Plant Cell Environ 37:627-642. https://doi.org/10.1111/pce.12183
Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95:1321-1358. https://doi.org/10.1152/physrev.00008.2015
McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495-501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x
Mortimer PE, Pérez-Fernández MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol Biochem 40:1019-1027 https://doi.org/10.1016/j.soilbio.2007.11.014
Parádi I, Tuinen Dv, Morandi D, Ochatt S, Robert F, Jacas L, Dumas-Gaudot E (2010) Transcription of two blue copper-binding protein isogenes is highly correlated with arbuscular mycorrhizal development in Medicago truncatula. Mol Plant Microbe In 23:1175-1183 https://doi.org/10.1094/MPMI-23-9-1175
Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763-775. https://doi.org/10.1038/nrmicro1987
Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P (2010) Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J Hazard Mater 177:465-474. https://doi.org/10.1016/j.jhazmat.2009.12.056
Puschel D, Bitterlich M, Rydlova J, Jansa J (2020) Facilitation of plant water uptake by an arbuscular mycorrhizal fungus: a Gordian knot of roots and hyphae. Mycorrhiza 30:299-313. https://doi.org/10.1007/s00572-020-00949-9
Salazar MJ, Menoyo E, Faggioli V, Geml J, Cabello M, Rodriguez JH, Marro N, Pardo A, Pignata ML, Becerra AG (2018) Pb accumulation in spores of arbuscular mycorrhizal fungi. Sci Total Environ 643:238-246. https://doi.org/10.1016/j.scitotenv.2018.06.199
Sharma P, Dubey RS (2005) Lead toxicity in plants. Brazilian Journal of Plant Physiology 17:35-52. https://doi.org/10.1590/S1677-04202005000100004
Sidhu GPS, Singh HP, Batish DR, Kohli RK (2017) Tolerance and hyperaccumulation of cadmium by a wild, unpalatable herb Coronopus didymus (L.) Sm. (Brassicaceae). Ecotox Environ Safe 135:209-215. https://doi.org/10.1016/j.ecoenv.2016.10.001
Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227-250. https://doi.org/10.1146/annurev-arplant-042110-103846
Sudova R, Vosatka M (2007) Differences in the effects of three arbuscular mycorrhizal fungal strains on P and Pb accumulation by maize plants. Plant Soil 296:77-83. https://doi.org/10.1007/s11104-007-9291-8
Wang CR, Rong H, Zhang XB, Shi WJ, Hong X, Liu WC, Cao T, Yu XX, Yu QF (2020) Effects and mechanisms of foliar application of silicon and selenium composite sols on diminishing cadmium and lead translocation and affiliated physiological and biochemical responses in hybrid rice (Oryza sativa L.) exposed to cadmium and lead. Chemosphere 251:126347. https://doi.org/10.1016/j.chemosphere.2020.126347
Watts-Williams SJ, Cavagnaro TR, Tyerman SD (2019) Variable effects of arbuscular mycorrhizal fungal inoculation on physiological and molecular measures of root and stomatal conductance of diverse Medicago truncatula accessions. Plant Cell Environ 42:285-294. https://doi.org/10.1111/pce.13369
Weissenhorn I, Leyval C (1995) Root colonization of maize by a Cd-sensitive and a Cd-tolerant Glomus mosseae and Cadmium uptake in sand culture. Plant Soil 175:233-238. https://doi.org/10.1007/Bf00011359
Weissenhorn I, Leyval C, Berthelin J (1993) Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy-metal polluted soils. Plant Soil 157:247-256. https://doi.org/10.1007/Bf00011053
Xin JL, Dai HW, Huang BF (2017) Assessing the roles of roots and shoots in the accumulation of cadmium in two sweet potato cultivars using split-root and reciprocal grafting systems. Plant Soil 412:413-424. https://doi.org/10.1007/s11104-016-3079-7
Yabe J, Nakayama SMM, Ikenaka Y, Yohannes YB, Bortey-Sam N, Kabalo AN, Ntapisha J, Mizukawa H, Umemura T, Ishizuka M (2018) Lead and cadmium excretion in feces and urine of children from polluted townships near a lead-zinc mine in Kabwe, Zambia. Chemosphere 202:48-55. https://doi.org/10.1016/j.chemosphere.2018.03.079
Yadav SK (2010) Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167-179. https://doi.org/10.1016/j.sajb.2009.10.007
Yang YR, Liang Y, Ghosh A, Song YY, Chen H, Tang M (2015) Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Environ Sci Pollut R 22:13179-13193. https://doi.org/10.1007/s11356-015-4521-8
Yang YR, Liang Y, Han XZ, Chiu TY, Ghosh A, Chen H, Tang M (2016) The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Sci Rep 6:20469. https://doi.org/10.1038/srep20469
Zhang HQ, Franken P (2014) Comparison of systemic and local interactions between the arbuscular mycorrhizal fungus Funneliformis mosseae and the root pathogen Aphanomyces euteiches in Medicago truncatula. Mycorrhiza 24:419-430. https://doi.org/10.1007/s00572-013-0553-4
Zhang XY, Lou X, Zhang HQ, Ren W, Tang M (2020a) Effects of sodium sulfide application on the growth of Robinia pseudoacacia, heavy metal immobilization, and soil microbial activity in Pb-Zn polluted soil. Ecotox Environ Safe 197:110563. https://doi.org/10.1016/j.ecoenv.2020.110563
Zhang XY, Zhang HJ, Zhang YX, Liu YQ, Zhang HQ, Tang M (2020b) Arbuscular mycorrhizal fungi alter carbohydrate distribution and amino acid accumulation in Medicago truncatula under lead stress. Environ Exp Bot 171:103950. https://doi.org/10.1016/j.envexpbot.2019.103950
Zhang XY, Zhang HQ, Lou X, Tang M (2019) Mycorrhizal and non-mycorrhizal Medicago truncatula roots exhibit differentially regulated NADPH oxidase and antioxidant response under Pb stress. Environ Exp Bot 164:10-19. https://doi.org/10.1016/j.envexpbot.2019.04.015
Zheng S, Wang C, Shen Z, Quan Y, Liu X (2015) Role of extrinsic arbuscular mycorrhizal fungi in heavy metal-contaminated wetlands with various soil moisture levels. Int J Phytoremediat 17:208-214. https://doi.org/10.1080/15226514.2013.876968